1
|
Hashemi M, Daneii P, Asadalizadeh M, Tabari K, Matinahmadi A, Bidoki SS, Motlagh YSM, Jafari AM, Ghorbani A, Dehghanpour A, Nabavi N, Tan SC, Rashidi M, Taheriazam A, Entezari M, Goharrizi MASB. Epigenetic regulation of hepatocellular carcinoma progression: MicroRNAs as therapeutic, diagnostic and prognostic factors. Int J Biochem Cell Biol 2024; 170:106566. [PMID: 38513802 DOI: 10.1016/j.biocel.2024.106566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 01/28/2024] [Accepted: 03/19/2024] [Indexed: 03/23/2024]
Abstract
Hepatocellular carcinoma (HCC), a significant challenge for public healthcare systems in developed Western countries including the USA, Canada, and the UK, is influenced by different risk factors including hepatitis virus infections, alcoholism, and smoking. The disruption in the balance of microRNAs (miRNAs) plays a vital function in tumorigenesis, given their function as regulators in numerous signaling networks. These miRNAs, which are mature and active in the cytoplasm, work by reducing the expression of target genes through their impact on mRNAs. MiRNAs are particularly significant in HCC as they regulate key aspects of the tumor, like proliferation and invasion. Additionally, during treatment phases such as chemotherapy and radiotherapy, the levels of miRNAs are key determinants. Pre-clinical experiments have demonstrated that altered miRNA expression contributes to HCC development, metastasis, drug resistance, and radio-resistance, highlighting related molecular pathways and processes like MMPs, EMT, apoptosis, and autophagy. Furthermore, the regulatory role of miRNAs in HCC extends beyond their immediate function, as they are also influenced by other epigenetic factors like lncRNAs and circular RNAs (circRNAs), as discussed in recent reviews. Applying these discoveries in predicting the prognosis of HCC could mark a significant advancement in the therapy of this disease.
Collapse
Affiliation(s)
- Mehrdad Hashemi
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Pouria Daneii
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Mahya Asadalizadeh
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Kiana Tabari
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Arash Matinahmadi
- Department of Cellular and Molecular Biology, Nicolaus Copernicus University, Torun, Poland
| | - Seyed Shahabadin Bidoki
- Faculty of medicine, School of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | | | - Ali Moghadas Jafari
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Amin Ghorbani
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Amir Dehghanpour
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Noushin Nabavi
- Department of Urologic Sciences and Vancouver Prostate Centre, University of British Columbia, V6H3Z6, Vancouver, BC, Canada
| | - Shing Cheng Tan
- UKM Medical Molecular Biology Institute, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Mohsen Rashidi
- Department Pharmacology, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran; The Health of Plant and Livestock Products Research Center, Mazandaran University of Medical Sciences, Sari, Iran.
| | - Afshin Taheriazam
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Department of Orthopedics, Faculty of Medicine, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| | - Maliheh Entezari
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| | | |
Collapse
|
2
|
Choi KM, Kim B, Lee SM, Han J, Bae HS, Han SB, Lee D, Ham IH, Hur H, Kim E, Kim JY. Characterization of gastric cancer-stimulated signaling pathways and function of CTGF in cancer-associated fibroblasts. Cell Commun Signal 2024; 22:8. [PMID: 38167009 PMCID: PMC10763493 DOI: 10.1186/s12964-023-01396-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Accepted: 11/12/2023] [Indexed: 01/05/2024] Open
Abstract
BACKGROUND Cancer-associated fibroblasts (CAFs) are key components of the tumor microenvironment (TME) that play an important role in cancer progression. Although the mechanism by which CAFs promote tumorigenesis has been well investigated, the underlying mechanism of CAFs activation by neighboring cancer cells remains elusive. In this study, we aim to investigate the signaling pathways involved in CAFs activation by gastric cancer cells (GC) and to provide insights into the therapeutic targeting of CAFs for overcoming GC. METHODS Alteration of receptor tyrosine kinase (RTK) activity in CAFs was analyzed using phospho-RTK array. The expression of CAFs effector genes was determined by RT-qPCR or ELISA. The migration and invasion of GC cells co-cultured with CAFs were examined by transwell migration/invasion assay. RESULTS We found that conditioned media (CM) from GC cells could activate multiple receptor tyrosine kinase signaling pathways, including ERK, AKT, and STAT3. Phospho-RTK array analysis showed that CM from GC cells activated PDGFR tyrosine phosphorylation, but only AKT activation was PDGFR-dependent. Furthermore, we found that connective tissue growth factor (CTGF), a member of the CCN family, was the most pronouncedly induced CAFs effector gene by GC cells. Knockdown of CTGF impaired the ability of CAFs to promote GC cell migration and invasion. Although the PDGFR-AKT pathway was pronouncedly activated in CAFs stimulated by GC cells, its pharmacological inhibition affected neither CTGF induction nor CAFs-induced GC cell migration. Unexpectedly, the knockdown of SRC and SRC-family kinase inhibitors, dasatinib and saracatinib, significantly impaired CTGF induction in activated CAFs and the migration of GC cells co-cultured with CAFs. SRC inhibitors restored the reduced expression of epithelial markers, E-cadherin and Zonula Occludens-1 (ZO-1), in GC cells co-cultured with CAFs, as well as CAFs-induced aggregate formation in a 3D tumor spheroid model. CONCLUSIONS This study provides a characterization of the signaling pathways and effector genes involved in CAFs activation, and strategies that could effectively inhibit it in the context of GC. Video Abstract.
Collapse
Affiliation(s)
- Kyoung-Min Choi
- Graduate School of Analytical Science and Technology (GRAST), Chungnam National University, Daejeon, South Korea
| | - Boram Kim
- Graduate School of Analytical Science and Technology (GRAST), Chungnam National University, Daejeon, South Korea
| | - Su-Min Lee
- Graduate School of Analytical Science and Technology (GRAST), Chungnam National University, Daejeon, South Korea
| | - Jisoo Han
- Graduate School of Analytical Science and Technology (GRAST), Chungnam National University, Daejeon, South Korea
| | - Ha-Song Bae
- Graduate School of Analytical Science and Technology (GRAST), Chungnam National University, Daejeon, South Korea
| | - Su-Bhin Han
- Graduate School of Analytical Science and Technology (GRAST), Chungnam National University, Daejeon, South Korea
| | - Dagyeong Lee
- Department of Surgery, Ajou University School of Medicine, Suwon, South Korea
- Inflamm-Aging Translational Research Center, Ajou University School of Medicine, Suwon, South Korea
- AI-Super Convergence KIURI Translational Research Center, Suwon, South Korea
| | - In-Hye Ham
- Department of Surgery, Ajou University School of Medicine, Suwon, South Korea
- Inflamm-Aging Translational Research Center, Ajou University School of Medicine, Suwon, South Korea
| | - Hoon Hur
- Department of Surgery, Ajou University School of Medicine, Suwon, South Korea
- Inflamm-Aging Translational Research Center, Ajou University School of Medicine, Suwon, South Korea
| | - Eunjung Kim
- Natural Product Informatics Center, Korea Institute of Science and Technology (KIST), Gangneung, South Korea
| | - Jae-Young Kim
- Graduate School of Analytical Science and Technology (GRAST), Chungnam National University, Daejeon, South Korea.
