1
|
Zhang J, Ryu JY, Tirado SR, Dickinson LD, Abosch A, Aziz-Sultan MA, Boulos AS, Barrow DL, Batjer HH, Binyamin TR, Blackburn SL, Chang EF, Chen PR, Colby GP, Cosgrove GR, David CA, Day AL, Folkerth RD, Frerichs KU, Howard BM, Jahromi BR, Niemela M, Ojemann SG, Patel NJ, Richardson RM, Shi X, Valle-Giler EP, Wang AC, Welch BG, Williams Z, Zusman EE, Weiss ST, Du R. A Transcriptomic Comparative Study of Cranial Vasculature. Transl Stroke Res 2024; 15:1108-1122. [PMID: 37612482 DOI: 10.1007/s12975-023-01186-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 07/06/2023] [Accepted: 08/07/2023] [Indexed: 08/25/2023]
Abstract
In genetic studies of cerebrovascular diseases, the optimal vessels to use as controls remain unclear. Our goal is to compare the transcriptomic profiles among 3 different types of control vessels: superficial temporal artery (STA), middle cerebral arteries (MCA), and arteries from the circle of Willis obtained from autopsies (AU). We examined the transcriptomic profiles of STA, MCA, and AU using RNAseq. We also investigated the effects of using these control groups on the results of the comparisons between aneurysms and the control arteries. Our study showed that when comparing pathological cerebral arteries to control groups, all control groups presented similar responses in the activation of immunological processes, the regulation of intracellular signaling pathways, and extracellular matrix productions, despite their intrinsic biological differences. When compared to STA, AU exhibited upregulation of stress and apoptosis genes, whereas MCA showed upregulation of genes associated with tRNA/rRNA processing. Moreover, our results suggest that the matched case-control study design, which involves control STA samples collected from the same subjects of matched aneurysm samples in our study, can improve the identification of non-inherited disease-associated genes. Given the challenges associated with obtaining fresh intracranial arteries from healthy individuals, our study suggests that using MCA, AU, or paired STA samples as controls are feasible strategies for future large-scale studies investigating cerebral vasculopathies. However, the intrinsic differences of each type of control should be taken into consideration when interpreting the results. With the limitations of each control type, it may be most optimal to use multiple tissues as controls.
Collapse
Affiliation(s)
- Jianing Zhang
- Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, 75 Francis Street, Boston, MA, 02115, USA
| | - Jee-Yeon Ryu
- Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, 75 Francis Street, Boston, MA, 02115, USA
| | - Selena-Rae Tirado
- Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, 75 Francis Street, Boston, MA, 02115, USA
| | | | - Aviva Abosch
- Department of Neurosurgery, University of Nebraska Medical Center, Omaha, NE, USA
| | - M Ali Aziz-Sultan
- Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, 75 Francis Street, Boston, MA, 02115, USA
| | - Alan S Boulos
- Department of Neurosurgery, Albany Medical Center, Albany, NY, USA
| | - Daniel L Barrow
- Department of Neurosurgery, Emory University, Atlanta, GA, USA
| | - H Hunt Batjer
- Department of Neurosurgery, University of Texas Southwestern, Dallas, TX, USA
| | | | - Spiros L Blackburn
- Department of Neurosurgery, University of Texas Health Science Center, Houston, TX, USA
| | - Edward F Chang
- Department of Neurosurgery, University of California San Francisco, San Francisco, CA, USA
- Department of Neurosurgery, University of California Los Angeles, Los Angeles, CA, USA
| | - P Roc Chen
- Department of Neurosurgery, University of Texas Health Science Center, Houston, TX, USA
| | - Geoffrey P Colby
- Department of Neurosurgery, University of California Los Angeles, Los Angeles, CA, USA
| | - G Rees Cosgrove
- Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, 75 Francis Street, Boston, MA, 02115, USA
| | - Carlos A David
- Department of Neurosurgery, University of North Carolina Chapel Hill, Chapel Hill, NC, USA
| | - Arthur L Day
- Department of Neurosurgery, University of Texas Health Science Center, Houston, TX, USA
| | - Rebecca D Folkerth
- Department of Forensic Medicine, New York University Grossman School of Medicine, New York, NY, USA
| | - Kai U Frerichs
- Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, 75 Francis Street, Boston, MA, 02115, USA
| | - Brian M Howard
- Department of Neurosurgery, Emory University, Atlanta, GA, USA
| | - Behnam R Jahromi
- Department of Neurosurgery, Helsinki University and Helsinki University Hospital, Helsinki, Finland
| | - Mika Niemela
- Department of Neurosurgery, Helsinki University and Helsinki University Hospital, Helsinki, Finland
| | - Steven G Ojemann
- Department of Neurosurgery, University of Colorado, Denver, CO, USA
| | - Nirav J Patel
- Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, 75 Francis Street, Boston, MA, 02115, USA
| | - R Mark Richardson
- Department of Neurosurgery, Massachusetts General Hospital, Boston, MA, USA
| | - Xiangen Shi
- Department of Neurosurgery, Affiliated Fuxing Hospital, Capital Medical University, Beijing, China
| | | | - Anthony C Wang
- Department of Neurosurgery, University of California Los Angeles, Los Angeles, CA, USA
| | - Babu G Welch
- Department of Neurosurgery, University of Texas Southwestern, Dallas, TX, USA
| | - Ziv Williams
- Department of Neurosurgery, Massachusetts General Hospital, Boston, MA, USA
| | | | - Scott T Weiss
- Channing Division of Network Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Rose Du
- Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, 75 Francis Street, Boston, MA, 02115, USA.
