1
|
Erickson A, Zhang Q, Vakili H, Li C, Sarin S, Lamichhane S, Jia L, Fescenko I, Schwartz E, Liou SH, Shield JE, Chai G, Kovalev AA, Chen J, Laraoui A. Room Temperature Magnetic Skyrmions in Gradient-Composition Engineered CoPt Single Layers. ACS NANO 2024. [PMID: 39471305 DOI: 10.1021/acsnano.4c10145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/01/2024]
Abstract
Topologically protected magnetic skyrmions in magnetic materials are stabilized by an interfacial or bulk Dzyaloshinskii-Moriya interaction (DMI). Interfacial DMI decays with an increase of the magnetic layer thickness in just a few nanometers, and bulk DMI typically stabilizes magnetic skyrmions at low temperatures. Consequently, more flexibility in the manipulation of DMI is required for utilizing nanoscale skyrmions in energy-efficient memory and logic devices at room temperature (RT). Here, we demonstrate the observation of RT skyrmions stabilized by gradient DMI (g-DMI) in composition gradient-engineered CoPt single-layer films by employing the topological Hall effect, magnetic force microscopy, and nitrogen-vacancy scanning magnetometry. Skyrmions remain stable over a wide range of applied magnetic fields and are confirmed to be nearly Bloch-type from micromagnetic simulation and analytical magnetization reconstruction. Furthermore, we observe skyrmion pairs, which may be explained by skyrmion-antiskyrmion interactions. Our findings expand the family of magnetic materials hosting RT magnetic skyrmions by tuning g-DMI via gradient polarity and a choice of magnetic elements.
Collapse
Affiliation(s)
- Adam Erickson
- Department of Mechanical & Materials Engineering, University of Nebraska-Lincoln, 900 N 16th Street, W342 NH, Lincoln, Nebraska 68588, United States
| | - Qihan Zhang
- Department of Materials Science and Engineering, National University of Singapore, Block E2, #05-19, 5 Engineering Drive 2, Singapore 117579, Singapore
| | - Hamed Vakili
- Department of Physics and Astronomy and the Nebraska Center for Materials and Nanoscience, University of Nebraska-Lincoln, 855 N 16th St, Lincoln, Nebraska 68588, United States
| | - Chaozhong Li
- Key Laboratory for Magnetism and Magnetic Materials of Ministry of Education, School of Physical Science and Technology, Lanzhou University, Lanzhou 730000, China
| | - Suchit Sarin
- Department of Mechanical & Materials Engineering, University of Nebraska-Lincoln, 900 N 16th Street, W342 NH, Lincoln, Nebraska 68588, United States
| | - Suvechhya Lamichhane
- Department of Physics and Astronomy and the Nebraska Center for Materials and Nanoscience, University of Nebraska-Lincoln, 855 N 16th St, Lincoln, Nebraska 68588, United States
| | - Lanxin Jia
- Department of Materials Science and Engineering, National University of Singapore, Block E2, #05-19, 5 Engineering Drive 2, Singapore 117579, Singapore
| | - Ilja Fescenko
- Laser Center, University of Latvia, Jelgavas St 3, Riga LV-1004, Latvia
| | - Edward Schwartz
- Department of Physics and Astronomy and the Nebraska Center for Materials and Nanoscience, University of Nebraska-Lincoln, 855 N 16th St, Lincoln, Nebraska 68588, United States
| | - Sy-Hwang Liou
- Department of Physics and Astronomy and the Nebraska Center for Materials and Nanoscience, University of Nebraska-Lincoln, 855 N 16th St, Lincoln, Nebraska 68588, United States
| | - Jeffrey E Shield
- Department of Mechanical & Materials Engineering, University of Nebraska-Lincoln, 900 N 16th Street, W342 NH, Lincoln, Nebraska 68588, United States
| | - Guozhi Chai
- Key Laboratory for Magnetism and Magnetic Materials of Ministry of Education, School of Physical Science and Technology, Lanzhou University, Lanzhou 730000, China
| | - Alexey A Kovalev
- Department of Physics and Astronomy and the Nebraska Center for Materials and Nanoscience, University of Nebraska-Lincoln, 855 N 16th St, Lincoln, Nebraska 68588, United States
| | - Jingsheng Chen
- Department of Materials Science and Engineering, National University of Singapore, Block E2, #05-19, 5 Engineering Drive 2, Singapore 117579, Singapore