| |
Collapse
|
3
|
Shan J, Wu MY, Zhang YC, Lin YJ, Cheng B, Gao YR, Liu ZH, Xu HM. Hsa-miR-379 down-regulates Rac1/MLK3/JNK/AP-1/Collagen I cascade reaction by targeting connective tissue growth factor in human alveolar basal epithelial A549 cells. Cytokine 2023; 166:156191. [PMID: 37002970 DOI: 10.1016/j.cyto.2023.156191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 03/22/2023] [Accepted: 03/23/2023] [Indexed: 04/01/2023]
Abstract
OBJECTIVE This study was aimed to screen and identify miRNAs that could regulate human CTGF gene and downstream cascade reaction Rac1/MLK3/JNK/AP-1/Collagen I by bioinformatics and experimental means. METHODS TargetScan and Tarbase were used to predict miRNAs that may have regulatory effects on human CTGF gene. The dual-luciferase reporter gene assay was employed to verify the results obtained in bioinformatics. Human alveolar basal epithelial A549 cells were exposed to silica (SiO2) culture medium for 24 h to establish an in vitro model of pulmonary fibrosis, and bleomycin (BLM) of 100 ng/mL was used as a positive control. The miRNA and mRNA expression levels were determined by RT-qPCR, and the protein levels were measured by western blot in hsa-miR-379-3p overexpression group or not. RESULTS A total of 9 differentially expressed miRNAs that might regulate the human CTGF gene were predicted. Hsa-miR-379-3p and hsa-miR-411-3p were selected for the subsequent experiments. The results of the dual-luciferase reporter assay showed that hsa-miR-379-3p could bind to CTGF, but hsa-miR-411-3p could not. Compared with the control group, SiO2 exposure (25 and 50 μg/mL) could significantly reduce the expression level of hsa-miR-379-3p in A549 cells. SiO2 exposure (50 μg/mL) could significantly increase the mRNA expression levels of CTGF, Collagen I, Rac1, MLK3, JNK, AP1, and VIM in A549 cells, while CDH1 level was significantly decreased. Compared with SiO2 + NC group, the mRNA expression levels of CTGF, Collagen I, Rac1, MLK3, JNK, AP1, and VIM were significantly decreased, and CDH1 level was significantly higher when hsa-miR-379-3p was overexpressed. At the same time, overexpression of hsa-miR-379-3p improved the protein levels of CTGF, Collagen I, c-Jun and phospho-c-Jun, JNK1 and phospho-JNK1 significantly compared with SiO2 + NC group. CONCLUSION Hsa-miR-379-3p was demonstrated for the first time that could directly target and down-regulate human CTGF gene, and further affect the expression levels of key genes and proteins in Rac1/MLK3/JNK/AP-1/Collagen I cascade reaction.
Collapse
|
4
|
Centomo ML, Vitiello M, Poliseno L, Pandolfi PP. An Immunocompetent Environment Unravels the Proto-Oncogenic Role of miR-22. Cancers (Basel) 2022; 14:cancers14246255. [PMID: 36551740 PMCID: PMC9776418 DOI: 10.3390/cancers14246255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 12/09/2022] [Accepted: 12/14/2022] [Indexed: 12/23/2022] Open
Abstract
MiR-22 was first identified as a proto-oncogenic microRNA (miRNA) due to its ability to post-transcriptionally suppress the expression of the potent PTEN (Phosphatase And Tensin Homolog) tumor suppressor gene. miR-22 tumorigenic role in cancer was subsequently supported by its ability to positively trigger lipogenesis, anabolic metabolism, and epithelial-mesenchymal transition (EMT) towards the metastatic spread. However, during the following years, the picture was complicated by the identification of targets that support a tumor-suppressive role in certain tissues or cell types. Indeed, many papers have been published where in vitro cellular assays and in vivo immunodeficient or immunosuppressed xenograft models are used. However, here we show that all the studies performed in vivo, in immunocompetent transgenic and knock-out animal models, unanimously support a proto-oncogenic role for miR-22. Since miR-22 is actively secreted from and readily exchanged between normal and tumoral cells, a functional immune dimension at play could well represent the divider that allows reconciling these contradictory findings. In addition to a critical review of this vast literature, here we provide further proof of the oncogenic role of miR-22 through the analysis of its genomic locus vis a vis the genetic landscape of human cancer.
Collapse
Affiliation(s)
- Maria Laura Centomo
- Department of Molecular Biotechnology and Health Sciences, University of Turin, 10126 Turin, Italy
- William N. Pennington Cancer Institute, Renown Health, Nevada System of Higher Education, Reno, NV 89502, USA
- Center for Genomic Medicine, Desert Research Institute, Reno, NV 89512, USA
| | - Marianna Vitiello
- Institute of Clinical Physiology, National Research Council, Via Moruzzi 1, 56124 Pisa, Italy
- Oncogenomics Unit, Core Research Laboratory, ISPRO, Via Moruzzi 1, 56124 Pisa, Italy
| | - Laura Poliseno
- Institute of Clinical Physiology, National Research Council, Via Moruzzi 1, 56124 Pisa, Italy
- Oncogenomics Unit, Core Research Laboratory, ISPRO, Via Moruzzi 1, 56124 Pisa, Italy
- Correspondence: (L.P.); (P.P.P.); Tel.: +39-050-315-2780 (L.P.); +1-775-982-6210 (P.P.P.); Fax: +39-050-315-3327 (L.P.); +1-775-982-4288 (P.P.P.)
| | - Pier Paolo Pandolfi
- Department of Molecular Biotechnology and Health Sciences, University of Turin, 10126 Turin, Italy
- William N. Pennington Cancer Institute, Renown Health, Nevada System of Higher Education, Reno, NV 89502, USA
- Center for Genomic Medicine, Desert Research Institute, Reno, NV 89512, USA
- Correspondence: (L.P.); (P.P.P.); Tel.: +39-050-315-2780 (L.P.); +1-775-982-6210 (P.P.P.); Fax: +39-050-315-3327 (L.P.); +1-775-982-4288 (P.P.P.)
| |
Collapse
|
5
|
Tao Q, Zhu K, Zhan Y, Zhang R, Lang Z, Yu Z, Wang M. Construction of a novel exosomes-related gene signature in hepatocellular carcinoma. Front Cell Dev Biol 2022; 10:997734. [PMID: 36105354 PMCID: PMC9465081 DOI: 10.3389/fcell.2022.997734] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 08/08/2022] [Indexed: 11/13/2022] Open
Abstract
Background: Exosomes are extracellular vesicles between 40 and 150 nm in diameter and are cargoes for a wide range of small biological molecules. Recent studies have reported that lncRNAs, miRNAs, circRNAs in serum exosomes may serve as biomarkers to predict hepatocellular carcinoma (HCC) prognosis. However, the prognostic values of exosomes-related mRNAs in HCC are still unclear.Methods: Data of HCC patients were downloaded from The Cancer Genome Atlas (TCGA) database. The serum exosome sequencing data of HCC patients and healthy individuals were obtained from the exobase database. Univariate cox regression analysis was used to identify prognostic exosomes-related genes. LASSO and multivariate cox regression analyses were applied to construct prognostic signature.Results: 22 exosomes-related mRNAs differentially expressed between HCC tissues and normal tissues were identified. Then, 8 prognostic exosomes-related mRNAs were screened. Subsequently, G6PD and ADAMTS5, selected by LASSO and multivariate cox regression analyses, were used to construct a prognostic signature. The patients with high-risk scores had a poor prognosis in TCGA cohort as well as ICGC cohort. Notably, this prognostic signature was also validated in a local cohort collected from the First Affiliated Hospital of Wenzhou Medical University. Receiver Operating Characteristic (ROC) analyses indicated that the signature had a good performance in all the cohorts. The gene set enrichment analysis revealed that this signature was associated with cell cycle and metabolism pathways. Immune infiltration analysis indicated that the patients with high-risk scores had a higher M0 macrophages infiltration. The univariate and multivariate cox regression analyses identified that the risk score is an independent risk factor for HCC. In addition, a nomogram containing age, gender, stage and risk score was constructed to precisely predict HCC prognosis.Conclusion: In conclusion, we develop a novel exosomes-related gene signature that helps to predict HCC prognosis.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Meng Wang
- *Correspondence: Zhengping Yu, ; Meng Wang,
| |
Collapse
|
6
|
Lei TX, He DJ, Cao J, Lv WG. CircWDR26 regulates endometrial carcinoma progression via miR-212-3p-mediated typing genes MSH2. Eur J Med Res 2022; 27:135. [PMID: 35897048 PMCID: PMC9327368 DOI: 10.1186/s40001-022-00755-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Accepted: 06/28/2022] [Indexed: 11/10/2022] Open
Abstract
Background Circular RNAs (circRNA) are important in mediating tumor progression, but their roles in endometrial carcinoma (EC) are not fully understood yet. Many circRNAs are dysregulated and may contribute to EC progression. The functions of circWDR26 in EC remain unknown. Methods The expression of circWDR26 in EC and adjacent normal tissues, and cell lines was determined by qPCR. The proliferation, apoptosis, migration, and invasion of EC cells was examined by CCK-8 assay, flow cytometry, wound healing assay and Transwell assay. The interaction between circWDR26, MSH2 and miR-212-3p was determined by luciferase assay. EC cells were inoculated into nude mice and tumor burden was determined by measuring tumor dimensions, size, and weight. The proliferative marker Ki67 in EC tissue was determined by immunohistochemistry. Results The expression of circWDR26 in EC tissues or cell lines was higher than in the normal tissue or endometrial epithelial cells. Downregulation of circWDR26 resulted in attenuated proliferation, increased apoptosis, reduced migration and invasion of EC cells. Mechanistically, circWDR26 targeted and suppressed the expression of miR-212-3p. We further found that MSH2 was the novel target of miR-212-3p and was upregulated by circWDR26 via inhibiting miR-212-3p. In vivo experiment demonstrated that circWDR26 was essential for EC tumor growth. Conclusion circWDR26 promoted EC progression by regulating miR-212-3p/MSH2 axis and provided novel insights into anti-cancer treatment.