| |
Collapse
|
2
|
Kumar M, Patel K, Chinnapparaj S, Sharma T, Aggarwal A, Singla N, Karthigeyan M, Singh A, Sahoo SK, Tripathi M, Takkar A, Gupta T, Pal A, Attri SV, Bansal YS, Ratho RK, Gupta SK, Khullar M, Vashishta RK, Mukherjee KK, Grover VK, Prasad R, Chatterjee A, Gowda H, Bhagat H. Dysregulated Genes and Signaling Pathways in the Formation and Rupture of Intracranial Aneurysm. Transl Stroke Res 2024; 15:865-879. [PMID: 37644376 DOI: 10.1007/s12975-023-01178-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 03/21/2023] [Accepted: 07/10/2023] [Indexed: 08/31/2023]
Abstract
Intracranial aneurysm (IA) has the potential to rupture. Despite scientific advances, we are still not in a position to screen patients for IA and identify those at risk of rupture. It is critical to comprehend the molecular basis of disease to facilitate the development of novel diagnostic strategies. We used transcriptomics to identify the dysregulated genes and understand their role in the disease biology. In particular, RNA-Seq was performed in tissue samples of controls, unruptured IA, and ruptured IA. Dysregulated genes (DGs) were identified and analyzed to understand the functional aspects of molecules. Subsequently, candidate genes were validated at both transcript and protein level. There were 314 DGs in patients with unruptured IA when compared to control samples. Out of these, SPARC and OSM were validated as candidate molecules in unruptured IA. PI3K-AKT signaling pathway was found to be an important pathway for the formation of IA. Similarly, 301 DGs were identified in the samples of ruptured IA when compared with unruptured IAs. CTSL was found to be a key candidate molecule which along with Hippo signaling pathway may be involved in the rupture of IA. We conclude that activation of PI3K-AKT signaling pathway by OSM along with up-regulation of SPARC is important for the formation of IA. Further, regulation of Hippo pathway through PI3K-AKT signaling results in the down-regulation of YAP1 gene. This along with up-regulation of CTSL leads to further weakening of aneurysm wall and its subsequent rupture.
Collapse
Affiliation(s)
- Munish Kumar
- Division of Neuro-anesthesia, Department of Anesthesia and Intensive Care, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Krishna Patel
- Institute of Bioinformatics, International Tech Park, Bangalore, India
| | - Shobia Chinnapparaj
- Division of Neuro-anesthesia, Department of Anesthesia and Intensive Care, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Tanavi Sharma
- Division of Neuro-anesthesia, Department of Anesthesia and Intensive Care, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Ashish Aggarwal
- Department of Neurosurgery, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Navneet Singla
- Department of Neurosurgery, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Madhivanan Karthigeyan
- Department of Neurosurgery, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Apinderpreet Singh
- Department of Neurosurgery, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Sushanta Kumar Sahoo
- Department of Neurosurgery, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Manjul Tripathi
- Department of Neurosurgery, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Aastha Takkar
- Department of Neurology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Tulika Gupta
- Department of Anatomy, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Arnab Pal
- Department of Biochemistry, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Savita Verma Attri
- Pediatric Biochemistry, Department of Pediatrics, Advanced Pediatrics Centre, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Yogender Singh Bansal
- Department of Forensic Medicine, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Radha Kanta Ratho
- Department of Virology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Sunil K Gupta
- Department of Neurosurgery, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Madhu Khullar
- Department of Experimental Medicine and Biotechnology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Rakesh Kumar Vashishta
- Department of Histopathology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Kanchan Kumar Mukherjee
- Department of Neurosurgery, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Vinod Kumar Grover
- Division of Neuro-anesthesia, Department of Anesthesia and Intensive Care, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Rajendra Prasad
- Department of Biochemistry, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Aditi Chatterjee
- Institute of Bioinformatics, International Tech Park, Bangalore, India
| | - Harsha Gowda
- Institute of Bioinformatics, International Tech Park, Bangalore, India
| | - Hemant Bhagat
- Division of Neuro-anesthesia, Department of Anesthesia and Intensive Care, Postgraduate Institute of Medical Education and Research, Chandigarh, India.