- National University of Singapore (Suzhou) Research Institute, Suzhou, Jiangsu 215123, China
| | - Abdelghani Laraoui
- Department of Mechanical & Materials Engineering, University of Nebraska-Lincoln, 900 N 16th Street, W342 NH, Lincoln, Nebraska 68588, United States
- Department of Physics and Astronomy and the Nebraska Center for Materials and Nanoscience, University of Nebraska-Lincoln, 855 N 16th St, Lincoln, Nebraska 68588, United States
| |
Collapse
|
2
|
Zhou Y, Li S, Liang X, Zhou Y. Topological Spin Textures: Basic Physics and Devices. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024:e2312935. [PMID: 38861696 DOI: 10.1002/adma.202312935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 05/24/2024] [Indexed: 06/13/2024]
Abstract
In the face of escalating modern data storage demands and the constraints of Moore's Law, exploring spintronic solutions, particularly the devices based on magnetic skyrmions, has emerged as a promising frontier in scientific research. Since the first experimental observation of skyrmions, topological spin textures have been extensively studied for their great potential as efficient information carriers in spintronic devices. However, significant challenges have emerged alongside this progress. This review aims to synthesize recent advances in skyrmion research while addressing the major issues encountered in the field. Additionally, current research on promising topological spin structures in addition to skyrmions is summarized. Beyond 2D structures, exploration also extends to 1D magnetic solitons and 3D spin textures. In addition, a diverse array of emerging magnetic materials is introduced, including antiferromagnets and 2D van der Waals magnets, broadening the scope of potential materials hosting topological spin textures. Through a systematic examination of magnetic principles, topological categorization, and the dynamics of spin textures, a comprehensive overview of experimental and theoretical advances in the research of topological magnetism is provided. Finally, both conventional and unconventional applications are summarized based on spin textures proposed thus far. This review provides an outlook on future development in applied spintronics.
Collapse
Affiliation(s)
- Yuqing Zhou
- School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen, Guangdong, 518172, China
| | - Shuang Li
- School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen, Guangdong, 518172, China
| | - Xue Liang
- School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen, Guangdong, 518172, China
| | - Yan Zhou
- School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen, Guangdong, 518172, China
| |
Collapse
|
3
|
Song Y, Xu T, Zhao G, Xu Y, Zhong Z, Zheng X, Shi N, Zhou C, Hao Y, Huang Q, Xing X, Zhang Y, Chen J. High-density, spontaneous magnetic biskyrmions induced by negative thermal expansion in ferrimagnets. SCIENCE ADVANCES 2023; 9:eadi1984. [PMID: 37672584 PMCID: PMC10482331 DOI: 10.1126/sciadv.adi1984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Accepted: 08/04/2023] [Indexed: 09/08/2023]
Abstract
Magnetic skyrmions are topologically protected quasiparticles that are promising for applications in spintronics. However, the low stability of most magnetic skyrmions leads to either a narrow temperature range in which they can exist, a low density of skyrmions, or the need for an external magnetic field, which greatly limits their wide application. In this study, high-density, spontaneous magnetic biskyrmions existing within a wide temperature range and without the need for a magnetic field were formed in ferrimagnets owing to the existence of a negative thermal expansion of the lattice. Moreover, a strong connection between the atomic-scale ferrimagnetic structure and nanoscale magnetic domains in Ho(Co,Fe)3 was revealed via in situ neutron powder diffraction and Lorentz transmission electron microscopy measurements. The critical role of the negative thermal expansion in generating biskyrmions in HoCo3 based on the magnetoelastic coupling effect is further demonstrated by comparing the behavior of HoCo2.8Fe0.2 with a positive thermal expansion.