Collapse
Affiliation(s)
- Tao-Xiang Lei
- Department of Gynecological Oncology Surgery, Chenzhou First People's Hospital (The First Affiliated Hospital of Xiangnan University), No.849 Youth Avenue, Chenzhou, 423000, Hunan Province, China
| | - De-Jian He
- Department of Emergency, Chenzhou First People's Hospital (The First Affiliated Hospital of Xiangnan University), Chenzhou, 423000, Hunan Province, China
| | - Jian Cao
- Medical Imaging Center, Chenzhou Fourth People's Hospital, Chenzhou, 423000, Hunan Province, China
| | - Wang-Gui Lv
- Department of Gynecological Oncology Surgery, Chenzhou First People's Hospital (The First Affiliated Hospital of Xiangnan University), No.849 Youth Avenue, Chenzhou, 423000, Hunan Province, China.
| |
Collapse
|
7
|
Ju A, Shen Y, Yue A. Circ_0011232 contributes to hepatocellular carcinoma progression through miR-503-5p/AKT3 axis. Hepatol Res 2022; 52:532-545. [PMID: 35187761 DOI: 10.1111/hepr.13758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 01/21/2022] [Accepted: 02/03/2022] [Indexed: 02/08/2023]
Abstract
BACKGROUND Hepatocellular carcinoma (HCC) is a type of primary liver cancer with high mortality. Circular RNAs (circRNAs) have been confirmed to be involved in the development of HCC, but the functions of circ_0011232 in HCC remain ill-defined. METHODS Quantitative real-time polymerase chain reaction, western blot assay, or immunohistochemistry assay was performed to determine the levels of circ_0011232, miR-503-5p, and AKT3. RNase R assay and actinomycin D assay were conducted to analyze the feature of circ_0011232. Cell Counting Kit-8 assay, 5-ethynyl-2'-deoxyuridine assay, colony formation assay, flow cytometry analysis, wound-healing assay, and transwell assay were conducted to evaluate HCC cell proliferation, colony formation, apoptosis, migration, and invasion. Dual-luciferase reporter assay was carried out to confirm the relationships among circ_0011232, miR-503-5p, and AKT3. The murine xenograft assay was conducted to verify the function of circ_0011232 in tumor growth in vivo. RESULTS Circ_0011232 and AKT3 were upregulated, while miR-503-5p was decreased in HCC tissues and cells. Circ_0011232 knockdown repressed HCC cell proliferation, colony formation, migration, and invasion, and promoted apoptosis in vitro and blocked tumor growth in vivo. MiR-503-5p was a target of circ_0011232. MiR-503-5p inhibition reversed the effects of circ_0011232 knockdown on HCC cell development. Moreover, AKT3 was confirmed to be a target of miR-503-5p, and AKT3 overexpression abolished the inhibitory effects on HCC cell progression caused by miR-503-5p. CONCLUSION Circ_0011232 facilitated HCC progression via miR-503-5p/AKT3 axis, which might provide a novel treatment strategy for HCC.
Collapse
Affiliation(s)
- Andong Ju
- Department of Surgical Oncology, Xinxiang Central Hospital, Xinxiang, China
| | - Yuhou Shen
- Department of Surgical Oncology, Xinxiang Central Hospital, Xinxiang, China
| | - Aimin Yue
- Department of Surgical Oncology, Xinxiang Central Hospital, Xinxiang, China
| |
Collapse
|
8
|
Liu Q, Xu X, Sun W. Down-regulated HSA_circ_0003528 inhibits hepatocellular carcinoma aggressiveness via the miR-212-3p/ XIAP axis. Bioengineered 2022; 13:11269-11280. [PMID: 35484994 PMCID: PMC9208529 DOI: 10.1080/21655979.2022.2066046] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is characterized by a high mortality rate. Dysregulated circular RNAs (circRNAs) play a vital role in HCC. We aimed to study the role of circ_0003528 in HCC and its fundamental molecular mechanisms. HSA_circ_0003528 was identified through bioinformatics dataset analysis. The binding sites between mRNA and miRNA were predicted using online bioinformatics tools. The interaction between miR-212-3p and X-linked inhibitor of apoptosis protein (XIAP) or circ_0003528 was confirmed through the luciferase reporter assay. RT-qPCR and western blot assays were used to analyze the expression of all miRNAs/mRNAs and proteins. Cellular functions were evaluated using the MTT and TUNEL assays. A xenograft model was established to evaluate the function of circ_0003528 in vivo. Circ_0003528 was dramatically overexpressed in HepG2 and HUH7 cells. However, knockdown of circ_0003528 suppressed the aggressiveness of HCC cells and tumor growth both in vitro and in vivo. Furthermore, binding of miR-212-3p to circ_0003528 and XIAP was verified. Downregulation of miR-212-3p abrogated the effects of si-circ_0003528 on cell viability and apoptosis, and upregulation of XIAP antagonized the functions of the miR-212-3p mimic in HCC cells. circ_0003528 contributes to the development of HCC in vitro and in vivo via the miR-212-3p/XIAP axis. Hence, circ_0003528 knockdown may be a potential therapeutic strategy for HCC treatment.
Collapse
Affiliation(s)
- Qi Liu
- Department of Gastroenterology, The Second Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Xin Xu
- Department of Blood Transfusion, The Second Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Wei Sun
- Department of Gastroenterology, The Fourth Affiliated Hospital of Inner Mongolia Medical University, Baotou, Qingshan, China
| |
Collapse
|
9
|
Raji S, Sahranavard M, Mottaghi M, Sahebkar A. MiR-212 value in prognosis and diagnosis of cancer and its association with patient characteristics: a systematic review and meta-analysis. Cancer Cell Int 2022; 22:163. [PMID: 35473623 PMCID: PMC9044851 DOI: 10.1186/s12935-022-02584-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 04/11/2022] [Indexed: 12/17/2022] Open
Abstract
Background Delayed cancer diagnosis and inefficient cancer prognosis determination are problems faced in cancer diagnosis and treatment. MicroRNAs (miRs), especially miR-212, have shown a promise in cancer diagnosis and prognosis. Herein, we performed a systematic review and meta-analysis to assess the prognostic and diagnostic value of miR-212 level in cancer and evaluated its association with patient characteristics. Methods A fully electronic literature search using related keywords was performed in PubMed, Scopus, Web of Science, Embase, and ScienceDirect databases by June 6, 2021, with no time or language restriction. Meta-analysis was performed to pool survival prognosis data using hazard ratio (HR), association using odds ratio (OR), and diagnostic data using sensitivity, specificity, and diagnostic odds ratio (DOR). Sub-group analysis and meta-regression were performed as appropriate. Results Results of 28 studies on 1880 patients showed a poor cancer prognosis with high levels of miR-212 in pancreatic ductal adenocarcinoma (PDAC, HR = 2.451 [1.447–4.149]), and a poor cancer prognosis with low levels of miR-212 in other cancers (HR = 2.514 [2.162–2.923]). Higher alpha-fetoprotein (AFP) level and Edmondson-Steiner grade were factors associated with miR-212 low level incidence. Diagnostic odds ratio 10.688 (3.644–31.348) and SROC AUC of 0.84 confirmed high diagnostic performance of miR-212. Conclusion Our systematic review and meta-analysis results confirm miR-212 high value in cancer prognosis and diagnosis. High level of miR-212 showed poor prognosis in PDAC and low level of miR-212 showed poor prognosis in other cancers. in conclusion, miR-212 could be a novel potential biomarker in cancer diagnosis and prognosis. Supplementary Information The online version contains supplementary material available at 10.1186/s12935-022-02584-0.