| |
Collapse
|
3
|
He Q, Wang W, Xiong Y, Tao C, Ma L, You C. Causal association between circulating inflammatory cytokines and intracranial aneurysm and subarachnoid hemorrhage. Eur J Neurol 2024; 31:e16326. [PMID: 38709145 PMCID: PMC11235611 DOI: 10.1111/ene.16326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 03/28/2024] [Accepted: 04/18/2024] [Indexed: 05/07/2024]
Abstract
BACKGROUND AND PURPOSE The causal association between inflammatory cytokines and the development of intracranial aneurysm (IA), unruptured IA (uIA) and subarachnoid hemorrhage (SAH) lacks clarity. METHODS The summary-level datasets for inflammatory cytokines were extracted from a genome-wide association study of the Finnish Cardiovascular Risk in Young Adults Study and the FINRISK survey. The summary statistics datasets related to IA, uIA and SAH were obtained from the genome-wide association study meta-analysis of the International Stroke Genetics Consortium and FinnGen Consortium. The primary method employed for analysis was inverse variance weighting (false discovery rate), supplemented by sensitivity analyses to address pleiotropy and enhance robustness. RESULTS In the International Stroke Genetics Consortium, 10, six and eight inflammatory cytokines exhibited a causal association with IA, uIA and SAH, respectively (false discovery rate, p < 0.05). In FinnGen datasets, macrophage Inflammatory Protein-1 Alpha (MIP_1A), MIP_1A and interferon γ-induced protein 10 (IP_10) were verified for IA, uIA and SAH, respectively. In the reverse Mendelian randomization analysis, the common cytokines altered by uIA and SAH were vascular endothelial growth factor (VEGF), MIP_1A, IL_9, IL_10 and IL_17, respectively. The meta-analysis results show that MIP_1A and IP_10 could be associated with the decreased risk of IA, and MIP_1A and IP_10 were associated with the decreased risk of uIA and SAH, respectively. Notably, the levels of VEGF, MIP_1A, IL_9, IL_10 and TNF_A were increased with uIA. Comprehensive heterogeneity and pleiotropy analyses confirmed the robustness of these results. CONCLUSION Our study unveils a bidirectional association between inflammatory cytokines and IA, uIA and SAH. Further investigations are essential to validate their relationship and elucidate the underlying mechanisms.
Collapse
Affiliation(s)
- Qiang He
- Department of Neurosurgery, West China HospitalSichuan UniversityChengduSichuanChina
| | - Wenjing Wang
- Department of Pharmacy, Institute of Metabolic Diseases and Pharmacotherapy, West China HospitalSichuan UniversityChengduSichuanChina
| | - Yang Xiong
- Department of Urology, West China HospitalSichuan UniversityChengduSichuanChina
| | - Chuanyuan Tao
- Department of Neurosurgery, West China HospitalSichuan UniversityChengduSichuanChina
| | - Lu Ma
- Department of Neurosurgery, West China HospitalSichuan UniversityChengduSichuanChina
| | - Chao You
- Department of Neurosurgery, West China HospitalSichuan UniversityChengduSichuanChina
| |
Collapse
|
4
|
Chen R, Fu Y, Li D, Wang S, Ruan Y, Ren L, Wang S, Shen X, Shi Y, Shao Y, Liu Y. Proteomic analysis of plasma in healthy adults receiving recombinant vaccinia virus provides novel insights into HIV-1 neutralizing antibodies. J Med Virol 2024; 96:e29749. [PMID: 38888113 DOI: 10.1002/jmv.29749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 05/02/2024] [Accepted: 05/26/2024] [Indexed: 06/20/2024]
Abstract
Human immunodeficiency virus (HIV) infection is still a global public health issue, and the development of an effective prophylactic vaccine inducing potent neutralizing antibodies remains a significant challenge. This study aims to explore the inflammation-related proteins associated with the neutralizing antibodies induced by the DNA/rTV vaccine. In this study, we employed the Olink chip to analyze the inflammation-related proteins in plasma in healthy individuals receiving HIV candidate vaccine (DNA priming and recombinant vaccinia virus rTV boosting) and compared the differences between neutralizing antibody-positive (nab + ) and -negative(nab-) groups. We identified 25 differentially expressed factors and conducted enrichment and correlation analysis on them. Our results revealed that significant expression differences in artemin (ARTN) and C-C motif chemokine ligand 23 (CCL23) between nab+ and -nab- groups. Notably, the expression of CCL23 was negatively corelated to the ID50 of neutralizing antibodies and the intensity of the CD4+ T cell responses. This study enriches our understanding of the immune picture induced by the DNA/rTV vaccine, and provides insights for future HIV vaccine development.
