1
|
Apostolova EL. Molecular Mechanisms Associated with Plant Tolerance upon Abiotic Stress. PLANTS (BASEL, SWITZERLAND) 2024; 13:3532. [PMID: 39771228 PMCID: PMC11678597 DOI: 10.3390/plants13243532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Revised: 12/06/2024] [Accepted: 12/09/2024] [Indexed: 01/11/2025]
Abstract
The important processes of plants are influenced by adverse environmental factors, which can have a negative impact on their growth and development. The last decade has seen an increase in the impact of abiotic stress on plants due to climate changes. The impact of abiotic stress on plants and their defense mechanisms is presented in the Special Issue "Molecular Mechanisms Associated with Plant Tolerance upon Abiotic Stress". The studies enhance our understanding of how abiotic factors affect plants and their defense mechanisms.
Collapse
Affiliation(s)
- Emilia L Apostolova
- Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., Bl. 21, 1113 Sofia, Bulgaria
| |
Collapse
|
2
|
Huo J, Yu M, Feng N, Zheng D, Zhang R, Xue Y, Khan A, Zhou H, Mei W, Du X, Shen X, Zhao L, Meng F. Integrated transcriptome and metabolome analysis of salinity tolerance in response to foliar application of choline chloride in rice ( Oryza sativa L.). FRONTIERS IN PLANT SCIENCE 2024; 15:1440663. [PMID: 39148614 PMCID: PMC11324541 DOI: 10.3389/fpls.2024.1440663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Accepted: 07/15/2024] [Indexed: 08/17/2024]
Abstract
Introduction Salt stress is a major abiotic stress that affects crop growth and productivity. Choline Chloride (CC) has been shown to enhance salt tolerance in various crops, but the underlying molecular mechanisms in rice remain unclear. Methods To investigate the regulatory mechanism of CC-mediated salt tolerance in rice, we conducted morpho-physiological, metabolomic, and transcriptomic analyses on two rice varieties (WSY, salt-tolerant, and HHZ, salt-sensitive) treated with 500 mg·L-1 CC under 0.3% NaCl stress. Results Our results showed that foliar application of CC improved morpho-physiological parameters such as root traits, seedling height, seedling strength index, seedling fullness, leaf area, photosynthetic parameters, photosynthetic pigments, starch, and fructose content under salt stress, while decreasing soluble sugar, sucrose, and sucrose phosphate synthase levels. Transcriptomic analysis revealed that CC regulation combined with salt treatment induced changes in the expression of genes related to starch and sucrose metabolism, the citric acid cycle, carbon sequestration in photosynthetic organs, carbon metabolism, and photosynthetic antenna proteins in both rice varieties. Metabolomic analysis further supported these findings, indicating that photosynthesis, carbon metabolism, and carbon fixation pathways were crucial in CC-mediated salt tolerance. Discussion The combined transcriptomic and metabolomic data suggest that CC treatment enhances rice salt tolerance by activating distinct transcriptional cascades and phytohormone signaling, along with multiple antioxidants and unique metabolic pathways. These findings provide a basis for further understanding the mechanisms of metabolite synthesis and gene regulation induced by CC in rice in response to salt stress, and may inform strategies for improving crop resilience to salt stress.
Collapse
Affiliation(s)
- Jingxin Huo
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, China
- South China Branch of National Saline-Alkali Tolerant Rice Technology Innovation Center, Zhanjiang, China
| | - Minglong Yu
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, China
- South China Branch of National Saline-Alkali Tolerant Rice Technology Innovation Center, Zhanjiang, China
| | - Naijie Feng
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, China
- South China Branch of National Saline-Alkali Tolerant Rice Technology Innovation Center, Zhanjiang, China
- Shenzhen Institute of Guangdong Ocean University, Shenzhen, China
| | - Dianfeng Zheng
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, China
- South China Branch of National Saline-Alkali Tolerant Rice Technology Innovation Center, Zhanjiang, China
- Shenzhen Institute of Guangdong Ocean University, Shenzhen, China
| | - Rui Zhang
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, China
- South China Branch of National Saline-Alkali Tolerant Rice Technology Innovation Center, Zhanjiang, China
| | - Yingbin Xue
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, China
- South China Branch of National Saline-Alkali Tolerant Rice Technology Innovation Center, Zhanjiang, China
| | - Aaqil Khan
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, China
- South China Branch of National Saline-Alkali Tolerant Rice Technology Innovation Center, Zhanjiang, China
| | - Hang Zhou
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, China
- South China Branch of National Saline-Alkali Tolerant Rice Technology Innovation Center, Zhanjiang, China
| | - Wanqi Mei
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, China
- South China Branch of National Saline-Alkali Tolerant Rice Technology Innovation Center, Zhanjiang, China
| | - Xiaole Du
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, China
- South China Branch of National Saline-Alkali Tolerant Rice Technology Innovation Center, Zhanjiang, China
| | - Xuefeng Shen
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, China
- South China Branch of National Saline-Alkali Tolerant Rice Technology Innovation Center, Zhanjiang, China
| | - Liming Zhao
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, China