Collapse
Affiliation(s)
- Sara Raji
- Persian Cohort Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mehrdad Sahranavard
- School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.,Student Research Committee, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mahdi Mottaghi
- Kidney Transplantation Complications Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amirhossein Sahebkar
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran. .,Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
10
|
Fu M, Peng D, Lan T, Wei Y, Wei X. Multifunctional regulatory protein connective tissue growth factor (CTGF): A potential therapeutic target for diverse diseases. Acta Pharm Sin B 2022; 12:1740-1760. [PMID: 35847511 PMCID: PMC9279711 DOI: 10.1016/j.apsb.2022.01.007] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 11/22/2021] [Accepted: 12/16/2021] [Indexed: 12/24/2022] Open
Abstract
Connective tissue growth factor (CTGF), a multifunctional protein of the CCN family, regulates cell proliferation, differentiation, adhesion, and a variety of other biological processes. It is involved in the disease-related pathways such as the Hippo pathway, p53 and nuclear factor kappa-B (NF-κB) pathways and thus contributes to the developments of inflammation, fibrosis, cancer and other diseases as a downstream effector. Therefore, CTGF might be a potential therapeutic target for treating various diseases. In recent years, the research on the potential of CTGF in the treatment of diseases has also been paid more attention. Several drugs targeting CTGF (monoclonal antibodies FG3149 and FG3019) are being assessed by clinical or preclinical trials and have shown promising outcomes. In this review, the cellular events regulated by CTGF, and the relationships between CTGF and pathogenesis of diseases are systematically summarized. In addition, we highlight the current researches, focusing on the preclinical and clinical trials concerned with CTGF as the therapeutic target.
Collapse
|
11
|
Perumal N, Kanchan RK, Doss D, Bastola N, Atri P, Chirravuri-Venkata R, Thapa I, Vengoji R, Maurya SK, Klinkebiel D, Talmon GA, Nasser MW, Batra SK, Mahapatra S. MiR-212-3p functions as a tumor suppressor gene in group 3 medulloblastoma via targeting nuclear factor I/B (NFIB). Acta Neuropathol Commun 2021; 9:195. [PMID: 34922631 PMCID: PMC8684142 DOI: 10.1186/s40478-021-01299-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Accepted: 12/01/2021] [Indexed: 12/30/2022] Open
Abstract
Haploinsufficiency of chromosome 17p and c-Myc amplification distinguish group 3 medulloblastomas which are associated with early metastasis, rapid recurrence, and swift mortality. Tumor suppressor genes on this locus have not been adequately characterized. We elucidated the role of miR-212-3p in the pathophysiology of group 3 tumors. First, we learned that miR-212-3p undergoes epigenetic silencing by histone modifications in group 3 tumors. Restoring its expression reduced cancer cell proliferation, migration, colony formation, and wound healing in vitro and attenuated tumor burden and improved survival in vivo. MiR-212-3p also triggered c-Myc destabilization and degradation, leading to elevated apoptosis. We then isolated an oncogenic target of miR-212-3p, i.e. NFIB, a nuclear transcription factor implicated in metastasis and recurrence in various cancers. Increased expression of NFIB was confirmed in group 3 tumors and associated with poor survival. NFIB silencing reduced cancer cell proliferation, migration, and invasion. Concurrently, reduced medullosphere formation and stem cell markers (Nanog, Oct4, Sox2, CD133) were noted. These results substantiate the tumor-suppressive role of miR-212-3p in group 3 MB and identify a novel oncogenic target implicated in metastasis and tumor recurrence.
Collapse
Affiliation(s)
- Naveenkumar Perumal
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Ranjana K Kanchan
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - David Doss
- Department of Biomedical Sciences, Creighton University School of Medicine, Omaha, NE, 68124, USA
| | - Noah Bastola
- Department of Ophthalmology and Visual Sciences, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Pranita Atri
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | | | - Ishwor Thapa
- School of Interdisciplinary Informatics, University of Nebraska at Omaha, Omaha, NE, 68182, USA
| | - Raghupathy Vengoji
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Shailendra K Maurya
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - David Klinkebiel
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Geoffrey A Talmon
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Mohd W Nasser
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Surinder K Batra
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Sidharth Mahapatra
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, 68198, USA.
- Department of Pediatrics, University of Nebraska Medical Center, Omaha, NE, 68198, USA.
| |
Collapse
|
12
|
Liu Y, Xiong W, Wang CW, Shi JP, Shi ZQ, Zhou JD. Resveratrol promotes skin wound healing by regulating the miR-212/CASP8 axis. J Transl Med 2021; 101:1363-1370. [PMID: 34234270 DOI: 10.1038/s41374-021-00621-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Revised: 05/18/2021] [Accepted: 05/20/2021] [Indexed: 11/09/2022] Open
Abstract
The wound-healing process is a natural response to burn injury. Resveratrol (RES) may have potential as a therapy for wound healing, but how and whether RES regulates skin repair remains poorly understood. Human epidermal keratinocyte (HaCaT) cells were treated with lipopolysaccharide (LPS), and a mouse skin wound-healing model was established. Cell viability and apoptosis were analyzed by 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2-H-tetrazolium bromide or flow cytometry. Cell proliferation was assessed by cell viability and colony-formation analyses. Cell migration was tested by wound-healing analysis. The microRNA-212 (miR-212) and caspase-8 (CASP8) levels were determined by quantitative reverse transcription polymerase chain reaction and western blotting. The correlation between miR-212 and CASP8 was analyzed by dual-luciferase reporter analysis. Skin wound healing in mice was assessed by measuring the wound area and gap after hematoxylin-eosin (HE) staining. RES reduced the LPS-induced reduction in viability and apoptosis in HaCaT cells. miR-212 expression was reduced by LPS and increased by exposure to RES. RES promoted cell proliferation and migration after LPS treatment by increasing miR-212 levels. CASP8 was a target of miR-212. CASP8 silencing promoted cell proliferation and migration, which was reversed by miR-212 knockdown in LPS-treated HaCaT cells. RES promoted skin wound healing in mice, which was reduced by miR-212 knockdown. Thus, RES facilitates cell proliferation and migration in LPS-treated HaCaT cells and promotes skin wound-healing in a mouse model by regulating the miR-212/CASP8 axis.
Collapse
Affiliation(s)
- Yu Liu
- Postdoctoral Research Station of Clinical Medicine, The Third Xiangya Hospital, Central South University, Changsha, 410000, Hunan Province, P.R. China
- Department of Plastic Surgery, The Third Xiangya Hospital, Central South University, Changsha, 410000, Hunan Province, P.R. China
- Inner Mongolia Medical University, Hohhot, 010000, Inner Mongolia Autonomous Region, P.R. China
| | - Wu Xiong
- Department of Burn & Plastic Surgery, The First Affiliated Hospital of Hunan University of Chinese Medicine, Changsha, 410007, Hunan Province, P.R. China
| | - Chu-Wang Wang
- Department of Plastic Surgery, The Third Xiangya Hospital, Central South University, Changsha, 410000, Hunan Province, P.R. China
| | - Jian-Ping Shi
- Inner Mongolia Medical University, Hohhot, 010000, Inner Mongolia Autonomous Region, P.R. China
| | - Zhi-Qiang Shi
- Inner Mongolia Medical University, Hohhot, 010000, Inner Mongolia Autonomous Region, P.R. China
| | - Jian-Da Zhou
- Department of Plastic Surgery, The Third Xiangya Hospital, Central South University, Changsha, 410000, Hunan Province, P.R. China.