Collapse
Affiliation(s)
- Ran Chen
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Center for AIDS/STD Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Yuyu Fu
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Center for AIDS/STD Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Dan Li
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Center for AIDS/STD Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Shuhui Wang
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Center for AIDS/STD Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Yuhua Ruan
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Center for AIDS/STD Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Li Ren
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Center for AIDS/STD Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Shuo Wang
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Center for AIDS/STD Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Xiuli Shen
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Center for AIDS/STD Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Yutao Shi
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Center for AIDS/STD Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Yiming Shao
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Center for AIDS/STD Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
- Changping Laboratory, Beijing, China
| | - Ying Liu
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Center for AIDS/STD Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| |
Collapse
|
5
|
Okada A, Shimizu K, Kawashima A, Kayahara T, Itani M, Kurita H, Miyamoto S, Kataoka H, Aoki T. C5a-C5AR1 axis as a potential trigger of the rupture of intracranial aneurysms. Sci Rep 2024; 14:3105. [PMID: 38326494 PMCID: PMC10850553 DOI: 10.1038/s41598-024-53651-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 02/03/2024] [Indexed: 02/09/2024] Open
Abstract
Recent studies have indicated the involvement of neutrophil-mediated inflammatory responses in the process leading to intracranial aneurysm (IA) rupture. Receptors mediating neutrophil recruitment could thus be therapeutic targets of unruptured IAs. In this study, complement C5a receptor 1 (C5AR1) was picked up as a candidate that may cause neutrophil-dependent inflammation in IA lesions from comprehensive gene expression profile data acquired from rat and human samples. The induction of C5AR1 in IA lesions was confirmed by immunohistochemistry; the up-regulations of C5AR1/C5ar1 stemmed from infiltrated neutrophils, which physiologically express C5AR1/C5ar1, and adventitial fibroblasts that induce C5AR1/C5ar1 in human/rat IA lesions. In in vitro experiments using NIH/3T3, a mouse fibroblast-like cell line, induction of C5ar1 was demonstrated by starvation or pharmacological inhibition of mTOR signaling by Torin1. Immunohistochemistry and an experiment in a cell-free system using recombinant C5 protein and recombinant Plasmin indicated that the ligand of C5AR1, C5a, could be produced through the enzymatic digestion by Plasmin in IA lesions. In conclusion, we have identified a potential contribution of the C5a-C5AR1 axis to neutrophil infiltration as well as inflammatory responses in inflammatory cells and fibroblasts of IA lesions. This cascade may become a therapeutic target to prevent the rupture of IAs.
Collapse
Grants
- 21K16622 Grant-in-Aid for Scientific Research from the Ministry of Education, Culture, Sports, Science and Technology of Japan
- 20K09367 Grant-in-Aid for Scientific Research from the Ministry of Education, Culture, Sports, Science and Technology of Japan
- 20K09381 Grant-in-Aid for Scientific Research from the Ministry of Education, Culture, Sports, Science and Technology of Japan
- 22H00584 Grant-in-Aid for Scientific Research from the Ministry of Education, Culture, Sports, Science and Technology of Japan
- JP18gm0810006 Core Research for Evolutional Science and Technology (CREST) on Mechanobiology from the Japan Agency for Medical Research and Development (AMED)
- JP19gm0810006 Core Research for Evolutional Science and Technology (CREST) on Mechanobiology from the Japan Agency for Medical Research and Development (AMED)
- JP20gm0810006 Core Research for Evolutional Science and Technology (CREST) on Mechanobiology from the Japan Agency for Medical Research and Development (AMED)
Collapse
Affiliation(s)
- Akihiro Okada
- Department of Molecular Pharmacology, Research Institute, National Cerebral and Cardiovascular Center, Osaka, Japan
- Department of Neurosurgery, Kyoto University Graduate School of Medicine, Kyoto, Japan
- Core Research for Evolutional Science and Technology from Japan Agency for Medical Research and Development, National Cerebral and Cardiovascular Center, Osaka, Japan
| | - Kampei Shimizu
- Department of Molecular Pharmacology, Research Institute, National Cerebral and Cardiovascular Center, Osaka, Japan
- Department of Neurosurgery, Kyoto University Graduate School of Medicine, Kyoto, Japan
- Core Research for Evolutional Science and Technology from Japan Agency for Medical Research and Development, National Cerebral and Cardiovascular Center, Osaka, Japan
| | - Akitsugu Kawashima
- Department of Neurosurgery, Tokyo Women's Medical University Yachiyo Medical Center, Chiba, Japan
| | - Tomomichi Kayahara
- Department of Molecular Pharmacology, Research Institute, National Cerebral and Cardiovascular Center, Osaka, Japan
- Department of Cerebrovascular Surgery, Saitama Medical University International Medical Center, Saitama, Japan
| | - Masahiko Itani
- Department of Molecular Pharmacology, Research Institute, National Cerebral and Cardiovascular Center, Osaka, Japan
- Department of Neurosurgery, Kyoto University Graduate School of Medicine, Kyoto, Japan
- Department of Pharmacology, The Jikei University School of Medicine, 3-25-8 Nishi-Shinbashi, Minato-ku, Tokyo, 105-8461, Japan
| | - Hiroki Kurita
- Department of Cerebrovascular Surgery, Saitama Medical University International Medical Center, Saitama, Japan
| | - Susumu Miyamoto
- Department of Neurosurgery, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Hiroharu Kataoka
- Department of Neurosurgery, National Cerebral and Cardiovascular Center, Osaka, Japan
| | - Tomohiro Aoki
- Department of Molecular Pharmacology, Research Institute, National Cerebral and Cardiovascular Center, Osaka, Japan.
