1
|
Doody A, Alfano L, Diaz-Manera J, Lowes L, Mozaffar T, Mathews KD, Weihl CC, Wicklund M, Hung M, Statland J, Johnson NE. Defining clinical endpoints in limb girdle muscular dystrophy: a GRASP-LGMD study. BMC Neurol 2024; 24:96. [PMID: 38491364 PMCID: PMC10941356 DOI: 10.1186/s12883-024-03588-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 02/26/2024] [Indexed: 03/18/2024] Open
Abstract
BACKGROUND The Limb Girdle Muscular Dystrophies (LGMDs) are characterized by progressive weakness of the shoulder and hip girdle muscles as a result of over 30 different genetic mutations. This study is designed to develop clinical outcome assessments across the group of disorders. METHODS/DESIGN The primary goal of this study is to evaluate the utility of a set of outcome measures on a wide range of LGMD phenotypes and ability levels to determine if it would be possible to use similar outcomes between individuals with different phenotypes. We will perform a multi-center, 12-month study of 188 LGMD patients within the established Genetic Resolution and Assessments Solving Phenotypes in LGMD (GRASP-LGMD) Research Consortium, which is comprised of 11 sites in the United States and 2 sites in Europe. Enrolled patients will be clinically affected and have mutations in CAPN3 (LGMDR1), ANO5 (LGMDR12), DYSF (LGMDR2), DNAJB6 (LGMDD1), SGCA (LGMDR3), SGCB (LGMDR4), SGCD (LGMDR6), or SGCG (LGMDR5, or FKRP-related (LGMDR9). DISCUSSION To the best of our knowledge, this will be the largest consortium organized to prospectively validate clinical outcome assessments (COAs) in LGMD at its completion. These assessments will help clinical trial readiness by identifying reliable, valid, and responsive outcome measures as well as providing data driven clinical trial decision making for future clinical trials on therapeutic agents for LGMD. The results of this study will permit more efficient clinical trial design. All relevant data will be made available for investigators or companies involved in LGMD therapeutic development upon conclusion of this study as applicable. TRIAL REGISTRATION Clinicaltrials.gov NCT03981289; Date of registration: 6/10/2019.
Collapse
Affiliation(s)
- Amy Doody
- Virginia Commonwealth University, Richmond, VA, USA
| | | | | | - Linda Lowes
- Nationwide Children's Hospital, Columbus, OH, USA
| | | | | | | | | | - Man Hung
- Roseman University, Salt Lake City, UT, USA
| | | | | |
Collapse
|
2
|
Jia W, Zhu J. Molecular Mechanism of ε-Polylysine Treatment of Animal-Derived Foods: Glycine Amidinotransferase Activity Implicates Upregulation of l-Arginine and Creatine. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:15106-15120. [PMID: 37793042 DOI: 10.1021/acs.jafc.3c04033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/06/2023]
Abstract
ε-Polylysine is a novel food preservative approved by the U.S. Food and Drug Administration (FDA), yet the mechanism of its effect on animal-derived foods remains unclear. Assessment of the effect of preservatives on goat meat products is necessary. Herein, metabolite accumulation and protein expression of ε-polylysine (0.025%, w/w) spiked with goat meat were investigated by nontarget metabolomics and proteomics combined with ultrahigh performance liquid chromatography quadrupole-Orbitrap high-resolution-mass spectrometry (UHPLC-Q-Orbitrap HRMS) in a simulated in vitro digestion model. The amino side chain of ε-polylysine increased the activity of glycine aminotransferase due to its nucleophilic nature, inducing a significant upregulation of l-arginine (0.43-0.72 mg kg-1) and creatine (3.98-6.89 mg kg-1), with an improvement in muscle quality of goat meat. Downregulation of enzyme phenylalanine hydroxylase expression led to upregulation of l-phenylalanine (2.26-3.25 mg kg-1) and l-tyrosine (0.98-1.29 mg kg-1). Collectively, this study first revealed the biochemical mechanism of ε-polylysine in goat meat products, which makes available new prospects for more accurate use of ε-polylysine in animal-derived foods.