| |
Collapse
|
13
|
Xie Y, Hang X, Xu W, Gu J, Zhang Y, Wang J, Zhang X, Cao X, Zhan J, Wang J, Gan J. CircFAM13B promotes the proliferation of hepatocellular carcinoma by sponging miR-212, upregulating E2F5 expression and activating the P53 pathway. Cancer Cell Int 2021; 21:410. [PMID: 34348712 PMCID: PMC8335894 DOI: 10.1186/s12935-021-02120-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Accepted: 07/28/2021] [Indexed: 12/29/2022] Open
Abstract
Background Most of the biological functions of circular RNAs (circRNAs) and the potential underlying mechanisms in hepatocellular carcinoma (HCC) have not yet been discovered. Methods In this study, using circRNA expression data from HCC tumor tissues and adjacent tissues from the Gene Expression Omnibus database, we identified out differentially expressed circRNAs and verified them by qRT-PCT. Functional experiments were performed to evaluate the effects of circFAM13B in HCC in vitro and in vivo. Results We found that circFAM13B was the most significantly differentially expressed circRNA in HCC tissue. Subsequently, in vitro and in vivo studies also demonstrated that circFAM13B promoted the proliferation of HCC. Further studies revealed that circFAM13B, a sponge of miR-212, is involved in the regulation of E2F5 gene expression by competitively binding to miR-212, inhibits the activation of the P53 signalling pathway, and promotes the proliferation of HCC cells. Conclusions Our findings revealed the mechanism underlying the regulatory role played by circFAM13B, miR-212 and E2F5 in HCC. This study provides a new theoretical basis and novel target for the clinical prevention and treatment of HCC. Supplementary Information The online version contains supplementary material available at 10.1186/s12935-021-02120-6.
Collapse
Affiliation(s)
- Ying Xie
- Department of Infectious Disease, The First Affiliated Hospital of Soochow University, 188 Shizi street, Suzhou, 215000, China.,Department of Infectious Disease, Changzheng Hospital, Naval Medical University, 415 Fengyang street, Shanghai, 200003, China
| | - Xiaofeng Hang
- Department of Infectious Disease, Changzheng Hospital, Naval Medical University, 415 Fengyang street, Shanghai, 200003, China
| | - Wensheng Xu
- Department of Infectious Disease, Changzheng Hospital, Naval Medical University, 415 Fengyang street, Shanghai, 200003, China
| | - Jing Gu
- Department of Infectious Disease, The First Affiliated Hospital of Soochow University, 188 Shizi street, Suzhou, 215000, China
| | - Yuanjing Zhang
- Department of Infectious Disease, Changzheng Hospital, Naval Medical University, 415 Fengyang street, Shanghai, 200003, China
| | - Jianrong Wang
- Department of Infectious Disease, Changzheng Hospital, Naval Medical University, 415 Fengyang street, Shanghai, 200003, China
| | - Xiucui Zhang
- Department of Infectious Disease, Changzheng Hospital, Naval Medical University, 415 Fengyang street, Shanghai, 200003, China
| | - Xinghao Cao
- Department of Infectious Disease, Changzheng Hospital, Naval Medical University, 415 Fengyang street, Shanghai, 200003, China
| | - Junjie Zhan
- Department of Infectious Disease, Changzheng Hospital, Naval Medical University, 415 Fengyang street, Shanghai, 200003, China
| | - Junxue Wang
- Department of Infectious Disease, Changzheng Hospital, Naval Medical University, 415 Fengyang street, Shanghai, 200003, China.
| | - Jianhe Gan
- Department of Infectious Disease, The First Affiliated Hospital of Soochow University, 188 Shizi street, Suzhou, 215000, China.
| |
Collapse
|
14
|
Kumar P, Zadjali F, Yao Y, Siroky B, Astrinidis A, Gross KW, Bissler JJ. Tsc Gene Locus Disruption and Differences in Renal Epithelial Extracellular Vesicles. Front Physiol 2021; 12:630933. [PMID: 34262466 PMCID: PMC8273388 DOI: 10.3389/fphys.2021.630933] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Accepted: 03/29/2021] [Indexed: 12/31/2022] Open
Abstract
In tuberous sclerosis complex (TSC), Tsc2 mutations are associated with more severe disease manifestations than Tsc1 mutations and the role of extracellular vesicles (EVs) in this context is not yet studied. We report a comparative analysis of EVs derived from isogenic renal cells except for Tsc1 or Tsc2 gene status and hypothesized that in spite of having similar physical characteristics, EVs modulate signaling pathways differently, thus leading to TSC heterogenicity. We used mouse inner medullary collecting duct (mIMCD3) cells with the Tsc1 (T1G cells) or Tsc2 (T2J cells) gene disrupted by CRISPR/CAS9. EVs were isolated from the cell culture media by size-exclusion column chromatography followed by detailed physical and chemical characterization. Physical characterization of EVs was accessed by tunable resistive pulse sensing and dynamic light scattering, revealing similar average sizes and zeta potentials (at pH 7.4) for EVs from mIMCD3 (123.5 ± 5.7 nm and −16.3 ± 2.1 mV), T1G cells (131.5 ± 8.3 nm and −19.8 ± 2.7 mV), and T2J cells (127.3 ± 4.9 nm and −20.2 ± 2.1 mV). EVs derived from parental mIMCD3 cells and both mutated cell lines were heterogeneous (>90% of EVs < 150 nm) in nature. Immunoblotting detected cilial Hedgehog signaling protein Arl13b; intercellular proteins TSG101 and Alix; and transmembrane proteins CD63, CD9, and CD81. Compared to Tsc2 deletion, Tsc1 deletion cells had reduced EV production and release rates. EVs from Tsc1 mutant cells altered mTORC1, autophagy, and β-catenin pathways differently than EVs from Tsc2-mutated cells. Quantitative PCR analysis revealed the down regulation of miR-212a-3p and miR-99a-5p in EVs from Tsc2-mutated cells compared to EVs from Tsc1-mutant cells. Thus, EV-derived miR-212-3p and mIR-99a-5p axes may represent therapeutic targets or biomarkers for TSC disease.
Collapse
Affiliation(s)
- Prashant Kumar
- Department of Pediatrics, University of Tennessee Health Science Center and Le Bonheur Children's Hospital, Memphis, TN, United States
| | - Fahad Zadjali
- Department of Pediatrics, University of Tennessee Health Science Center and Le Bonheur Children's Hospital, Memphis, TN, United States.,Department of Clinical Biochemistry, College of Medicine & Health Sciences, Sultan Qaboos University, Muscat, Oman
| | - Ying Yao
- Department of Pediatrics, University of Tennessee Health Science Center and Le Bonheur Children's Hospital, Memphis, TN, United States
| | - Brian Siroky
- Department of Pediatrics, University of Tennessee Health Science Center and Le Bonheur Children's Hospital, Memphis, TN, United States
| | - Aristotelis Astrinidis
- Department of Pediatrics, University of Tennessee Health Science Center and Le Bonheur Children's Hospital, Memphis, TN, United States
| | - Kenneth W Gross
- Department of Molecular and Cellular Biology, Roswell Park Comprehensive Cancer Center, Buffalo, NY, United States
| | - John J Bissler
- Department of Pediatrics, University of Tennessee Health Science Center and Le Bonheur Children's Hospital, Memphis, TN, United States.,Department of Pediatrics, St. Jude Children's Research Hospital, Memphis, TN, United States
| |
Collapse
|
15
|
Zhang Y, Tang Y, Guo C, Li G. Integrative analysis identifies key mRNA biomarkers for diagnosis, prognosis, and therapeutic targets of HCV-associated hepatocellular carcinoma. Aging (Albany NY) 2021; 13:12865-12895. [PMID: 33946043 PMCID: PMC8148482 DOI: 10.18632/aging.202957] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Accepted: 03/23/2021] [Indexed: 02/05/2023]
Abstract
Hepatitis C virus-associated HCC (HCV-HCC) is a prevalent malignancy worldwide and the molecular mechanisms are still elusive. Here, we screened 240 differentially expressed genes (DEGs) of HCV-HCC from Gene expression omnibus (GEO) and the Cancer Genome Atlas (TCGA), followed by weighted gene coexpression network analysis (WGCNA) to identify the most significant module correlated with the overall survival. 10 hub genes (CCNB1, AURKA, TOP2A, NEK2, CENPF, NUF2, CDKN3, PRC1, ASPM, RACGAP1) were identified by four approaches (Protein-protein interaction networks of the DEGs and of the significant module by WGCNA, and diagnostic and prognostic values), and their abnormal expressions, diagnostic values, and prognostic values were successfully verified. A four hub gene-based prognostic signature was built using the least absolute shrinkage and selection operator (LASSO) algorithm and a multivariate Cox regression model with the ICGC-LIRI-JP cohort (N =112). Kaplan-Meier survival plots (P = 0.0003) and Receiver Operating Characteristic curves (ROC = 0.778) demonstrated the excellent predictive potential for the prognosis of HCV-HCC. Additionally, upstream regulators including transcription factors and miRNAs of hub genes were predicted, and candidate drugs or herbs were identified. These findings provide a firm basis for the exploration of the molecular mechanism and further clinical biomarkers development of HCV-HCC.