- South China Branch of National Saline-Alkali Tolerant Rice Technology Innovation Center, Zhanjiang, China
| | - Fengyan Meng
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, China
- South China Branch of National Saline-Alkali Tolerant Rice Technology Innovation Center, Zhanjiang, China
| |
Collapse
|
3
|
Rashkov GD, Stefanov MA, Yotsova EK, Borisova PB, Dobrikova AG, Apostolova EL. Exploring Nitric Oxide as a Regulator in Salt Tolerance: Insights into Photosynthetic Efficiency in Maize. PLANTS (BASEL, SWITZERLAND) 2024; 13:1312. [PMID: 38794383 PMCID: PMC11125177 DOI: 10.3390/plants13101312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 04/29/2024] [Accepted: 05/08/2024] [Indexed: 05/26/2024]
Abstract
The growing issue of salinity is a significant threat to global agriculture, affecting diverse regions worldwide. Nitric oxide (NO) serves as an essential signal molecule in regulating photosynthetic performance under physiological and stress conditions. The present study reveals the protective effects of different concentrations (0-300 µM) of sodium nitroprusside (SNP, a donor of NO) on the functions of the main complexes within the photosynthetic apparatus of maize (Zea mays L. Kerala) under salt stress (150 mM NaCl). The data showed that SNP alleviates salt-induced oxidative stress and prevents changes in the fluidity of thylakoid membranes (Laurdan GP) and energy redistribution between the two photosystems (77K chlorophyll fluorescence ratio F735/F685). Chlorophyll fluorescence measurements demonstrated that the foliar spray with SNP under salt stress prevents the decline of photosystem II (PSII) open reaction centers (qP) and improves their efficiency (Φexc), thereby influencing QA- reoxidation. The data also revealed that SNP protects the rate constants for two pathways of QA- reoxidation (k1 and k2) from the changes caused by NaCl treatment alone. Additionally, there is a predominance of QA- interaction with plastoquinone in comparison to the recombination of electrons in QA QB- with the oxygen-evolving complex (OEC). The analysis of flash oxygen evolution showed that SNP treatment prevents a salt-induced 10% increase in PSII centers in the S0 state, i.e., protects the initial S0-S1 state distribution, and the modification of the Mn cluster in the OEC. Moreover, this study demonstrates that SNP-induced defense occurs on both the donor and acceptor sides of the PSII, leading to the protection of overall photosystems performance (PIABS) and efficient electron transfer from the PSII donor side to the reduction of PSI end electron acceptors (PItotal). This study clearly shows that the optimal protection under salt stress occurs at approximately 50-63 nmoles NO/g FW in leaves, corresponding to foliar spray with 50-150 µM SNP.
Collapse
Affiliation(s)
| | | | | | | | | | - Emilia L. Apostolova
- Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., Bl. 21, 1113 Sofia, Bulgaria; (G.D.R.); (M.A.S.); (E.K.Y.); (P.B.B.); (A.G.D.)
| |
Collapse
|
4
|
Stefanov MA, Rashkov GD, Borisova PB, Apostolova EL. Changes in Photosystem II Complex and Physiological Activities in Pea and Maize Plants in Response to Salt Stress. PLANTS (BASEL, SWITZERLAND) 2024; 13:1025. [PMID: 38611554 PMCID: PMC11013719 DOI: 10.3390/plants13071025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 03/26/2024] [Accepted: 04/01/2024] [Indexed: 04/14/2024]
Abstract
Salt stress significantly impacts the functions of the photosynthetic apparatus, with varying degrees of damage to its components. Photosystem II (PSII) is more sensitive to environmental stresses, including salinity, than photosystem I (PSI). This study investigated the effects of different salinity levels (0 to 200 mM NaCl) on the PSII complex in isolated thylakoid membranes from hydroponically grown pea (Pisum sativum L.) and maize (Zea mays L.) plants treated with NaCl for 5 days. The data revealed that salt stress inhibits the photochemical activity of PSII (H2O → BQ), affecting the energy transfer between the pigment-protein complexes of PSII (as indicated by the fluorescence emission ratio F695/F685), QA reoxidation, and the function of the oxygen-evolving complex (OEC). These processes were more significantly affected in pea than in maize under salinity. Analysis of the oxygen evolution curves after flashes and continuous illumination showed a stronger influence on the PSIIα than PSIIβ centers. The inhibition of oxygen evolution was associated with an increase in misses (α), double hits (β), and blocked centers (SB) and a decrease in the rate constant of turnover of PSII reaction centers (KD). Salinity had different effects on the two pathways of QA reoxidation in maize and pea. In maize, the electron flow from QA- to plastoquinone was dominant after treatment with higher NaCl concentrations (150 mM and 200 mM), while in pea, the electron recombination on QAQB- with oxidized S2 (or S3) of the OEC was more pronounced. Analysis of the 77 K fluorescence emission spectra revealed changes in the ratio of the light-harvesting complex of PSII (LHCII) monomers and trimers to LHCII aggregates after salt treatment. There was also a decrease in pigment composition and an increase in oxidative stress markers, membrane injury index, antioxidant activity (FRAP assay), and antiradical activity (DPPH assay). These effects were more pronounced in pea than in maize after treatment with higher NaCl concentrations (150 mM-200 mM). This study provides insights into how salinity influences the processes in the donor and acceptor sides of PSII in plants with different salt sensitivity.