Collapse
Affiliation(s)
- Yuzhu Song
- Beijing Advanced Innovation Center for Materials Genome Engineering, Department of Physical Chemistry, University of Science and Technology Beijing, Beijing 100083, China
| | - Tiankuo Xu
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
| | - Guoping Zhao
- College of Physics and Electronic Engineering and Institute of Solid State Physics, Sichuan Normal University, Chengdu 610066, China
| | - Yuanji Xu
- Institute for Applied Physics, University of Science and Technology Beijing, Beijing 100083, China
| | - Zhicheng Zhong
- Key Laboratory of Magnetic Materials Devices & Zhejiang Province Key Laboratory of Magnetic Materials and Application Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
| | - Xinqi Zheng
- School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Naike Shi
- Beijing Advanced Innovation Center for Materials Genome Engineering, Department of Physical Chemistry, University of Science and Technology Beijing, Beijing 100083, China
| | - Chang Zhou
- State Key Laboratory for Advanced Metals and Materials, University of Science and Technology Beijing, Beijing 100083, China
| | - Yiqing Hao
- State Key Laboratory of Surface Physics and Department of Physics, Fudan University, Shanghai 200433, China
| | - Qingzhen Huang
- NIST Center for Neutron Research, National Institute of Standards and Technology, Gaithersburg MD, 20899-6102, USA
| | - Xianran Xing
- Institute of Solid State Chemistry, University of Science and Technology Beijing, Beijing 100083, China
| | - Ying Zhang
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
| | - Jun Chen
- Beijing Advanced Innovation Center for Materials Genome Engineering, Department of Physical Chemistry, University of Science and Technology Beijing, Beijing 100083, China
| |
Collapse
|
4
|
Castillo-Sepúlveda S, Vélez JA, Corona RM, Carvalho-Santos VL, Laroze D, Altbir D. Skyrmion Dynamics in a Double-Disk Geometry under an Electric Current: Part Two. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:3793. [PMID: 36364569 PMCID: PMC9653745 DOI: 10.3390/nano12213793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 10/20/2022] [Accepted: 10/25/2022] [Indexed: 06/16/2023]
Abstract
Using numerical simulations, we studied the dynamics of two skyrmions nucleated in a double-disk structure. Depending on the geometry and the electric current, different regimes for the dynamical behavior of the skyrmions were obtained. Our results evidence that there are four main dynamic regimes depending on the geometry and current: stagnation points, oscillatory motion, and two types of skyrmion annihilation: partial and total. Our findings are explained as a result of the different forces that skyrmions are subject to and are shown in a state diagram of the dynamical states that allow an adequate understanding of the associate phenomena.
Collapse
Affiliation(s)
- Sebastián Castillo-Sepúlveda
- Grupo de Investigación en Física Aplicada, Facultad de Ingeniería, Universidad Autónoma de Chile, Avda. Pedro de Valdivia 425, Providencia 7500912, Chile
| | - Javier A. Vélez
- Departamento de Polímeros y Materiales Avanzados: Física, Química y Tecnología, Universidad del País Vasco, UPV/EHU, Paseo M. Lardizabal, 3, 20018 San Sebastián, Spain
- Donostia International Physics Center, 20018 San Sebastián, Spain
| | - Rosa M. Corona
- Departamento de Física, CEDENNA, Universidad de Santiago de Chile, Avda. Víctor Jara 3493, Santiago 9170022, Chile
| | - Vagson L. Carvalho-Santos
- Departamento de Física, Universidade Federal de Viçosa, Avenida Peter Henry Rolfs s/n, Viçosa 36570-000, MG, Brazil
| | - David Laroze
- Instituto de Alta Investigación, Universidad de Tarapacá, Casilla 7D, Arica 1000000, Chile
| | - Dora Altbir
- Departamento de Física, CEDENNA, Universidad de Santiago de Chile, Avda. Víctor Jara 3493, Santiago 9170022, Chile
| |
Collapse
|
5
|
Castillo-Sepúlveda S, Vélez JA, Corona RM, Carvalho-Santos VL, Laroze D, Altbir D. Skyrmion Dynamics in a Double-Disk Geometry under an Electric Current. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:3086. [PMID: 36144874 PMCID: PMC9502721 DOI: 10.3390/nano12183086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 08/26/2022] [Accepted: 09/01/2022] [Indexed: 06/16/2023]
Abstract
In this work, we present an analysis of skyrmion dynamics considering Dzyaloshinskii-Moriya interactions in an STNO device with a double-disk geometry. Three regimes were observed as a function of geometric parameters and the electric current density: (i) the skyrmion is annihilating at the system's border; (ii) the skyrmion moves in a non-circular trajectory alternating its position between the two disks, and (iii) the skyrmion only rotates inside a one-disk subsystem. For the annihilation state, we found that the transient time decays within a stretched exponential law as a function of the electric current. Our results show a 2D state diagram that can guide new experimental work in order to obtain these specific behaviors for new applications based on skyrmion dynamics.