- Core Research for Evolutional Science and Technology from Japan Agency for Medical Research and Development, National Cerebral and Cardiovascular Center, Osaka, Japan.
- Department of Pharmacology, The Jikei University School of Medicine, 3-25-8 Nishi-Shinbashi, Minato-ku, Tokyo, 105-8461, Japan.
| |
Collapse
|
6
|
Duan J, Zhao Q, He Z, Tang S, Duan J, Xing W. Current understanding of macrophages in intracranial aneurysm: relevant etiological manifestations, signaling modulation and therapeutic strategies. Front Immunol 2024; 14:1320098. [PMID: 38259443 PMCID: PMC10800944 DOI: 10.3389/fimmu.2023.1320098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 12/18/2023] [Indexed: 01/24/2024] Open
Abstract
Macrophages activation and inflammatory response play crucial roles in intracranial aneurysm (IA) formation and progression. The outcome of ruptured IA is considerably poor, and the mechanisms that trigger IA progression and rupture remain to be clarified, thereby developing effective therapy to prevent subarachnoid hemorrhage (SAH) become difficult. Recently, climbing evidences have been expanding our understanding of the macrophages relevant IA pathogenesis, such as immune cells population, inflammatory activation, intra-/inter-cellular signaling transductions and drug administration responses. Crosstalk between macrophages disorder, inflammation and cellular signaling transduction aggravates the devastating consequences of IA. Illustrating the pros and cons mechanisms of macrophages in IA progression are expected to achieve more efficient treatment interventions. In this review, we summarized the current advanced knowledge of macrophages activation, infiltration, polarization and inflammatory responses in IA occurrence and development, as well as the most relevant NF-κB, signal transducer and activator of transcription 1 (STAT1) and Toll-Like Receptor 4 (TLR4) regulatory signaling modulation. The understanding of macrophages regulatory mechanisms is important for IA patients' clinical outcomes. Gaining insight into the macrophages regulation potentially contributes to more precise IA interventions and will also greatly facilitate the development of novel medical therapy.
Collapse
Affiliation(s)
- Jian Duan
- Department of Cerebrovascular Disease, Suining Central Hospital, Suining, Sichuan, China
| | - Qijie Zhao
- Department of Cerebrovascular Disease, Suining Central Hospital, Suining, Sichuan, China
- Department of Pharmacy, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Zeyuan He
- Department of Cerebrovascular Disease, Suining Central Hospital, Suining, Sichuan, China
| | - Shuang Tang
- Department of Cerebrovascular Disease, Suining Central Hospital, Suining, Sichuan, China
| | - Jia Duan
- Department of Cerebrovascular Disease, Suining Central Hospital, Suining, Sichuan, China
| | - Wenli Xing
- Department of Cerebrovascular Disease, Suining Central Hospital, Suining, Sichuan, China
| |
Collapse
|
7
|
Li S, Zhang Q, Huang Z, Chen F. Integrative analysis of multi-omics data to identify three immune-related genes in the formation and progression of intracranial aneurysms. Inflamm Res 2023; 72:1001-1019. [PMID: 37014439 DOI: 10.1007/s00011-023-01725-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 02/01/2023] [Accepted: 03/24/2023] [Indexed: 04/05/2023] Open
Abstract
OBJECTIVE AND DESIGN The prevalence of intracranial aneurysms (IAs) has increased globally. We performed bioinformatics analysis to identify key biomarkers associated with IA formation. METHODS AND RESULTS We conducted a comprehensive analysis combined with multi-omics data and methods to identify immune-related genes (IRGs) and immunocytes involved in IAs. Functional enrichment analyses showed enhanced immune responses and suppressed organizations of extracellular matrix (ECM) during aneurysm progression. xCell analyses showed that the abundance of B cells, macrophages, mast cells, and monocytes significantly increased from levels in control to unruptured aneurysms and to ruptured aneurysms. Of 21 IRGs identified by overlapping, a three-gene (CXCR4, S100B, and OSM) model was constructed through LASSO logistic regression. The diagnostic ability of the three biomarkers in discriminating aneurysms from the control samples demonstrated a favorable diagnostic value. Among the three genes, OSM and CXCR4 were up-regulated and hypomethylated in IAs, while S100B was down-regulated and hypermethylated. The expression of the three IRGs was further validated by qRT-PCR and immunohistochemistry and mouse IA model using scRNA-seq analysis. CONCLUSION The present study demonstrated heightened immune response and suppressed ECM organization in aneurysm formation and rupture. The three-gene immune-related signature (CCR4, S100B, and OSM) model may facilitate IA diagnosis and prevention.