Collapse
Affiliation(s)
- Yongqiang Zhang
- Molecular Medicine Center, West China Hospital, Sichuan University, Chengdu 610041, P.R. China.,West China School of Medicine, West China Hospital, Sichuan University, Chengdu 610041, P.R. China
| | - Yuqin Tang
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, P.R. China
| | - Chengbin Guo
- Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou 510623, P.R. China
| | - Gen Li
- Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou 510623, P.R. China
| |
Collapse
|
16
|
Leguit RJ, Raymakers RAP, Hebeda KM, Goldschmeding R. CCN2 (Cellular Communication Network factor 2) in the bone marrow microenvironment, normal and malignant hematopoiesis. J Cell Commun Signal 2021; 15:25-56. [PMID: 33428075 PMCID: PMC7798015 DOI: 10.1007/s12079-020-00602-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2020] [Accepted: 12/20/2020] [Indexed: 02/06/2023] Open
Abstract
CCN2, formerly termed Connective Tissue Growth Factor, is a protein belonging to the Cellular Communication Network (CCN)-family of secreted extracellular matrix-associated proteins. As a matricellular protein it is mainly considered to be active as a modifier of signaling activity of several different signaling pathways and as an orchestrator of their cross-talk. Furthermore, CCN2 and its fragments have been implicated in the regulation of a multitude of biological processes, including cell proliferation, differentiation, adhesion, migration, cell survival, apoptosis and the production of extracellular matrix products, as well as in more complex processes such as embryonic development, angiogenesis, chondrogenesis, osteogenesis, fibrosis, mechanotransduction and inflammation. Its function is complex and context dependent, depending on cell type, state of differentiation and microenvironmental context. CCN2 plays a role in many diseases, especially those associated with fibrosis, but has also been implicated in many different forms of cancer. In the bone marrow (BM), CCN2 is highly expressed in mesenchymal stem/stromal cells (MSCs). CCN2 is important for MSC function, supporting its proliferation, migration and differentiation. In addition, stromal CCN2 supports the maintenance and longtime survival of hematopoietic stem cells, and in the presence of interleukin 7, stimulates the differentiation of pro-B lymphocytes into pre-B lymphocytes. Overexpression of CCN2 is seen in the majority of B-acute lymphoblastic leukemias, especially in certain cytogenetic subgroups associated with poor outcome. In acute myeloid leukemia, CCN2 expression is increased in MSCs, which has been associated with leukemic engraftment in vivo. In this review, the complex function of CCN2 in the BM microenvironment and in normal as well as malignant hematopoiesis is discussed. In addition, an overview is given of data on the remaining CCN family members regarding normal and malignant hematopoiesis, having many similarities and some differences in their function.
Collapse
Affiliation(s)
- Roos J. Leguit
- Department of Pathology, University Medical Center Utrecht, H04-312, P.O. Box 85500, 3508 GA Utrecht, The Netherlands
| | - Reinier A. P. Raymakers
- Department of Hematology, UMCU Cancer Center, Heidelberglaan 100 B02.226, 3584 CX Utrecht, The Netherlands
| | - Konnie M. Hebeda
- Department of Pathology, Radboud University Medical Centre, P.O. Box 9101, 6500 HB Nijmegen, The Netherlands
| | - Roel Goldschmeding
- Department of Pathology, University Medical Centre Utrecht, P.O. Box 85500, 3508 GA Utrecht, The Netherlands
| |
Collapse
|
17
|
Parol M, Gzil A, Bodnar M, Grzanka D. Systematic review and meta-analysis of the prognostic significance of microRNAs related to metastatic and EMT process among prostate cancer patients. J Transl Med 2021; 19:28. [PMID: 33413466 PMCID: PMC7788830 DOI: 10.1186/s12967-020-02644-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Accepted: 11/27/2020] [Indexed: 02/07/2023] Open
Abstract
The ability of tumor cells to spread from their origin place and form secondary tumor foci is determined by the epithelial-mesenchymal transition process. In epithelial tumors such as prostate cancer (PCa), the loss of intercellular interactions can be observed as a change in expression of polarity proteins. Epithelial cells acquire ability to migrate, what leads to the formation of distal metastases. In recent years, the interest in miRNA molecules as potential future treatment options has increased. In tumor microenvironment, miRNAs have the ability to regulate signal transduction pathways, where they can act as suppressors or oncogenes. MiRNAs are secreted by cancer cells, and the changes in their expression levels are closely related to a cancer progression, including epithelial-mesenchymal transition. These molecules offer new diagnostic and therapeutic possibilities. Therapeutics which make use of synthesized RNA fragments and mimic or block miRNAs affected in PCa, may lead to inhibition of tumor progression and even disease re-emission. Based on appropriate qualification criteria, we conducted a selection process to identify scientific articles describing miRNAs and their relation to epithelial-mesenchymal transition in PCa patients. The studies were published in English on Pubmed, Scopus and the Web of Science before August 08, 2019. Hazard ratios (HRs) and 95% confidence intervals (CI) as well as total Gleason score were used to assess the concordance between miRNAs and presence of metastases. A total of 13 studies were included in our meta-analysis, representing 1608 PCa patients and 15 miRNA molecules. Our study clarifies a relationship between the clinicopathological features of PCa and the aberrant expression of several miRNA as well as the complex mechanism of miRNA molecules involvement in the induction and promotion of the metastatic mechanism in PCa.
Collapse
Affiliation(s)
- Martyna Parol
- Department of Clinical Pathomorphology, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, 9 Curie-Sklodowskiej Street, 85-094 Bydgoszcz, Poland
| | - Arkadiusz Gzil
- Department of Clinical Pathomorphology, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, 9 Curie-Sklodowskiej Street, 85-094 Bydgoszcz, Poland
| | - Magdalena Bodnar
- Department of Clinical Pathomorphology, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, 9 Curie-Sklodowskiej Street, 85-094 Bydgoszcz, Poland
| | - Dariusz Grzanka
- Department of Clinical Pathomorphology, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, 9 Curie-Sklodowskiej Street, 85-094 Bydgoszcz, Poland
| |
Collapse
|
18
|
Wang J, Zhao H, Yu J, Xu X, Jing H, Li N, Tang Y, Wang S, Li Y, Cai J, Jin J. MiR-320b/RAD21 axis affects hepatocellular carcinoma radiosensitivity to ionizing radiation treatment through DNA damage repair signaling. Cancer Sci 2020; 112:575-588. [PMID: 33251678 PMCID: PMC7894001 DOI: 10.1111/cas.14751] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2020] [Revised: 11/12/2020] [Accepted: 11/24/2020] [Indexed: 12/16/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the most common malignancies in the world and is associated with high mortality. Ionizing radiation (IR)-based therapy causes DNA damage, exerting a curative effect; however, DNA damage repair signaling pathways lead to HCC resistance to IR-based therapy. RAD21 is a component of the cohesion complex, crucial for chromosome segregation and DNA damage repair, while it is still unclear whether RAD21 is implicated in DNA damage and influences IR sensitivity in HCC. The current research explores the effect and upstream regulatory mechanism of RAD21 on IR sensitivity in HCC. In the present study, RAD21 mRNA and protein expression were increased within HCC tissue samples, particularly within IR-insensitive HCC tissues. The overexpression of RAD21 partially attenuated the roles of IR in HCC by promoting the viability and suppressing the apoptosis of HCC cells. RAD21 overexpression reduced the culture medium 8-hydroxy-2-deoxyguanosine concentration and decreased the protein levels of γH2AX and ATM, suggesting that RAD21 overexpression attenuated IR treatment-induced DNA damage to HCC cells. miR-320b targeted RAD21 3'-UTR to inhibit RAD21 expression. In HCC tissues, particularly in IR-insensitive HCC tissues, miR-320b expression was significantly downregulated. miR-320b inhibition also attenuated IR treatment-induced DNA damage to HCC cells; more importantly, RAD21 silencing significantly attenuated the effects of miR-320b inhibition on IR treatment-induced DNA damage, suggesting that miR-320b plays a role through targeting RAD21. In conclusion, an miR-320b/RAD21 axis modulating HCC sensitivity to IR treatment through acting on IR-induced DNA damage was demonstrated. The miR-320b/RAD21 axis could be a novel therapeutic target for further study of HCC sensitivity to IR treatment.