Collapse
Affiliation(s)
- Martin A Stefanov
- Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., Bl. 21, 1113 Sofia, Bulgaria
| | - Georgi D Rashkov
- Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., Bl. 21, 1113 Sofia, Bulgaria
| | - Preslava B Borisova
- Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., Bl. 21, 1113 Sofia, Bulgaria
| | - Emilia L Apostolova
- Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., Bl. 21, 1113 Sofia, Bulgaria
| |
Collapse
|
5
|
Trotti J, Trapani I, Gulino F, Aceto M, Minio M, Gerotto C, Mica E, Valè G, Barbato R, Pagliano C. Physiological Responses to Salt Stress at the Seedling Stage in Wild ( Oryza rufipogon Griff.) and Cultivated ( Oryza sativa L.) Rice. PLANTS (BASEL, SWITZERLAND) 2024; 13:369. [PMID: 38337902 PMCID: PMC10857172 DOI: 10.3390/plants13030369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 01/05/2024] [Accepted: 01/24/2024] [Indexed: 02/12/2024]
Abstract
Domesticated rice Oryza sativa L. is a major staple food worldwide, and the cereal most sensitive to salinity. It originated from the wild ancestor Oryza rufipogon Griff., which was reported to possess superior salinity tolerance. Here, we examined the morpho-physiological responses to salinity stress (80 mM NaCl for 7 days) in seedlings of an O. rufipogon accession and two Italian O. sativa genotypes, Baldo (mildly tolerant) and Vialone Nano (sensitive). Under salt treatment, O. rufipogon showed the highest percentage of plants with no to moderate stress symptoms, displaying an unchanged shoot/root biomass ratio, the highest Na+ accumulation in roots, the lowest root and leaf Na+/K+ ratio, and highest leaf relative water content, leading to a better preservation of the plant architecture, ion homeostasis, and water status. Moreover, O. rufipogon preserved the overall leaf carbon to nitrogen balance and photosynthetic apparatus integrity. Conversely, Vialone Nano showed the lowest percentage of plants surviving after treatment, and displayed a higher reduction in the growth of shoots rather than roots, with leaves compromised in water and ionic balance, negatively affecting the photosynthetic performance (lowest performance index by JIP-test) and apparatus integrity. Baldo showed intermediate salt tolerance. Being O. rufipogon interfertile with O. sativa, it resulted a good candidate for pre-breeding towards salt-tolerant lines.
Collapse
Affiliation(s)
- Jacopo Trotti
- Department for Sustainable Development and Ecological Transition, University of Eastern Piedmont, Piazza Sant’Eusebio 5, 13100 Vercelli, Italy; (J.T.); (F.G.); (M.A.); (E.M.); (G.V.); (R.B.)
| | - Isabella Trapani
- Department of Science and Technological Innovation, University of Eastern Piedmont, Viale Teresa Michel 5, 15121 Alessandria, Italy
| | - Federica Gulino
- Department for Sustainable Development and Ecological Transition, University of Eastern Piedmont, Piazza Sant’Eusebio 5, 13100 Vercelli, Italy; (J.T.); (F.G.); (M.A.); (E.M.); (G.V.); (R.B.)
| | - Maurizio Aceto
- Department for Sustainable Development and Ecological Transition, University of Eastern Piedmont, Piazza Sant’Eusebio 5, 13100 Vercelli, Italy; (J.T.); (F.G.); (M.A.); (E.M.); (G.V.); (R.B.)
| | - Miles Minio
- Department of Life and Environmental Sciences, Marche Polytechnic University, Via Brecce Bianche, 60131 Ancona, Italy; (M.M.); (C.G.)
| | - Caterina Gerotto
- Department of Life and Environmental Sciences, Marche Polytechnic University, Via Brecce Bianche, 60131 Ancona, Italy; (M.M.); (C.G.)
| | - Erica Mica
- Department for Sustainable Development and Ecological Transition, University of Eastern Piedmont, Piazza Sant’Eusebio 5, 13100 Vercelli, Italy; (J.T.); (F.G.); (M.A.); (E.M.); (G.V.); (R.B.)
| | - Giampiero Valè
- Department for Sustainable Development and Ecological Transition, University of Eastern Piedmont, Piazza Sant’Eusebio 5, 13100 Vercelli, Italy; (J.T.); (F.G.); (M.A.); (E.M.); (G.V.); (R.B.)