Collapse
Affiliation(s)
- Wei Jia
- School of Food and Biological Engineering, Shaanxi University of Science & Technology, Xi'an 710021, China
- Shaanxi Research Institute of Agricultural Products Processing Technology, Xi'an 710021, China
| | - Jiying Zhu
- School of Food and Biological Engineering, Shaanxi University of Science & Technology, Xi'an 710021, China
| |
Collapse
|
3
|
Yonekawa T, Rauckhorst AJ, El-Hattab S, Cuellar MA, Venzke D, Anderson ME, Okuma H, Pewa AD, Taylor EB, Campbell KP. Large1 gene transfer in older myd mice with severe muscular dystrophy restores muscle function and greatly improves survival. SCIENCE ADVANCES 2022; 8:eabn0379. [PMID: 35613260 PMCID: PMC9132445 DOI: 10.1126/sciadv.abn0379] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Accepted: 04/07/2022] [Indexed: 06/15/2023]
Abstract
Muscular dystrophy is a progressive and ultimately lethal neuromuscular disease. Although gene editing and gene transfer hold great promise as therapies when administered before the onset of severe clinical symptoms, it is unclear whether these strategies can restore muscle function and improve survival in the late stages of muscular dystrophy. Largemyd/Largemyd (myd) mice lack expression of like-acetylglucosaminyltransferase-1 (Large1) and exhibit severe muscle pathophysiology, impaired mobility, and a markedly reduced life span. Here, we show that systemic delivery of AAV2/9 CMV Large1 (AAVLarge1) in >34-week-old myd mice with advanced disease restores matriglycan expression on dystroglycan, attenuates skeletal muscle pathophysiology, improves motor and respiratory function, and normalizes systemic metabolism, which collectively and markedly extends survival. Our results in a mouse model of muscular dystrophy demonstrate that skeletal muscle function can be restored, illustrating its remarkable plasticity, and that survival can be greatly improved even after the onset of severe muscle pathophysiology.
Collapse
Affiliation(s)
- Takahiro Yonekawa
- Senator Paul D. Wellstone Muscular Dystrophy Specialized Research Center, Department of Molecular Physiology and Biophysics and Department of Neurology, Roy J. and Lucille A. Carver College of Medicine, Howard Hughes Medical Institute, The University of Iowa, Iowa City, IA 52242, USA
| | - Adam J. Rauckhorst
- Department of Molecular Physiology and Biophysics, Fraternal Order of Eagles Diabetes Research Center (FOEDRC), and FOEDRC Metabolomics Core Facility, Roy J. and Lucille A. Carver College of Medicine, The University of Iowa, Iowa City, IA 52242, USA
| | - Sara El-Hattab
- Senator Paul D. Wellstone Muscular Dystrophy Specialized Research Center, Department of Molecular Physiology and Biophysics and Department of Neurology, Roy J. and Lucille A. Carver College of Medicine, Howard Hughes Medical Institute, The University of Iowa, Iowa City, IA 52242, USA
| | - Marco A. Cuellar
- Senator Paul D. Wellstone Muscular Dystrophy Specialized Research Center, Department of Molecular Physiology and Biophysics and Department of Neurology, Roy J. and Lucille A. Carver College of Medicine, Howard Hughes Medical Institute, The University of Iowa, Iowa City, IA 52242, USA
| | - David Venzke
- Senator Paul D. Wellstone Muscular Dystrophy Specialized Research Center, Department of Molecular Physiology and Biophysics and Department of Neurology, Roy J. and Lucille A. Carver College of Medicine, Howard Hughes Medical Institute, The University of Iowa, Iowa City, IA 52242, USA
| | - Mary E. Anderson
- Senator Paul D. Wellstone Muscular Dystrophy Specialized Research Center, Department of Molecular Physiology and Biophysics and Department of Neurology, Roy J. and Lucille A. Carver College of Medicine, Howard Hughes Medical Institute, The University of Iowa, Iowa City, IA 52242, USA
| | - Hidehiko Okuma
- Senator Paul D. Wellstone Muscular Dystrophy Specialized Research Center, Department of Molecular Physiology and Biophysics and Department of Neurology, Roy J. and Lucille A. Carver College of Medicine, Howard Hughes Medical Institute, The University of Iowa, Iowa City, IA 52242, USA
| | - Alvin D. Pewa
- Department of Molecular Physiology and Biophysics, Fraternal Order of Eagles Diabetes Research Center (FOEDRC), and FOEDRC Metabolomics Core Facility, Roy J. and Lucille A. Carver College of Medicine, The University of Iowa, Iowa City, IA 52242, USA