Collapse
Affiliation(s)
- Sebastián Castillo-Sepúlveda
- Grupo de Investigación en Física Aplicada, Facultad de Ingeniería, Universidad Autónoma de Chile, Avda. Pedro de Valdivia 425, Providencia 7500912, Chile
| | - Javier A. Vélez
- Departamento de Polímeros y Materiales Avanzados: Física, Química y Tecnología, Universidad del País Vasco, UPV/EHU, Paseo M. Lardizabal, 3, 20018 San Sebastián, Spain
- Donostia International Physics Center, 20018 San Sebastián, Spain
| | - Rosa M. Corona
- Departamento de Física, CEDENNA, Universidad de Santiago de Chile, Avda. Víctor Jara 3493, Estación Central, Santiago 9170022, Chile
| | - Vagson L. Carvalho-Santos
- Departamento de Física, Universidade Federal de Viçosa, Avenida Peter Henry Rolfs s/n, Viçosa 36570-000, MG, Brazil
| | - David Laroze
- Instituto de Alta Investigación, Universidad de Tarapacá, Casilla 7D, Arica 1000000, Chile
| | - Dora Altbir
- Departamento de Física, CEDENNA, Universidad de Santiago de Chile, Avda. Víctor Jara 3493, Estación Central, Santiago 9170022, Chile
| |
Collapse
|
6
|
Amoroso D, Barone P, Picozzi S. Interplay between Single-Ion and Two-Ion Anisotropies in Frustrated 2D Semiconductors and Tuning of Magnetic Structures Topology. NANOMATERIALS 2021; 11:nano11081873. [PMID: 34443704 PMCID: PMC8397980 DOI: 10.3390/nano11081873] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 07/15/2021] [Accepted: 07/16/2021] [Indexed: 01/14/2023]
Abstract
The effects of competing magnetic interactions in stabilizing different spin configurations are drawing renewed attention in order to unveil emerging topological spin textures and to highlight microscopic mechanisms leading to their stabilization. The possible key role of the two-site exchange anisotropy in selecting specific helicity and vorticity of skyrmionic lattices has only recently been proposed. In this work, we explore the phase diagram of a frustrated localized magnet characterized by a two-dimensional centrosymmetric triangular lattice, focusing on the interplay between the two-ion anisotropy and the single-ion anisotropy. The effects of an external magnetic field applied perpendicularly to the magnetic layer, are also investigated. By means of Monte Carlo simulations, we find an abundance of different spin configurations, going from trivial to high-order Q skyrmionic and meronic lattices. In closer detail, we find that a dominant role is played by the two-ion over the single-ion anisotropy in determining the planar spin texture; the strength and the sign of single ion anisotropy, together with the magnitude of the magnetic field, tune the perpendicular spin components, mostly affecting the polarity (and, in turn, the topology) of the spin texture. Our analysis confirms the crucial role of the anisotropic symmetric exchange in systems with dominant short-range interactions; at the same time, we predict a rich variety of complex magnetic textures, which may arise from a fine tuning of competing anisotropic mechanisms.