| | - Roberto Barbato
- Department for Sustainable Development and Ecological Transition, University of Eastern Piedmont, Piazza Sant’Eusebio 5, 13100 Vercelli, Italy; (J.T.); (F.G.); (M.A.); (E.M.); (G.V.); (R.B.)
| | - Cristina Pagliano
- Department of Science and Technological Innovation, University of Eastern Piedmont, Viale Teresa Michel 5, 15121 Alessandria, Italy
| |
Collapse
|
6
|
Hao Z, Tan Y, Feng J, Lin H, Sun Z, Zhuang JY, Chen Q, Jin X, Sun Y. Integrated metabolomic and transcriptomic analysis reveal the effect of mechanical stress on sugar metabolism in tea leaves ( Camellia sinensis) post-harvest. PeerJ 2023; 11:e14869. [PMID: 36785711 PMCID: PMC9921968 DOI: 10.7717/peerj.14869] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Accepted: 01/18/2023] [Indexed: 02/11/2023] Open
Abstract
Sugar metabolites not only act as the key compounds in tea plant response to stress but are also critical for tea quality formation during the post-harvest processing of tea leaves. However, the mechanisms by which sugar metabolites in post-harvest tea leaves respond to mechanical stress are unclear. In this study, we aimed to investigate the effects of mechanical stress on saccharide metabolites and related post-harvest tea genes. Withered (C15) and mechanically-stressed (V15) for 15 min Oolong tea leaves were used for metabolome and transcriptome sequencing analyses. We identified a total of 19 sugar metabolites, most of which increased in C15 and V15. A total of 69 genes related to sugar metabolism were identified using transcriptome analysis, most of which were down-regulated in C15 and V15. To further understand the relationship between the down-regulated genes and sugar metabolites, we analyzed the sucrose and starch, galactose, and glycolysis metabolic pathways, and found that several key genes of invertase (INV), α-amylase (AMY), β-amylase (BMY), aldose 1-epimerase (AEP), and α-galactosidase (AGAL) were down-regulated. This inhibited the hydrolysis of sugars and might have contributed to the enrichment of galactose and D-mannose in V15. Additionally, galactinol synthase (Gols), raffinose synthase (RS), hexokinase (HXK), 6-phosphofructokinase 1 (PFK-1), and pyruvate kinase (PK) genes were significantly upregulated in V15, promoting the accumulation of D-fructose-6-phosphate (D-Fru-6P), D-glucose-6-phosphate (D-glu-6P), and D-glucose. Transcriptome and metabolome association analysis showed that the glycolysis pathway was enhanced and the hydrolysis rate of sugars related to hemicellulose synthesis slowed in response to mechanical stress. In this study, we explored the role of sugar in the response of post-harvest tea leaves to mechanical stress by analyzing differences in the expression of sugar metabolites and related genes. Our results improve the understanding of post-harvest tea's resistance to mechanical stress and the associated mechanism of sugar metabolism. The resulting treatment may be used to control the quality of Oolong tea.
Collapse
|
7
|
Impact of Salinity on the Energy Transfer between Pigment-Protein Complexes in Photosynthetic Apparatus, Functions of the Oxygen-Evolving Complex and Photochemical Activities of Photosystem II and Photosystem I in Two Paulownia Lines. Int J Mol Sci 2023; 24:ijms24043108. [PMID: 36834517 PMCID: PMC9967322 DOI: 10.3390/ijms24043108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 01/26/2023] [Accepted: 01/31/2023] [Indexed: 02/08/2023] Open
Abstract
The present study shows the effect of salinity on the functions of thylakoid membranes from two hybrid lines of Paulownia: Paulownia tomentosa x fortunei and Paulownia elongate x elongata, grown in a Hoagland solution with two NaCl concentrations (100 and 150 mM) and different exposure times (10 and 25 days). We observed inhibition of the photochemical activities of photosystem I (DCPIH2 → MV) and photosystem II (H2O → BQ) only after the short treatment (10 days) with the higher NaCl concentration. Data also revealed alterations in the energy transfer between pigment-protein complexes (fluorescence emission ratios F735/F685 and F695/F685), the kinetic parameters of the oxygen-evolving reactions (initial S0-S1 state distribution, misses (α), double hits (β) and blocked centers (SB)). Moreover, the experimental results showed that after prolonged treatment with NaCl Paulownia tomentosa x fortunei adapted to the higher concentration of NaCl (150 mM), while this concentration is lethal for Paulownia elongata x elongata. This study demonstrated the relationship between the salt-induced inhibition of the photochemistry of both photosystems and the salt-induced changes in the energy transfer between the pigment-protein complexes and the alterations in the Mn cluster of the oxygen-evolving complex under salt stress.
