3
|
Yamahira K, Ansai S, Kakioka R, Yaguchi H, Kon T, Montenegro J, Kobayashi H, Fujimoto S, Kimura R, Takehana Y, Setiamarga DHE, Takami Y, Tanaka R, Maeda K, Tran HD, Koizumi N, Morioka S, Bounsong V, Watanabe K, Musikasinthorn P, Tun S, Yun LKC, Masengi KWA, Anoop VK, Raghavan R, Kitano J. Mesozoic origin and 'out-of-India' radiation of ricefishes (Adrianichthyidae). Biol Lett 2021; 17:20210212. [PMID: 34343438 DOI: 10.1098/rsbl.2021.0212] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The Indian subcontinent has an origin geologically different from Eurasia, but many terrestrial animal and plant species on it have congeneric or sister species in other parts of Asia, especially in the Southeast. This faunal and floral similarity between India and Southeast Asia is explained by either of the two biogeographic scenarios, 'into-India' or 'out-of-India'. Phylogenies based on complete mitochondrial genomes and five nuclear genes were undertaken for ricefishes (Adrianichthyidae) to examine which of these two biogeographic scenarios fits better. We found that Oryzias setnai, the only adrianichthyid distributed in and endemic to the Western Ghats, a mountain range running parallel to the western coast of the Indian subcontinent, is sister to all other adrianichthyids from eastern India and Southeast-East Asia. Divergence time estimates and ancestral area reconstructions reveal that this western Indian species diverged in the late Mesozoic during the northward drift of the Indian subcontinent. These findings indicate that adrianichthyids dispersed eastward 'out-of-India' after the collision of the Indian subcontinent with Eurasia, and subsequently diversified in Southeast-East Asia. A review of geographic distributions of 'out-of-India' taxa reveals that they may have largely fuelled or modified the biodiversity of Eurasia.
Collapse
Affiliation(s)
- Kazunori Yamahira
- Tropical Biosphere Research Center, University of the Ryukyus, Okinawa, Japan
| | - Satoshi Ansai
- Graduate School of Life Sciences, Tohoku University, Sendai, Japan
| | - Ryo Kakioka
- Tropical Biosphere Research Center, University of the Ryukyus, Okinawa, Japan
| | - Hajime Yaguchi
- Tropical Biosphere Research Center, University of the Ryukyus, Okinawa, Japan.,School of Science and Technology, Kwansei Gakuin University, Sanda, Japan
| | - Takeshi Kon
- Center for Strategic Research Project, University of the Ryukyus, Okinawa, Japan
| | - Javier Montenegro
- Tropical Biosphere Research Center, University of the Ryukyus, Okinawa, Japan
| | - Hirozumi Kobayashi
- Tropical Biosphere Research Center, University of the Ryukyus, Okinawa, Japan
| | - Shingo Fujimoto
- Tropical Biosphere Research Center, University of the Ryukyus, Okinawa, Japan
| | - Ryosuke Kimura
- Graduate School of Medicine, University of the Ryukyus, Okinawa, Japan
| | - Yusuke Takehana
- Faculty of Bio-Science, Nagahama Institute of Bio-Science and Technology, Japan
| | - Davin H E Setiamarga
- Department of Applied Chemistry and Biochemistry, National Institute of Technology, Wakayama College, Wakayama, Japan
| | - Yasuoki Takami
- Graduate School of Human Development and Environment, Kobe University, Kobe, Japan
| | - Rieko Tanaka
- World Medaka Aquarium, Nagoya Higashiyama Zoo and Botanical Gardens, Nagoya, Japan
| | - Ken Maeda
- Marine Eco-Evo-Devo Unit, Okinawa Institute of Science and Technology Graduate University, Okinawa, Japan
| | - Hau D Tran
- Faculty of Biology, Hanoi National University of Education, Hanoi, Vietnam
| | - Noriyuki Koizumi
- Strategic Planning Headquarters, National Agriculture and Food Research Organization, Ibaraki, Japan
| | - Shinsuke Morioka
- Fisheries Division, Japan International Research Center for Agricultural Sciences, Ibaraki, Japan
| | | | - Katsutoshi Watanabe
- Division of Biological Sciences, Graduate School of Science, Kyoto University, Kyoto, Japan
| | | | - Sein Tun
- Inlay Lake Wildlife Sanctuary, Ministry of Natural Resources and Environmental Conservation, Nyaungshwe, Myanmar
| | - L K C Yun
- Inlay Lake Wildlife Sanctuary, Ministry of Natural Resources and Environmental Conservation, Nyaungshwe, Myanmar
| | | | - V K Anoop