| | - Eric B. Taylor
- Department of Molecular Physiology and Biophysics, Fraternal Order of Eagles Diabetes Research Center (FOEDRC), and FOEDRC Metabolomics Core Facility, Roy J. and Lucille A. Carver College of Medicine, The University of Iowa, Iowa City, IA 52242, USA
| | - Kevin P. Campbell
- Senator Paul D. Wellstone Muscular Dystrophy Specialized Research Center, Department of Molecular Physiology and Biophysics and Department of Neurology, Roy J. and Lucille A. Carver College of Medicine, Howard Hughes Medical Institute, The University of Iowa, Iowa City, IA 52242, USA
| |
Collapse
|
4
|
Boyd A, Montandon M, Wood AJ, Currie PD. FKRP directed fibronectin glycosylation: A novel mechanism giving insights into muscular dystrophies? Bioessays 2022; 44:e2100270. [PMID: 35229908 DOI: 10.1002/bies.202100270] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 02/12/2022] [Accepted: 02/16/2022] [Indexed: 12/15/2022]
Abstract
The recently uncovered role of Fukutin-related protein (FKRP) in fibronectin glycosylation has challenged our understanding of the basis of disease pathogenesis in the muscular dystrophies. FKRP is a Golgi-resident glycosyltransferase implicated in a broad spectrum of muscular dystrophy (MD) pathologies that are not fully attributable to the well-described α-Dystroglycan hypoglycosylation. By revealing a new role for FKRP in the glycosylation of fibronectin, a modification critical for the development of the muscle basement membrane (MBM) and its associated muscle linkages, new possibilities for understanding clinical phenotype arise. This modification involves an interaction between FKRP and myosin-10, a protein involved in the Golgi organization and function. These observations suggest a FKRP nexus exists that controls two critical aspects to muscle fibre integrity, both fibre stability at the MBM and its elastic properties. This review explores the new potential disease axis in the context of our current knowledge of muscular dystrophies.
Collapse
Affiliation(s)
- Andrew Boyd
- Australian Regenerative Medicine Institute, Monash University, Clayton, Victoria, Australia
| | - Margo Montandon
- Australian Regenerative Medicine Institute, Monash University, Clayton, Victoria, Australia
| | - Alasdair J Wood
- Australian Regenerative Medicine Institute, Monash University, Clayton, Victoria, Australia
| | - Peter D Currie
- Australian Regenerative Medicine Institute, Monash University, Clayton, Victoria, Australia.,EMBL Australia, Monash University, Clayton, Victoria, Australia
| |
Collapse
|
5
|
Kanagawa M. Dystroglycanopathy: From Elucidation of Molecular and Pathological Mechanisms to Development of Treatment Methods. Int J Mol Sci 2021; 22:ijms222313162. [PMID: 34884967 PMCID: PMC8658603 DOI: 10.3390/ijms222313162] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Revised: 12/02/2021] [Accepted: 12/03/2021] [Indexed: 01/13/2023] Open
Abstract
Dystroglycanopathy is a collective term referring to muscular dystrophies with abnormal glycosylation of dystroglycan. At least 18 causative genes of dystroglycanopathy have been identified, and its clinical symptoms are diverse, ranging from severe congenital to adult-onset limb-girdle types. Moreover, some cases are associated with symptoms involving the central nervous system. In the 2010s, the structure of sugar chains involved in the onset of dystroglycanopathy and the functions of its causative gene products began to be identified as if they were filling the missing pieces of a jigsaw puzzle. In parallel with these discoveries, various dystroglycanopathy model mice had been created, which led to the elucidation of its pathological mechanisms. Then, treatment strategies based on the molecular basis of glycosylation began to be proposed after the latter half of the 2010s. This review briefly explains the sugar chain structure of dystroglycan and the functions of the causative gene products of dystroglycanopathy, followed by introducing the pathological mechanisms involved as revealed from analyses of dystroglycanopathy model mice. Finally, potential therapeutic approaches based on the pathological mechanisms involved are discussed.