Collapse
|
8
|
Akram S, Ghaffar M, Wadood A, Shokat S, Hameed A, Waheed MQ, Arif MAR. A GBS-based genome-wide association study reveals the genetic basis of salinity tolerance at the seedling stage in bread wheat (Triticum aestivum L.). Front Genet 2022; 13:997901. [PMID: 36238161 PMCID: PMC9551609 DOI: 10.3389/fgene.2022.997901] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 08/15/2022] [Indexed: 12/30/2022] Open
Abstract
High salinity levels affect 20% of the cultivated area and 9%–34% of the irrigated agricultural land worldwide, ultimately leading to yield losses of crops. The current study evaluated seven salt tolerance-related traits at the seedling stage in a set of 138 pre-breeding lines (PBLs) and identified 63 highly significant marker-trait associations (MTAs) linked to salt tolerance. Different candidate genes were identified in in silico analysis, many of which were involved in various stress conditions in plants, including glycine-rich cell wall structural protein 1-like, metacaspase-1, glyceraldehyde-3-phosphate dehydrogenase GAPA1, and plastidial GAPA1. Some of these genes coded for structural protein and participated in cell wall structure, some were linked to programmed cell death, and others were reported to show abiotic stress response roles in wheat and other plants. In addition, using the Multi-Trait Genotype-Ideotype Distance Index (MGIDI) protocol, the best-performing lines under salt stress were identified. The SNPs identified in this study and the genotypes with favorable alleles provide an excellent source to impart salt tolerance in wheat.
Collapse
Affiliation(s)
- Saba Akram
- *Correspondence: Saba Akram, ; Mian Abdur Rehman Arif,
| | | | | | | | | | | | | |
Collapse
|
9
|
Athar HUR, Zulfiqar F, Moosa A, Ashraf M, Zafar ZU, Zhang L, Ahmed N, Kalaji HM, Nafees M, Hossain MA, Islam MS, El Sabagh A, Siddique KHM. Salt stress proteins in plants: An overview. FRONTIERS IN PLANT SCIENCE 2022; 13:999058. [PMID: 36589054 PMCID: PMC9800898 DOI: 10.3389/fpls.2022.999058] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Accepted: 11/23/2022] [Indexed: 05/04/2023]
Abstract
Salinity stress is considered the most devastating abiotic stress for crop productivity. Accumulating different types of soluble proteins has evolved as a vital strategy that plays a central regulatory role in the growth and development of plants subjected to salt stress. In the last two decades, efforts have been undertaken to critically examine the genome structure and functions of the transcriptome in plants subjected to salinity stress. Although genomics and transcriptomics studies indicate physiological and biochemical alterations in plants, it do not reflect changes in the amount and type of proteins corresponding to gene expression at the transcriptome level. In addition, proteins are a more reliable determinant of salt tolerance than simple gene expression as they play major roles in shaping physiological traits in salt-tolerant phenotypes. However, little information is available on salt stress-responsive proteins and their possible modes of action in conferring salinity stress tolerance. In addition, a complete proteome profile under normal or stress conditions has not been established yet for any model plant species. Similarly, a complete set of low abundant and key stress regulatory proteins in plants has not been identified. Furthermore, insufficient information on post-translational modifications in salt stress regulatory proteins is available. Therefore, in recent past, studies focused on exploring changes in protein expression under salt stress, which will complement genomic, transcriptomic, and physiological studies in understanding mechanism of salt tolerance in plants. This review focused on recent studies on proteome profiling in plants subjected to salinity stress, and provide synthesis of updated literature about how salinity regulates various salt stress proteins involved in the plant salt tolerance mechanism. This review also highlights the recent reports on regulation of salt stress proteins using transgenic approaches with enhanced salt stress tolerance in crops.