Collapse
Affiliation(s)
- Jianyang Wang
- Department of Radiation Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Hong Zhao
- Department of Hepatobiliary Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jing Yu
- Hubei Key Laboratory of Tumor Biological Behaviors, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Xin Xu
- Department of Radiation Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Hao Jing
- Department of Radiation Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Ning Li
- Department of Radiation Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yuan Tang
- Department of Radiation Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Shulian Wang
- Department of Radiation Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yexiong Li
- Department of Radiation Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jianqiang Cai
- Department of Hepatobiliary Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jing Jin
- Department of Radiation Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
19
|
Targeting CTGF in Cancer: An Emerging Therapeutic Opportunity. Trends Cancer 2020; 7:511-524. [PMID: 33358571 DOI: 10.1016/j.trecan.2020.12.001] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 11/24/2020] [Accepted: 12/01/2020] [Indexed: 12/11/2022]
Abstract
Despite the dramatic advances in cancer research over the decades, effective therapeutic strategies are still urgently needed. Increasing evidence indicates that connective tissue growth factor (CTGF), a multifunctional signaling modulator, promotes cancer initiation, progression, and metastasis by regulating cell proliferation, migration, invasion, drug resistance, and epithelial-mesenchymal transition (EMT). CTGF is also involved in the tumor microenvironment in most of the nodes, including angiogenesis, inflammation, and cancer-associated fibroblast (CAF) activation. In this review, we comprehensively discuss the expression of CTGF and its regulation, oncogenic role, clinical relevance, targeting strategies, and therapeutic agents. Herein, we propose that CTGF is a promising cancer therapeutic target that could potentially improve the clinical outcomes of cancer patients.
Collapse
|
20
|
Zhuang C, Liu Y, Fu S, Yuan C, Luo J, Huang X, Yang W, Xie W, Zhuang C. Silencing of lncRNA MIR497HG via CRISPR/Cas13d Induces Bladder Cancer Progression Through Promoting the Crosstalk Between Hippo/Yap and TGF-β/Smad Signaling. Front Mol Biosci 2020; 7:616768. [PMID: 33363213 PMCID: PMC7755977 DOI: 10.3389/fmolb.2020.616768] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Accepted: 11/05/2020] [Indexed: 12/17/2022] Open
Abstract
A subset of long non-coding RNAs (lncRNAs), categorized as miRNA-host gene lncRNAs (lnc-miRHGs), is processed to produce miRNAs and involved in cancer progression. This work aimed to investigate the influences and the molecular mechanisms of lnc-miRHGs MIR497HG in bladder cancer (BCa). The miR-497 and miR-195 were derived from MIR497HG. We identified that lnc-miRHG MIR497HG and two harbored miRNAs, miR-497 and miR-195, were downregulated in BCa by analyzing The Cancer Genome Atlas and our dataset. Silencing of MIR497HG by CRISPR/Cas13d in BCa cell line 5637 promoted cell growth, migration, and invasion in vitro. Conversely, overexpression of MIR497HG suppressed cell progression in BCa cell line T24. MiR-497/miR-195 mimics rescued significantly the oncogenic roles of knockdown of MIR497HG by CRISPR/Cas13d in BCa. Mechanistically, miR-497 and miR-195 co-ordinately suppressed multiple key components in Hippo/Yap and transforming growth factor β signaling and particularly attenuated the interaction between Yap and Smad3. In addition, E2F4 was proven to be critical for silencing MIR497HG transcription in BCa cells. In short, we propose for the first time to reveal the function and mechanisms of MIR497HG in BCa. Blocking the pathological process may be a potential strategy for the treatment of BCa.
Collapse
Affiliation(s)
- Changshui Zhuang
- Department of Urology, Union Shenzhen Hospital, Huazhong University of Science and Technology, Shenzhen, China
| | - Ying Liu
- Shenzhen People's Hospital, The First Affiliated Hospital of Southern University of Science and Technology, The Second Clinical Medical College of Jinan University, Shenzhen, China
| | - Shengqiang Fu
- Department of Urology, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Chaobo Yuan
- Emergency Department, Union Shenzhen Hospital, Huazhong University of Science and Technology, Shenzhen, China
| | - Jingwen Luo
- Department of Thoracic Surgery, Union Shenzhen Hospital, Huazhong University of Science and Technology, Shenzhen, China
| | - Xueting Huang
- Shenzhen Yantian District People's Hospital, Shenzhen, China
| | - Weifeng Yang
- Department of Urology, Union Shenzhen Hospital, Huazhong University of Science and Technology, Shenzhen, China
| | - Wuwei Xie
- Department of Urology, Peking University Shenzhen Hospital, Shenzhen, China
| | - Chengle Zhuang
- Department of Urology, Peking University Shenzhen Hospital, Shenzhen, China
| |
Collapse
|
21
|
Barry AE, Baldeosingh R, Lamm R, Patel K, Zhang K, Dominguez DA, Kirton KJ, Shah AP, Dang H. Hepatic Stellate Cells and Hepatocarcinogenesis. Front Cell Dev Biol 2020; 8:709. [PMID: 32850829 PMCID: PMC7419619 DOI: 10.3389/fcell.2020.00709] [Citation(s) in RCA: 82] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Accepted: 07/13/2020] [Indexed: 12/12/2022] Open
Abstract
Hepatic stellate cells (HSCs) are a significant component of the hepatocellular carcinoma (HCC) tumor microenvironment (TME). Activated HSCs transform into myofibroblast-like cells to promote fibrosis in response to liver injury or chronic inflammation, leading to cirrhosis and HCC. The hepatic TME is comprised of cellular components, including activated HSCs, tumor-associated macrophages, endothelial cells, immune cells, and non-cellular components, such as growth factors, proteolytic enzymes and their inhibitors, and other extracellular matrix (ECM) proteins. Interactions between HCC cells and their microenvironment have become topics under active investigation. These interactions within the hepatic TME have the potential to drive carcinogenesis and create challenges in generating effective therapies. Current studies reveal potential mechanisms through which activated HSCs drive hepatocarcinogenesis utilizing matricellular proteins and paracrine crosstalk within the TME. Since activated HSCs are primary secretors of ECM proteins during liver injury and inflammation, they help promote fibrogenesis, infiltrate the HCC stroma, and contribute to HCC development. In this review, we examine several recent studies revealing the roles of HSCs and their clinical implications in the development of fibrosis and cirrhosis within the hepatic TME.