Collapse
Affiliation(s)
- Motoi Kanagawa
- Department of Cell Biology and Molecular Medicine, Graduate School of Medicine, Ehime University, 454 Shitsukawa, Toon 791-0295, Ehime, Japan
| |
Collapse
|
6
|
Aksu-Menges E, Eylem CC, Nemutlu E, Gizer M, Korkusuz P, Topaloglu H, Talim B, Balci-Hayta B. Reduced mitochondrial fission and impaired energy metabolism in human primary skeletal muscle cells of Megaconial Congenital Muscular Dystrophy. Sci Rep 2021; 11:18161. [PMID: 34518586 PMCID: PMC8438035 DOI: 10.1038/s41598-021-97294-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2021] [Accepted: 08/13/2021] [Indexed: 11/09/2022] Open
Abstract
Megaconial Congenital Muscular Dystrophy (CMD) is a rare autosomal recessive disorder characterized by enlarged mitochondria located mainly at the periphery of muscle fibers and caused by mutations in the Choline Kinase Beta (CHKB) gene. Although the pathogenesis of this disease is not well understood, there is accumulating evidence for the presence of mitochondrial dysfunction. In this study, we aimed to investigate whether imbalanced mitochondrial dynamics affects mitochondrial function and bioenergetic efficiency in skeletal muscle cells of Megaconial CMD. Immunofluorescence, confocal and transmission electron microscopy studies revealed impaired mitochondrial network, morphology, and localization in primary skeletal muscle cells of Megaconial CMD. The organelle disruption was specific only to skeletal muscle cells grown in culture. The expression levels of mitochondrial fission proteins (DRP1, MFF, FIS1) were found to be decreased significantly in both primary skeletal muscle cells and tissue sections of Megaconial CMD by Western blotting and/or immunofluorescence analysis. The metabolomic and fluxomic analysis, which were performed in Megaconial CMD for the first time, revealed decreased levels of phosphonucleotides, Krebs cycle intermediates, ATP, and altered energy metabolism pathways. Our results indicate that reduced mitochondrial fission and altered mitochondrial energy metabolism contribute to mitochondrial dysmorphology and dysfunction in the pathogenesis of Megaconial CMD.
Collapse
Affiliation(s)
- Evrim Aksu-Menges
- Department of Medical Biology, Faculty of Medicine, Hacettepe University, 06100, Sihhiye, Ankara, Turkey
| | - Cemil Can Eylem
- Department of Analytical Chemistry, Faculty of Pharmacy, Hacettepe University, 06100, Sihhiye, Ankara, Turkey
| | - Emirhan Nemutlu
- Department of Analytical Chemistry, Faculty of Pharmacy, Hacettepe University, 06100, Sihhiye, Ankara, Turkey
| | - Merve Gizer
- Department of Stem Cell Sciences, Graduate School of Health Sciences, Hacettepe University, 06100, Sihhiye, Ankara, Turkey
| | - Petek Korkusuz
- Department of Histology and Embryology, Faculty of Medicine, Hacettepe University, 06100, Sihhiye, Ankara, Turkey
| | - Haluk Topaloglu
- Department of Pediatrics, Division of Child Neurology, Faculty of Medicine, Hacettepe University, 06100, Sihhiye, Ankara, Turkey.,Department of Pediatrics, Yeditepe University, Istanbul, Turkey
| | - Beril Talim
- Department of Pediatrics, Pathology Unit, Faculty of Medicine, Hacettepe University, 06100, Sihhiye, Ankara, Turkey
| | - Burcu Balci-Hayta
- Department of Medical Biology, Faculty of Medicine, Hacettepe University, 06100, Sihhiye, Ankara, Turkey.
| |
Collapse
|
7
|
Ortiz-Cordero C, Azzag K, Perlingeiro RCR. Fukutin-Related Protein: From Pathology to Treatments. Trends Cell Biol 2020; 31:197-210. [PMID: 33272829 DOI: 10.1016/j.tcb.2020.11.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 11/02/2020] [Accepted: 11/04/2020] [Indexed: 12/27/2022]
Abstract
Fukutin-related protein (FKRP) is a glycosyltransferase involved in the functional glycosylation of α-dystroglycan (DG), a key component in the link between the cytoskeleton and the extracellular matrix (ECM). Mutations in FKRP lead to dystroglycanopathies with broad severity, including limb-girdle and congenital muscular dystrophy. Studies over the past 5 years have elucidated the function of FKRP, which has expanded the number of therapeutic opportunities for patients carrying FKRP mutations. These include small molecules, gene delivery, and cell therapy. Here we summarize recent findings on the function of FKRP and describe available models for studying diseases and testing therapeutics. Lastly, we highlight preclinical studies that hold potential for the treatment of FKRP-associated dystroglycanopathies.