Collapse
Affiliation(s)
- Habib-ur-Rehman Athar
- Institute of Pure and Applied Biology, Bahauddin Zakariya University, Multan, Pakistan
- College of Life Sciences, Northwest A&F University, Yangling, China
| | - Faisal Zulfiqar
- Department of Horticultural Sciences, Faculty of Agriculture and Environment, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
- *Correspondence: Faisal Zulfiqar, ; Kadambot H. M. Siddique,
| | - Anam Moosa
- Department of Plant Pathology, Faculty of Agriculture and Environment, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | - Muhammad Ashraf
- Institute of Molecular Biology and Biotechnology, The University of Lahore, Lahore, Pakistan
| | - Zafar Ullah Zafar
- Institute of Pure and Applied Biology, Bahauddin Zakariya University, Multan, Pakistan
| | - Lixin Zhang
- College of Life Sciences, Northwest A&F University, Yangling, China
| | - Nadeem Ahmed
- College of Life Sciences, Northwest A&F University, Yangling, China
- Department of Botany, Mohy-ud-Din Islamic University, Nerian Sharif, Pakistan
| | - Hazem M. Kalaji
- Department of Plant Physiology, Institute of Biology, Warsaw University of Life Sciences SGGW, Warsaw, Poland
| | - Muhammad Nafees
- Department of Horticultural Sciences, Faculty of Agriculture and Environment, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | - Mohammad Anwar Hossain
- Department of Genetics and Plant Breeding, Bangladesh Agricultural University, Mymensingh, Bangladesh
| | - Mohammad Sohidul Islam
- Department of Agronomy, Hajee Mohammad Danesh Science and Technology University, Dinajpur, Bangladesh
| | - Ayman El Sabagh
- Faculty of Agriculture, Department of Field Crops, Siirt University, Siirt, Türkiye
- Agronomy Department, Faculty of Agriculture, Kafrelsheikh University, Kafrelsheikh, Egypt
| | - Kadambot H. M. Siddique
- The UWA Institute of Agriculture, The University of Western Australia, Petrth WA, Australia
- *Correspondence: Faisal Zulfiqar, ; Kadambot H. M. Siddique,
| |
Collapse
|
10
|
Ding G, Yang Q, Ruan X, Si T, Yuan B, Zheng W, Xie Q, Souleymane OA, Wang X. Proteomics analysis of the effects for different salt ions in leaves of true halophyte Sesuvium portulacastrum. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2022; 170:234-248. [PMID: 34920320 DOI: 10.1016/j.plaphy.2021.12.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Revised: 12/07/2021] [Accepted: 12/09/2021] [Indexed: 05/25/2023]
Abstract
Sesuvium portulacastrum is a true halophyte and shows an optimal development under moderate salinity with large amounts of salt ions in its leaves. However, the specific proteins in response to salt ions are remained unknown. In this study, comparative physiological and proteomic analyses of different leaves subject to NaCl, KCl, NaNO3 and KNO3 were performed. Chlorophyll content was decreased under the above four kinds of salt treatments. Starch and soluble sugar contents changed differently under different salt treatments. A total of 53 differentially accumulated proteins (DAPs) were identified by mass spectrometry. Among them, 13, 25, 26 and 25 DAPs were identified after exposure to KCl, NaCl, KNO3, and NaNO3, respectively. These DAPs belong to 47 unique genes, and 37 of them are involved in protein-protein interactions. These DAPs displayed different expression patterns after treating with different salt ions. Functional annotation revealed they are mainly involved in photosynthesis, carbohydrate and energy metabolism, lipid metabolism, and biosynthesis of secondary metabolites. Genes and proteins showed different expression profiles under different salt treatments. Enzyme activity analysis indicated P-ATPase was induced by KCl, NaCl and NaNO3, V-ATPase was induced by KCl and NaCl, whereas V-PPase activity was significantly increased after application of KNO3, but sharply inhibited by NaCl. These results might deepen our understanding of responsive mechanisms in the leaves of S. portulacastrum upon different salt ions.
Collapse
Affiliation(s)
- Guohua Ding
- College of Life Sciences, Ministry of Education Key Laboratory for Ecology of Tropical Islands, Hainan Normal University, Haikou, Hainan, 571158, China
| | - Qian Yang
- South Subtropical Crop Research Institute, China Academy of Tropical Agricultural Sciences, China
| | - Xueyu Ruan
- College of Life Sciences, Ministry of Education Key Laboratory for Ecology of Tropical Islands, Hainan Normal University, Haikou, Hainan, 571158, China
| | - Tingting Si
- College of Life Sciences, Ministry of Education Key Laboratory for Ecology of Tropical Islands, Hainan Normal University, Haikou, Hainan, 571158, China
| | - Boxuan Yuan
- College of Life Sciences, Ministry of Education Key Laboratory for Ecology of Tropical Islands, Hainan Normal University, Haikou, Hainan, 571158, China; Key Laboratory of Xinjiang Phytomedicine Resource and Utilization of Ministry of Education, College of Life Sciences, Shihezi University, Shihezi, 832003, China
| | - Wenwei Zheng
- College of Life Sciences, Ministry of Education Key Laboratory for Ecology of Tropical Islands, Hainan Normal University, Haikou, Hainan, 571158, China
| | - Quanliang Xie
- Key Laboratory of Xinjiang Phytomedicine Resource and Utilization of Ministry of Education, College of Life Sciences, Shihezi University, Shihezi, 832003, China
| | - Ousmane Ahmat Souleymane
- College of Life Sciences, Ministry of Education Key Laboratory for Ecology of Tropical Islands, Hainan Normal University, Haikou, Hainan, 571158, China
| | - Xuchu Wang
- College of Life Sciences, Ministry of Education Key Laboratory for Ecology of Tropical Islands, Hainan Normal University, Haikou, Hainan, 571158, China.