Collapse
Affiliation(s)
- Shifu Li
- Department of Neurosurgery, Xiangya Hospital, Central South University, 87 Xiangya Street, Changsha, 410008, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Central South University, 87 Xiangya Street, Changsha, 410008, Hunan, China
| | - Qian Zhang
- Department of Neurosurgery, Xiangya Hospital, Central South University, 87 Xiangya Street, Changsha, 410008, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Central South University, 87 Xiangya Street, Changsha, 410008, Hunan, China
| | - Zheng Huang
- Department of Neurosurgery, Xiangya Hospital, Central South University, 87 Xiangya Street, Changsha, 410008, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Central South University, 87 Xiangya Street, Changsha, 410008, Hunan, China
| | - Fenghua Chen
- Department of Neurosurgery, Xiangya Hospital, Central South University, 87 Xiangya Street, Changsha, 410008, Hunan, China.
- National Clinical Research Center for Geriatric Disorders, Central South University, 87 Xiangya Street, Changsha, 410008, Hunan, China.
| |
Collapse
|
8
|
Transcriptomic Studies on Intracranial Aneurysms. Genes (Basel) 2023; 14:genes14030613. [PMID: 36980884 PMCID: PMC10048068 DOI: 10.3390/genes14030613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 02/25/2023] [Accepted: 02/26/2023] [Indexed: 03/05/2023] Open
Abstract
Intracranial aneurysm (IA) is a relatively common vascular malformation of an intracranial artery. In most cases, its presence is asymptomatic, but IA rupture causing subarachnoid hemorrhage is a life-threating condition with very high mortality and disability rates. Despite intensive studies, molecular mechanisms underlying the pathophysiology of IA formation, growth, and rupture remain poorly understood. There are no specific biomarkers of IA presence or rupture. Analysis of expression of mRNA and other RNA types offers a deeper insight into IA pathobiology. Here, we present results of published human studies on IA-focused transcriptomics.
Collapse
|
9
|
Wang J, Bian L, Du Y, Wang D, Jiang R, Lu J, Zhao X. The roles of chemokines following intracerebral hemorrhage in animal models and humans. Front Mol Neurosci 2023; 15:1091498. [PMID: 36704330 PMCID: PMC9871786 DOI: 10.3389/fnmol.2022.1091498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 12/12/2022] [Indexed: 01/12/2023] Open
Abstract
Intracerebral hemorrhage (ICH) is one common yet devastating stroke subtype, imposing considerable burdens on families and society. Current guidelines are limited to symptomatic treatments after ICH, and the death rate remains significant in the acute stage. Thus, it is crucial to promote research to develop new targets on brain injury after ICH. In response to hematoma formation, amounts of chemokines are released in the brain, triggering the infiltration of resident immune cells in the brain and the chemotaxis of peripheral immune cells via the broken blood-brain barrier. During the past decades, mounting studies have focused on the roles of chemokines and their receptors in ICH injury. This review summarizes the latest advances in the study of chemokine functions in the ICH. First, we provide an overview of ICH epidemiology and underlying injury mechanisms in the pathogenesis of ICH. Second, we introduce the biology of chemokines and their receptors in brief. Third, we outline the roles of chemokines in ICH according to subgroups, including CCL2, CCL3, CCL5, CCL12, CCL17, CXCL8, CXCL12, and CX3CL1. Finally, we summarize current drug usage targeting chemokines in ICH and other cardio-cerebrovascular diseases. This review discusses the expressions of these chemokines and receptors under normal or hemorrhagic conditions and cell-specific sources. Above all, we highlight the related data of these chemokines in the progression and outcomes of the ICH disease in preclinical and clinical studies and point to therapeutic opportunities targeting chemokines productions and interactions in treating ICH, such as accelerating hematoma absorption and alleviating brain edema.