Collapse
Affiliation(s)
- Carolina Ortiz-Cordero
- Lillehei Heart Institute, Department of Medicine, University of Minnesota, Minneapolis, MN, USA; Department of Integrative Biology and Physiology, University of Minnesota, Minneapolis, MN, USA
| | - Karim Azzag
- Lillehei Heart Institute, Department of Medicine, University of Minnesota, Minneapolis, MN, USA
| | - Rita C R Perlingeiro
- Lillehei Heart Institute, Department of Medicine, University of Minnesota, Minneapolis, MN, USA; Department of Integrative Biology and Physiology, University of Minnesota, Minneapolis, MN, USA; Stem Cell Institute, University of Minnesota, Minneapolis, MN, USA.
| |
Collapse
|
8
|
Frederick DW, McDougal AV, Semenas M, Vappiani J, Nuzzo A, Ulrich JC, Becherer JD, Preugschat F, Stewart EL, Sévin DC, Kramer HF. Complementary NAD + replacement strategies fail to functionally protect dystrophin-deficient muscle. Skelet Muscle 2020; 10:30. [PMID: 33092650 PMCID: PMC7579925 DOI: 10.1186/s13395-020-00249-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Accepted: 09/22/2020] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Duchenne muscular dystrophy (DMD) is a progressive muscle wasting disorder stemming from a loss of functional dystrophin. Current therapeutic options for DMD are limited, as small molecule modalities remain largely unable to decrease the incidence or mitigate the consequences of repetitive mechanical insults to the muscle during eccentric contractions (ECCs). METHODS Using a metabolomics-based approach, we observed distinct and transient molecular phenotypes in muscles of dystrophin-deficient MDX mice subjected to ECCs. Among the most chronically depleted metabolites was nicotinamide adenine dinucleotide (NAD), an essential metabolic cofactor suggested to protect muscle from structural and metabolic degeneration over time. We tested whether the MDX muscle NAD pool can be expanded for therapeutic benefit using two complementary small molecule strategies: provision of a biosynthetic precursor, nicotinamide riboside, or specific inhibition of the NAD-degrading ADP-ribosyl cyclase, CD38. RESULTS Administering a novel, potent, and orally available CD38 antagonist to MDX mice successfully reverted a majority of the muscle metabolome toward the wildtype state, with a pronounced impact on intermediates of the pentose phosphate pathway, while supplementing nicotinamide riboside did not significantly affect the molecular phenotype of the muscle. However, neither strategy sustainably increased the bulk tissue NAD pool, lessened muscle damage markers, nor improved maximal hindlimb strength following repeated rounds of eccentric challenge and recovery. CONCLUSIONS In the absence of dystrophin, eccentric injury contributes to chronic intramuscular NAD depletion with broad pleiotropic effects on the molecular phenotype of the tissue. These molecular consequences can be more effectively overcome by inhibiting the enzymatic activity of CD38 than by supplementing nicotinamide riboside. However, we found no evidence that either small molecule strategy is sufficient to restore muscle contractile function or confer protection from eccentric injury, undermining the modulation of NAD metabolism as a therapeutic approach for DMD.
Collapse
Affiliation(s)
- David W Frederick
- Muscle Metabolism Unit, GlaxoSmithKline R&D, Research Triangle Park, NC, Collegeville, PA, USA
| | - Alan V McDougal
- Muscle Metabolism Unit, GlaxoSmithKline R&D, Research Triangle Park, NC, Collegeville, PA, USA
| | - Melisa Semenas
- Muscle Metabolism Unit, GlaxoSmithKline R&D, Research Triangle Park, NC, Collegeville, PA, USA
| | | | - Andrea Nuzzo
- Target Sciences, Computational Biology, GlaxoSmithKline R&D, Collegeville, PA, USA
| | - John C Ulrich
- Muscle Metabolism Unit, GlaxoSmithKline R&D, Research Triangle Park, NC, Collegeville, PA, USA
| | - J David Becherer
- Muscle Metabolism Unit, GlaxoSmithKline R&D, Research Triangle Park, NC, Collegeville, PA, USA
| | - Frank Preugschat
- Muscle Metabolism Unit, GlaxoSmithKline R&D, Research Triangle Park, NC, Collegeville, PA, USA
| | - Eugene L Stewart
- Computational Sciences, Molecular Design, GlaxoSmithKline R&D, Collegeville, PA, USA.