| |
Collapse
|
11
|
iTRAQ-based quantitative proteome analysis insights into cold stress of Winter Rapeseed (Brassica rapa L.) grown in the field. Sci Rep 2021; 11:23434. [PMID: 34873178 PMCID: PMC8648733 DOI: 10.1038/s41598-021-02707-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Accepted: 11/17/2021] [Indexed: 12/02/2022] Open
Abstract
Winter rapeseed (Brassica rapa L.) is a major oilseed crop in Northern China, where its production was severely affected by chilling and freezing stress. However, not much is known about the role of differentially accumulated proteins (DAPs) during the chilling and freezing stress. In this study, isobaric tag for relative and absolute quantification (iTRAQ) technology was performed to identify DAPs under freezing stress. To explore the molecular mechanisms of cold stress tolerance at the cellular and protein levels, the morphological and physiological differences in the shoot apical meristem (SAM) of two winter rapeseed varieties, Longyou 7 (cold-tolerant) and Lenox (cold-sensitive), were explored in field-grown plants. Compared to Lenox, Longyou 7 had a lower SAM height and higher collar diameter. The level of malondialdehyde (MDA) and indole-3-acetic acid (IAA) content was also decreased. Simultaneously, the soluble sugars (SS) content, superoxide dismutase (SOD) activity, peroxidase (POD) activity, soluble protein (SP) content, and collar diameter were increased in Longyou 7 as compared to Lenox. A total of 6330 proteins were identified. Among this, 98, 107, 183 and 111 DAPs were expressed in L7 CK/Le CK, L7 d/Le d, Le d/Le CK and L7 d/L7 CK, respectively. Quantitative real-time PCR (RT-qPCR) analysis of the coding genes for seventeen randomly selected DAPs was performed for validation. These DAPs were identified based on gene ontology enrichment analysis, which revealed that glutathione transferase activity, carbohydrate-binding, glutathione binding, metabolic process, and IAA response were closely associated with the cold stress response. In addition, some cold-induced proteins, such as glutathione S-transferase phi 2(GSTF2), might play an essential role during cold acclimation in the SAM of Brassica rapa. The present study provides valuable information on the involvement of DAPs during cold stress responses in Brassica rapa L, and hence could be used for breeding experiments.
Collapse
|
12
|
Hussain T, Asrar H, Zhang W, Gul B, Liu X. Combined Transcriptome and Proteome Analysis to Elucidate Salt Tolerance Strategies of the Halophyte Panicum antidotale Retz. FRONTIERS IN PLANT SCIENCE 2021; 12:760589. [PMID: 34804096 PMCID: PMC8598733 DOI: 10.3389/fpls.2021.760589] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Accepted: 10/05/2021] [Indexed: 05/24/2023]
Abstract
Panicum antidotale, a C4 monocot, has the potential to reclaim saline and drylands and to be utilized as fodder and forage. Its adaptability to survive saline stress has been proven with eco-physiological and biochemical studies. However, little is known about its molecular mechanisms of salt tolerance. In this study, an integrated transcriptome and proteome analysis approach, based on RNA sequencing and liquid chromatography tandem mass spectrometry (LC-MS/MS), was used to identify the said mechanisms. Plants were treated with control (0 mM), low (100 mM), and high (300 mM) sodium chloride (NaCl) treatments to distinguish beneficial and toxic pathways influencing plant biomass. The results indicated differential expression of 3,179 (1,126 upregulated/2,053 downregulated) and 2,172 (898 upregulated/1,274 downregulated) genes (DEGs), and 514 (269 upregulated/245 downregulated) and 836 (494 upregulated/392 downregulated) proteins (DEPs) at 100 and 300 mM NaCl, respectively. Among these, most upregulated genes and proteins were involved in salt resistance strategies such as proline biosynthesis, the antioxidant defense system, ion homeostasis, and sugar accumulation at low salinity levels. On the other hand, the expression of several genes and proteins involved in the respiratory process were downregulated, indicating the inability of plants to meet their energy demands at high salinity levels. Moreover, the impairments in photosynthesis were also evident with the reduced expression of genes regulating the structure of photosystems and increased expression of abscisic acid (ABA) mediated pathways which limits stomatal gas exchange. Similarly, the disturbance in fatty acid metabolism and activation of essential ion transport blockers damaged the integrity of the cell membrane, which was also evident with enhanced malondialdehyde (MDA). Overall, the analysis of pathways revealed that the plant optimal performance at low salinity was related to enhanced metabolism, antioxidative defense, cell growth, and signaling pathways, whereas high salinity inhibited biomass accumulation by altered expression of numerous genes involved in carbon metabolism, signaling, transcription, and translation. The data provided the first global analysis of the mechanisms imparting salt stress tolerance of any halophyte at transcriptome and proteome levels.