Collapse
Affiliation(s)
- Jinjin Wang
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China,China National Clinical Research Center for Neurological Diseases, Beijing, China
| | - Liheng Bian
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China,China National Clinical Research Center for Neurological Diseases, Beijing, China
| | - Yang Du
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China,China National Clinical Research Center for Neurological Diseases, Beijing, China
| | - Dandan Wang
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China,China National Clinical Research Center for Neurological Diseases, Beijing, China
| | - Ruixuan Jiang
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China,China National Clinical Research Center for Neurological Diseases, Beijing, China
| | - Jingjing Lu
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China,China National Clinical Research Center for Neurological Diseases, Beijing, China,*Correspondence: Jingjing Lu, ✉
| | - Xingquan Zhao
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China,China National Clinical Research Center for Neurological Diseases, Beijing, China,Research Unit of Artificial Intelligence in Cerebrovascular Disease, Chinese Academy of Medical Sciences, Beijing, China,Beijing Institute of Brain Disorders, Collaborative Innovation Center for Brain Disorders, Capital Medical University, Beijing, China,Xingquan Zhao, ✉
| |
Collapse
|
10
|
Hong EP, Kim BJ, Youn DH, Lee JJ, Jeon HJ, Choi HJ, Cho YJ, Jeon JP. Updated Genome-Wide Association Study of Intracranial Aneurysms by Genotype Correction and Imputation in Koreans. World Neurosurg 2022; 166:e109-e117. [PMID: 35792225 DOI: 10.1016/j.wneu.2022.06.113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 06/21/2022] [Accepted: 06/22/2022] [Indexed: 12/15/2022]
Abstract
OBJECTIVE Compared to European, Japanese, and Chinese populations, genetic studies on intracranial aneurysms (IAs) in Koreans are lacking. We conducted an updated genome-wide association study (GWAS) to more accurately identify candidate variations predicting IA by genotype correction and imputation than in the first Korean GWAS. METHODS We performed a high-throughput imputation of single-nucleotide polymorphisms (SNPs) and genotype missing values for 250 IA and 296 controls. Out of a total of 7,333,746 sites with an imputation R2 score of ≥0.5, 6,105,212 SNPs were analyzed. A high-throughput GWAS was performed after adjusting for clinical variables and 4 principal component analysis values. RESULTS A total of 39 SNPs reached a significant genome-wide threshold (P < 5 × 10-8). After pruning by pairwise linkage disequilibrium (r2 < 0.8), 11 SNPs were consistently associated with IA. Six tagging SNPs, including rs3120004, rs1851347, rs1522095, rs7779989, rs12935558, rs3826442, and rs2440154, showed strong linkage disequilibrium tower tagging haplotype structures. Among them, rs3120004 tagged a large and strong haplotype structure between LOC440704 and RGS18 genes in 1q31.2 (odds ratio, 2.34; 95% confidence interval, 1.74-3.14; P = 1.4 × 10-8). The rs2440154 (SLC47A1, 17p11.2) SNP increased the risk of IA most significantly (odds ratio, 2.90; 95% confidence interval, 2.07-4.08; P = 8.2 × 10-10). The region encompassing rs3826442 (MYH13, 17p13.1) showed a high recombination rate of approximately 70 cM/Mbp. CONCLUSIONS Our updated GWAS using high-throughput imputation approaches can be an informative milestone in understanding IA formation via susceptibility loci in this stage before large-scale genome-wide association meta-analysis.
Collapse
Affiliation(s)
- Eun Pyo Hong
- Institute of New Frontier Research, Hallym University College of Medicine, Chuncheon, Republic of Korea
| | - Bong Jun Kim
- Institute of New Frontier Research, Hallym University College of Medicine, Chuncheon, Republic of Korea
| | - Dong Hyuk Youn
- Institute of New Frontier Research, Hallym University College of Medicine, Chuncheon, Republic of Korea
| | - Jae Jun Lee
- Institute of New Frontier Research, Hallym University College of Medicine, Chuncheon, Republic of Korea
| | - Hong Jun Jeon
- Department of Neurosurgery, Hallym University College of Medicine, Chuncheon, Republic of Korea
| | - Hyuk Jai Choi
- Department of Neurosurgery, Hallym University College of Medicine, Chuncheon, Republic of Korea
| | - Yong Jun Cho
- Department of Neurosurgery, Hallym University College of Medicine, Chuncheon, Republic of Korea
| | - Jin Pyeong Jeon
- Department of Neurosurgery, Hallym University College of Medicine, Chuncheon, Republic of Korea.