| | | | - H Fritz Kramer
- Muscle Metabolism Unit, GlaxoSmithKline R&D, Research Triangle Park, NC, Collegeville, PA, USA
| |
Collapse
|
9
|
Murphy LB, Schreiber-Katz O, Rafferty K, Robertson A, Topf A, Willis TA, Heidemann M, Thiele S, Bindoff L, Laurent JP, Lochmüller H, Mathews K, Mitchell C, Stevenson JH, Vissing J, Woods L, Walter MC, Straub V. Global FKRP Registry: observations in more than 300 patients with Limb Girdle Muscular Dystrophy R9. Ann Clin Transl Neurol 2020; 7:757-766. [PMID: 32342672 PMCID: PMC7261761 DOI: 10.1002/acn3.51042] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Revised: 03/13/2020] [Accepted: 03/20/2020] [Indexed: 12/14/2022] Open
Abstract
Objective The Global FKRP Registry is a database for individuals with conditions caused by mutations in the Fukutin‐Related Protein (FKRP) gene: limb girdle muscular dystrophy R9 (LGMDR9, formerly LGMD2I) and congenital muscular dystrophies MDC1C, Muscle–Eye–Brain Disease and Walker–Warburg Syndrome. The registry seeks to further understand the natural history and prevalence of FKRP‐related conditions; aid the rapid identification of eligible patients for clinical studies; and provide a source of information to clinical and academic communities. Methods Registration is patient‐initiated through a secure online portal. Data, reported by both patients and their clinicians, include: age of onset, presenting symptoms, family history, motor function and muscle strength, respiratory and cardiac function, medication, quality of life and pain. Results Of 663 registered participants, 305 were genetically confirmed LGMDR9 patients from 23 countries. A majority of LGMDR9 patients carried the common mutation c.826C > A on one or both alleles; 67.9% were homozygous and 28.5% were compound heterozygous for this mutation. The mean ages of symptom onset and disease diagnosis were higher in individuals homozygous for c.826C > A compared with individuals heterozygous for c.826C > A. This divergence was replicated in ages of loss of running ability, wheelchair‐dependence and ventilation assistance; consistent with the milder phenotype associated with individuals homozygous for c.826C > A. In LGMDR9 patients, 75.1% were currently ambulant and 24.6%, nonambulant (unreported in 0.3%). Cardiac impairment was reported in 23.2% (30/129). Interpretation The Global FKRP Registry enables the collection of patient natural history data, which informs academics, healthcare professionals and industry. It represents a trial‐ready cohort of individuals and is centrally placed to facilitate recruitment to clinical studies.
Collapse
Affiliation(s)
- Lindsay B Murphy
- John Walton Muscular Dystrophy Research Centre, Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK
| | | | - Karen Rafferty
- Institute of Population Health Sciences, University of Liverpool, Liverpool, UK
| | - Agata Robertson
- John Walton Muscular Dystrophy Research Centre, Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK
| | - Ana Topf
- John Walton Muscular Dystrophy Research Centre, Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK
| | - Tracey A Willis
- The Robert Jones and Agnes Hunt Orthopaedic Hospital, Oswestry, UK
| | - Marcel Heidemann
- Department of Neurology, Friedrich-Baur-Institute, Ludwig-Maximilians-University, Munich, Germany
| | - Simone Thiele
- Department of Neurology, Friedrich-Baur-Institute, Ludwig-Maximilians-University, Munich, Germany
| | - Laurence Bindoff
- Department of Neurology, Neuro-SysMed, Haukeland University Hospital, University of Bergen, Bergen, Norway.,Department of Clinical Medicine, University of Bergen, Bergen, Norway
| | | | - Hanns Lochmüller
- Division of Neurology, Department of Medicine, Children's Hospital of Eastern Ontario Research Institute, The Ottawa Hospital, Ottawa, Canada.,The Brain and Mind Research Institute, University of Ottawa, Ottawa, Canada
| | - Katherine Mathews
- Department of Pediatrics, University of Iowa Hospitals and Clinics, Iowa City, Iowa
| | | | | | - John Vissing
- Department of Neurology, Copenhagen Neuromuscular Centre, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Lacey Woods
- Patient Representative, Stanwood, Washington
| | - Maggie C Walter
- Department of Neurology, Friedrich-Baur-Institute, Ludwig-Maximilians-University, Munich, Germany
| | - Volker Straub
- John Walton Muscular Dystrophy Research Centre, Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK
| |
Collapse
|