Collapse
Affiliation(s)
- Tabassum Hussain
- Chinese Academy of Sciences Engineering Laboratory for Efficient Utilization of Saline Resources, Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Shijiazhuang, China
- Dr. M. Ajmal Khan Institute of Sustainable Halophyte Utilization, University of Karachi, Karachi, Pakistan
| | - Hina Asrar
- Dr. M. Ajmal Khan Institute of Sustainable Halophyte Utilization, University of Karachi, Karachi, Pakistan
| | - Wensheng Zhang
- Chinese Academy of Sciences Engineering Laboratory for Efficient Utilization of Saline Resources, Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Shijiazhuang, China
| | - Bilquees Gul
- Dr. M. Ajmal Khan Institute of Sustainable Halophyte Utilization, University of Karachi, Karachi, Pakistan
| | - Xiaojing Liu
- Chinese Academy of Sciences Engineering Laboratory for Efficient Utilization of Saline Resources, Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Shijiazhuang, China
| |
Collapse
|
13
|
Xu Z, Chen X, Lu X, Zhao B, Yang Y, Liu J. Integrative analysis of transcriptome and metabolome reveal mechanism of tolerance to salt stress in oat (Avena sativa L.). PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2021; 160:315-328. [PMID: 33545609 DOI: 10.1016/j.plaphy.2021.01.027] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Accepted: 01/18/2021] [Indexed: 06/12/2023]
Abstract
Soil salinity is among the crucial factors that impact on crop productivity, including oat (Avena sativa L.). Herein, we used two distinct oat cultivars with varied salt tolerance levels to unravel adaptive responses to salt stress by metabolomic and transcriptomic characterization. Metabolomic profiling revealed 201 metabolites, including saccharides, amino acids, organic acids, and secondary metabolites. The levels of most saccharides and amino acids were elevated in Baiyan 2 (BY2) as well as in Baiyan 5 (BY5) exposed to salt stress. In the tolerant cultivar BY2 exposed to 150 mM NaCl, concentrations of most of the metabolites increased significantly, with sucrose increased by 38.34-fold, Sophorose increased by 314.15-fold and Isomaltose 2 increased by 25.76-fold. In the sensitive cultivar BY5, the concentrations of most metabolites increased after the plant was exposed to 150 mM NaCl but decreased after the plant was exposed to 300 mM NaCl. Transcriptomic analysis revealed that gene expressions in BY5 were significantly affected under exposure to 300 mM NaCl (34040 genes up-regulated and 14757 genes down-regulated). Assessment of metabolic pathways as well as KEGG enrichment revealed that salt stress interferes with the biosynthesis of two oat cultivars, including capacity expenditure and sugar metabolism. Most of the BY2 genes enhanced energy consumption (for example, glycolysis) and biosynthesis (for instance, starch and sugar metabolism) under salt stress. In contrast, genes in BY5 were found to be down-regulated, leading to the inhibition of energy consumption and biosynthesis, which may also be attributed to salt sensitivity in BY5. In addition, the modified Na+/K+ transporter genes expression is associated with the predominant ionic responses in BY2, which leads low concentration of Na+ and high K+ when exposed to high salt situations. These findings suggest that the varied defensive capacities of these two oat cultivars in response to salt stress are due to their variations in energy-expenditure strategy, synthesis of energy substances and ion transport in roots. Our present study offers a crucial reference for oat cultivation under saline soil.
Collapse
Affiliation(s)
- Zhongshan Xu
- Cereal Industry Collaborative Innovation Center, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia, 010019, China; Cereal Engineering Technology Research Center, Inner Mongolia Autonomous Region, Hohhot, Inner Mongolia, 010019, China; National Outstanding Talents in Agricultural Research and Their Innovative Teams, Hohhot, Inner Mongolia, 010019, China
| | - Xiaojing Chen
- Cereal Industry Collaborative Innovation Center, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia, 010019, China; Cereal Engineering Technology Research Center, Inner Mongolia Autonomous Region, Hohhot, Inner Mongolia, 010019, China; National Outstanding Talents in Agricultural Research and Their Innovative Teams, Hohhot, Inner Mongolia, 010019, China
| | - Xiaoping Lu
- Cereal Industry Collaborative Innovation Center, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia, 010019, China
| | - Baoping Zhao
- Cereal Industry Collaborative Innovation Center, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia, 010019, China; Cereal Engineering Technology Research Center, Inner Mongolia Autonomous Region, Hohhot, Inner Mongolia, 010019, China; National Outstanding Talents in Agricultural Research and Their Innovative Teams, Hohhot, Inner Mongolia, 010019, China
| | - Yanming Yang
- Cereal Industry Collaborative Innovation Center, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia, 010019, China; Cereal Engineering Technology Research Center, Inner Mongolia Autonomous Region, Hohhot, Inner Mongolia, 010019, China; National Outstanding Talents in Agricultural Research and Their Innovative Teams, Hohhot, Inner Mongolia, 010019, China
| | - Jinghui Liu
- Cereal Industry Collaborative Innovation Center, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia, 010019, China; Cereal Engineering Technology Research Center, Inner Mongolia Autonomous Region, Hohhot, Inner Mongolia, 010019, China; National Outstanding Talents in Agricultural Research and Their Innovative Teams, Hohhot, Inner Mongolia, 010019, China.
| |
Collapse
|