Collapse
Affiliation(s)
- Danila Amoroso
- Consiglio Nazionale delle Ricerche CNR-SPIN, c/o Università degli Studi “G. D’Annunzio”, I-66100 Chieti, Italy;
- Correspondence:
| | - Paolo Barone
- Consiglio Nazionale delle Ricerche CNR-SPIN, Area della Ricerca di Tor Vergata, Via del Fosso del Cavaliere 100, I-00133 Rome, Italy;
| | - Silvia Picozzi
- Consiglio Nazionale delle Ricerche CNR-SPIN, c/o Università degli Studi “G. D’Annunzio”, I-66100 Chieti, Italy;
| |
Collapse
|
7
|
Spontaneous skyrmionic lattice from anisotropic symmetric exchange in a Ni-halide monolayer. Nat Commun 2020; 11:5784. [PMID: 33188198 PMCID: PMC7666143 DOI: 10.1038/s41467-020-19535-w] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Accepted: 10/02/2020] [Indexed: 11/09/2022] Open
Abstract
Topological spin structures, such as magnetic skyrmions, hold great promises for data storage applications, thanks to their inherent stability. In most cases, skyrmions are stabilized by magnetic fields in non-centrosymmetric systems displaying the chiral Dzyaloshinskii-Moriya exchange interaction, while spontaneous skyrmion lattices have been reported in centrosymmetric itinerant magnets with long-range interactions. Here, a spontaneous anti-biskyrmion lattice with unique topology and chirality is predicted in the monolayer of a semiconducting and centrosymmetric metal halide, NiI2. Our first-principles and Monte Carlo simulations reveal that the anisotropies of the short-range symmetric exchange, when combined with magnetic frustration, can lead to an emergent chiral interaction that is responsible for the predicted topological spin structures. The proposed mechanism finds a prototypical manifestation in two-dimensional magnets, thus broadening the class of materials that can host spontaneous skyrmionic states.
Collapse
|
8
|
Capic D, Garanin DA, Chudnovsky EM. Skyrmion-skyrmion interaction in a magnetic film. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2020; 32:415803. [PMID: 32526724 DOI: 10.1088/1361-648x/ab9bc8] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Accepted: 06/11/2020] [Indexed: 06/11/2023]
Abstract
Interaction of two skyrmions stabilized by the ferromagnetic exchange, Dzyaloshinskii-Moriya interaction (DMI), and external magnetic field has been studied numerically on a 2D lattice of size large compared to the separation,d, between the skyrmions. We show that two skyrmions of the same chirality (determined by the symmetry of the crystal) repel. In accordance with earlier analytical results, their long-range pair interaction falls out with the separation as exp(-d/δH), whereδHis the magnetic screening length, independent of the DMI. The prefactor in this expression depends on the DMI that drives the repulsion. The latter results in the spiral motion of the two skyrmions around each other, with the separation between them growing logarithmically with time. When two skyrmions of the total topological chargeQ= 2 are pushed close to each other, the discreteness of the atomic lattice makes them collapse into one skyrmion of chargeQ= 1 below a critical separation. Experiment is proposed that would allow one to measure the interaction between two skyrmions by holding them in positions with two magnetic tips. Our findings should be of value for designing topologically protected magnetic memory based upon skyrmions.
Collapse
Affiliation(s)
- D Capic
- Physics Department, Herbert H. Lehman College and Graduate School, The City University of New York, 250 Bedford Park Boulevard West, Bronx, New York 10468-1589, United States of America
| | - D A Garanin
- Physics Department, Herbert H. Lehman College and Graduate School, The City University of New York, 250 Bedford Park Boulevard West, Bronx, New York 10468-1589, United States of America
| | - E M Chudnovsky
- Physics Department, Herbert H. Lehman College and Graduate School, The City University of New York, 250 Bedford Park Boulevard West, Bronx, New York 10468-1589, United States of America
| |
Collapse
|