Collapse
Affiliation(s)
- Anna E Barry
- Department of Surgery, Thomas Jefferson University, Philadelphia, PA, United States.,Sidney Kimmel Cancer Center, Philadelphia, PA, United States
| | - Rajkumar Baldeosingh
- Department of Surgery, Thomas Jefferson University, Philadelphia, PA, United States.,Sidney Kimmel Cancer Center, Philadelphia, PA, United States
| | - Ryan Lamm
- Department of Surgery, Thomas Jefferson University, Philadelphia, PA, United States
| | - Keyur Patel
- Department of Surgery, Thomas Jefferson University, Philadelphia, PA, United States
| | - Kai Zhang
- Department of Surgery, Thomas Jefferson University, Philadelphia, PA, United States.,Sidney Kimmel Cancer Center, Philadelphia, PA, United States
| | - Dana A Dominguez
- Department of General Surgery, UCSF East Bay, Oakland, CA, United States
| | - Kayla J Kirton
- Department of Surgery, Thomas Jefferson University, Philadelphia, PA, United States
| | - Ashesh P Shah
- Department of Surgery, Thomas Jefferson University, Philadelphia, PA, United States
| | - Hien Dang
- Department of Surgery, Thomas Jefferson University, Philadelphia, PA, United States.,Sidney Kimmel Cancer Center, Philadelphia, PA, United States
| |
Collapse
|
22
|
Dai J, Dong R, Han X, Li J, Gong X, Bai Y, Kang F, Liang M, Zeng F, Hou Z, Dong S. Osteoclast-derived exosomal let-7a-5p targets Smad2 to promote the hypertrophic differentiation of chondrocytes. Am J Physiol Cell Physiol 2020; 319:C21-C33. [PMID: 32374679 DOI: 10.1152/ajpcell.00039.2020] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The invasion of osteoclasts into the cartilage via blood vessels advances the process of endochondral ossification, and dysregulation of dynamic intercellular interactions results in skeletal dysplasias. Although the regulation of osteoclasts by growth plate chondrocytes has been reported in detail, the effect of osteoclasts on chondrocytes remains to be determined. In this study, ATDC5 cells and bone marrow mesenchymal stem cells were differentiated into chondrocytes and treated with conditioned medium obtained from bone marrow macrophages differentiated to osteoclast precursors and osteoclasts. Exosomes were inhibited in conditioned medium or isolated directly from osteoclasts to further determine whether osteoclast-derived exosomes play an important role in chondrocyte hypertrophy. Additionally, exosomal miRNAs were detected, and let-7a-5p was selected as an miRNA with significantly increased expression in osteoclast-derived exosomes. Experiments were performed to verify the potential target Smad2 and investigate how let-7a-5p affected chondrocytes. The results suggest that both osteoclast precursors and osteoclasts promote chondrocyte hypertrophy and that the promotive effect of osteoclasts is more significant than that of osteoclast precursors. Osteoclast-derived exosomes promote the hypertrophic differentiation of chondrocytes. Moreover, osteoclast-derived exosomal let-7a-5p inhibits Smad2 to decrease the transforming growth factor-β-induced inhibition of chondrocyte hypertrophy. Our research reveals the role of osteoclasts in the regulation of chondrocytes and provides insights into the highly coordinated intercellular process of endochondral ossification.
Collapse
Affiliation(s)
- Jingjin Dai
- Department of Biomedical Materials Science, Third Military Medical University (Army Medical University), Chongqing, China
| | - Rui Dong
- Department of Biomedical Materials Science, Third Military Medical University (Army Medical University), Chongqing, China
| | - Xinyun Han
- Department of Orthopedics, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Jianmei Li
- Department of Biomedical Materials Science, Third Military Medical University (Army Medical University), Chongqing, China
| | - Xiaoshan Gong
- Department of Biomedical Materials Science, Third Military Medical University (Army Medical University), Chongqing, China
| | - Yun Bai
- Department of Biomedical Materials Science, Third Military Medical University (Army Medical University), Chongqing, China
- Department of Orthopedics, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Fei Kang
- Department of Biomedical Materials Science, Third Military Medical University (Army Medical University), Chongqing, China
| | - Mengmeng Liang
- Department of Biomedical Materials Science, Third Military Medical University (Army Medical University), Chongqing, China
| | - Fanchun Zeng
- Department of Biomedical Materials Science, Third Military Medical University (Army Medical University), Chongqing, China
| | - Zhiyong Hou
- Department of Orthopedic Surgery, Third Hospital of Hebei Medical University, Shijiazhuang, China
| | - Shiwu Dong
- Department of Biomedical Materials Science, Third Military Medical University (Army Medical University), Chongqing, China
- Department of Orthopedics, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
- State Key Laboratory of Trauma, Burns, and Combined Injury, Third Military Medical University (Army Medical University), Chongqing, China
| |
Collapse
|
23
|
Zhang Y, Xi H, Nie X, Zhang P, Lan N, Lu Y, Liu J, Yuan W. Assessment of miR-212 and Other Biomarkers in the Diagnosis and Treatment of HBV-infection-related Liver Diseases. Curr Drug Metab 2020; 20:785-798. [PMID: 31608838 DOI: 10.2174/1389200220666191011120434] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Revised: 07/31/2019] [Accepted: 09/04/2019] [Indexed: 12/25/2022]
Abstract
OBJECTIVES Our study aims to detect the sensitivity of the new biomarker miR-212 existing in serum exosomes along with other hepatocellular carcinoma biomarkers such as AFP (alpha-fetoprotein), CA125 (carbohydrate antigen-ca125), and Hbx protein in the diagnosis of HBV-related liver diseases. We also aim to study the roles of these biomarkers in the progression of chronic hepatitis B and provide scientific data to show the clinical value of these biomarkers. METHODS We selected 200 patients with HBV-infection (58 cases of chronic hepatitis B, 47 cases of hepatocellular carcinoma, 30 cases of compensatory phase cirrhosis, and 65 cases of decompensatory phase cirrhosis), 31 patients with primary liver cancer without HBV infection, and 70 healthy individuals as the control group. The expression level of serum AFP and CA125 was detected with electrochemiluminescence immunoassay. The expression level of the Hbx protein was detected with ELISA. Meanwhile, the expression level of miR-212 in serum was analyzed with RT-qPCR. We collected patients' clinical information following the Child-Pugh classification and MELD score criterion, and statistical analysis was made between the expression level of miR-212 and the collected clinical indexes. Lastly, we predicted the target genes of the miR-212 and its functions using bioinformatics methods such as cluster analysis and survival prediction. RESULTS Compared to the control group, the expression level of miR-212 in HBV infected patients was remarkably increased (P<0.05), especially between the HBV-infection Hepatocellular carcinoma group and the non-HBVinfection liver cancer group (P<0.05). The expression of miR-212 was increased in patients' Child-Pugh classification, MELD score, and TNM staging. Moreover, the sensitivity and specificity of miR-212 were superior to AFP, CA125, and HBx protein. CONCLUSION There is a linear relationship between disease progression and expression level of miR-212 in the serum of HBV infected patients. This demonstrates that miR-212 plays a significant role in liver diseases. miR-212 is expected to be a new biomarker used for the diagnosis and assessment of patients with HBV-infection-related liver diseases.
Collapse
Affiliation(s)
- Yigan Zhang
- The First School of Clinical Medicine, Lanzhou University, 730000, Lanzhou, China.,Key Laboratory for Resources Utilization Technology of Unconventional Water of Gansu Province, Gansu Membrane Science and Technology Research Institute Co., Ltd., 730000, Lanzhou, China
| | - Huaze Xi
- The First School of Clinical Medicine, Lanzhou University, 730000, Lanzhou, China.,Key Laboratory for Resources Utilization Technology of Unconventional Water of Gansu Province, Gansu Membrane Science and Technology Research Institute Co., Ltd., 730000, Lanzhou, China
| | - Xin Nie
- The First School of Clinical Medicine, Lanzhou University, 730000, Lanzhou, China.,Key Laboratory for Resources Utilization Technology of Unconventional Water of Gansu Province, Gansu Membrane Science and Technology Research Institute Co., Ltd., 730000, Lanzhou, China
| | - Peng Zhang
- Key Laboratory for Resources Utilization Technology of Unconventional Water of Gansu Province, Gansu Membrane Science and Technology Research Institute Co., Ltd., 730000, Lanzhou, China
| | - Ning Lan
- The First School of Clinical Medicine, Lanzhou University, 730000, Lanzhou, China.,Key Laboratory for Resources Utilization Technology of Unconventional Water of Gansu Province, Gansu Membrane Science and Technology Research Institute Co., Ltd., 730000, Lanzhou, China
| | - Ying Lu
- The First School of Clinical Medicine, Lanzhou University, 730000, Lanzhou, China.,Key Laboratory for Resources Utilization Technology of Unconventional Water of Gansu Province, Gansu Membrane Science and Technology Research Institute Co., Ltd., 730000, Lanzhou, China
| | - Jinrong Liu
- School of Life Science, Lanzhou University, 730000, Lanzhou, China
| | - Wenzhen Yuan
- The Department of Surgical Oncology, the First Hospital of Lanzhou University, 730000, Lanzhou, China
| |
Collapse
|