- School of Ocean Science and Technology, Kerala University of Fisheries and Ocean Studies, Kochi, India
| | - Rajeev Raghavan
- Department of Fisheries Resource Management, Kerala University of Fisheries and Ocean Studies, Kochi, India
| | - Jun Kitano
- Ecological Genetics Laboratory, National Institute of Genetics, Mishima, Japan
| |
Collapse
|
4
|
Mandal B, Vijaya Rao V, Karuppannan P, Laxminarayana K. Mechanism for epeirogenic uplift of the Archean Dharwar craton, southern India as evidenced by orthogonal seismic reflection profiles. Sci Rep 2021; 11:1499. [PMID: 33452325 PMCID: PMC7811008 DOI: 10.1038/s41598-021-80965-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Accepted: 12/24/2020] [Indexed: 01/29/2023] Open
Abstract
Plateaus, located far away from the plate boundaries, play an important role in understanding the deep-rooted geological processes responsible for the epeirogenic uplift and dynamics of the plate interior. The Karnataka plateau located in the Dharwar craton, southern India, is a classic example for the plateau uplift. It is explored using orthogonal deep crustal seismic reflection studies, and a mechanism for the epeirogenic uplift is suggested. A pseudo three-dimensional crustal structure derived from these studies suggests a regionally extensive 10 km thick magmatic underplating in the region. It is further constrained from active-source refraction and passive-source seismological data. We interpret the Marion and Reunion mantle plume activities during 88 Ma and 65 Ma on the western part of Dharwar craton are responsible for the magmatic underplating, which caused epeirogenic uplift. Flexural isostasy related to the onshore denudational unloading and offshore sediment loading is also responsible for the persisting uplift in the region. Plate boundary forces are found to be contributing to the plateau uplift. The present study provides a relationship between the mantle plumes, rifting, development of continental margins, plateau uplift, and denudational isostasy. Combination of exogenic and endogenic processes are responsible for the plateau uplift in the region.
Collapse
Affiliation(s)
- Biswajit Mandal
- grid.419382.50000 0004 0496 9708CSIR-National Geophysical Research Institute, Hyderabad, 500007 India
| | - V. Vijaya Rao
- grid.419382.50000 0004 0496 9708CSIR-National Geophysical Research Institute, Hyderabad, 500007 India
| | - P. Karuppannan
- grid.419382.50000 0004 0496 9708CSIR-National Geophysical Research Institute, Hyderabad, 500007 India
| | - K. Laxminarayana
- grid.419382.50000 0004 0496 9708CSIR-National Geophysical Research Institute, Hyderabad, 500007 India
| |
Collapse
|
5
|
Low geomagnetic field strength during End-Cretaceous Deccan volcanism and whole mantle convection. Sci Rep 2020; 10:10743. [PMID: 32612206 PMCID: PMC7329830 DOI: 10.1038/s41598-020-67245-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Accepted: 05/29/2020] [Indexed: 11/18/2022] Open
Abstract
Knowledge about long-term variation of the geomagnetic dipole field remains in its nascent stage because of the paucity of reliable experimental data over geological periods. Here, we present the first robust experimental data from the largest Cretaceous flood basalt province on Earth, the ~65–66 Ma Deccan basalt within a thick (1250 m) unbiased stratigraphic section down to the basement, recovered from a drill hole of the Koyna Deep Scientific Drilling Project in the Western Ghats, India. Critical analysis of the result along with similar results of the Cretaceous age find that (i) the dipole moment during the end Cretaceous Deccan eruption is the lowest in whole of Cretaceous (ii) dipole moment at the onset/termination of the Cretaceous Normal Superchron is apparently lower relative to that in mid-superchron, however, such differences cannot be deciphered in shorter polarities probably because of insufficient time to develop recognizable variations (iii) inverse relation between dipole moment and reversal rate is lacking and (iv) a cause and effect relation between core-mantle boundary heat flux and low dipole moment that appears to be the principle governing factor in forming the Large Igneous Provinces on the surface of earth.
Collapse
|