| | | |
Collapse
|
11
|
Maimaiti A, Turhon M, Cheng X, Su R, Kadeer K, Axier A, Ailaiti D, Aili Y, Abudusalamu R, Kuerban A, Wang Z, Aisha M. m6A regulator–mediated RNA methylation modification patterns and immune microenvironment infiltration characterization in patients with intracranial aneurysms. Front Neurol 2022; 13:889141. [PMID: 35989938 PMCID: PMC9389407 DOI: 10.3389/fneur.2022.889141] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Accepted: 06/23/2022] [Indexed: 11/13/2022] Open
Abstract
BackgroundThe role of epigenetic modulation in immunity is receiving increased recognition—particularly in the context of RNA N6-methyladenosine (m6A) modifications. Nevertheless, it is still uncertain whether m6A methylation plays a role in the onset and progression of intracranial aneurysms (IAs). This study aimed to establish the function of m6A RNA methylation in IA, as well as its correlation with the immunological microenvironment.MethodsOur study included a total of 97 samples (64 IA, 33 normal) in the training set and 60 samples (44 IA, 16 normal) in the validation set to systematically assess the pattern of RNA modifications mediated by 22 m6A regulators. The effects of m6A modifications on immune microenvironment features, i.e., immune response gene sets, human leukocyte antigen (HLA) genes, and infiltrating immune cells were explored. We employed Lasso, machine learning, and logistic regression for the purpose of identifying an m6A regulator gene signature of IA with external data validation. For the unsupervised clustering analysis of m6A modification patterns in IA, consensus clustering methods were employed. Enrichment analysis was used to assess immune response activity along with other functional pathways. The identification of m6A methylation markers was identified based on a protein–protein interaction network and weighted gene co-expression network analysis.ResultsWe identified an m6A regulator signature of IGFBP2, IGFBP1, IGF2BP2, YTHDF3, ALKBH5, RBM15B, LRPPRC, and ELAVL1, which could easily distinguish individuals with IA from healthy individuals. Unsupervised clustering revealed three m6A modification patterns. Gene enrichment analysis illustrated that the tight junction, p53 pathway, and NOTCH signaling pathway varied significantly in m6A modifier patterns. In addition, the three m6A modification patterns showed significant differences in m6A regulator expression, immune microenvironment, and bio-functional pathways. Furthermore, macrophages, activated T cells, and other immune cells were strongly correlated with m6A regulators. Eight m6A indicators were discovered—each with a statistically significant correlation with IA—suggesting their potential as prognostic biological markers.ConclusionOur study demonstrates that m6A RNA methylation and the immunological microenvironment are both intricately correlated with the onset and progression of IA. The novel insight into patterns of m6A modification offers a foundation for the development of innovative treatment approaches for IA.
Collapse
Affiliation(s)
- Aierpati Maimaiti
- Department of Neurosurgery, Neurosurgery Centre, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Mirzat Turhon
- Department of Neurointerventional Surgery, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
- Department of Neurointerventional Surgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Xiaojiang Cheng
- Department of Neurosurgery, Neurosurgery Centre, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Riqing Su
- Department of Neurosurgery, Neurosurgery Centre, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Kaheerman Kadeer
- Department of Neurosurgery, Neurosurgery Centre, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Aximujiang Axier
- Department of Neurosurgery, Neurosurgery Centre, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Dilimulati Ailaiti
- Department of Neurosurgery, Neurosurgery Centre, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Yirizhati Aili
- Department of Neurosurgery, Neurosurgery Centre, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Rena Abudusalamu
- Department of Neurology, Neurology Centre, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Ajimu Kuerban
- Department of Neurosurgery, The First People's Hospital of Kashgar Prefecture, Kashgar, China
| | - Zengliang Wang
- Department of Neurosurgery, Neurosurgery Centre, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
- Zengliang Wang
| | - Maimaitili Aisha
- Department of Neurosurgery, Neurosurgery Centre, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
- *Correspondence: Maimaitili Aisha
| |
Collapse
|
12
|
Chen J, Zheng ZV, Lu G, Chan WY, Zhang Y, Wong GKC. Microglia activation, classification and microglia-mediated neuroinflammatory modulators in subarachnoid hemorrhage. Neural Regen Res 2021; 17:1404-1411. [PMID: 34916410 PMCID: PMC8771101 DOI: 10.4103/1673-5374.330589] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Subarachnoid hemorrhage is a devastating disease with significant mortality and morbidity, despite advances in treating cerebral aneurysms. There has been recent progress in the intensive care management and monitoring of patients with subarachnoid hemorrhage, but the results remain unsatisfactory. Microglia, the resident immune cells of the brain, are increasingly recognized as playing a significant role in neurological diseases, including subarachnoid hemorrhage. In early brain injury following subarachnoid hemorrhage, microglial activation and neuroinflammation have been implicated in the development of disease complications and recovery. To understand the disease processes following subarachnoid hemorrhage, it is important to focus on the modulators of microglial activation and the pro-inflammatory/anti-inflammatory cytokines and chemokines. In this review, we summarize research on the modulators of microglia-mediated inflammation in subarachnoid hemorrhage, including transcriptome changes and the neuroinflammatory signaling pathways. We also describe the latest developments in single-cell transcriptomics for microglia and summarize advances that have been made in the transcriptome-based classification of microglia and the implications for microglial activation and neuroinflammation.
Collapse
Affiliation(s)
- Junfan Chen
- Division of Neurosurgery, Department of Surgery, The Chinese University of Hong Kong, Hong Kong Special Administrative Region, China
| | - Zhiyuan Vera Zheng
- Division of Neurosurgery, Department of Surgery, The Chinese University of Hong Kong, Hong Kong Special Administrative Region; Department of Neurosurgery, Hainan Branch of Chinese People's Liberation Army General Hospital, Sanya, Hainan Province, China
| | - Gang Lu
- CUHK-SDU Joint Laboratory on Reproductive Genetics, School of Biomedical Sciences, The Chinese University of Hong Kong; Bioinformatics Unit, SDIVF R&D Centre, Hong Kong Science and Technology Parks, Hong Kong Special Administrative Region, China
| | - Wai Yee Chan
- CUHK-SDU Joint Laboratory on Reproductive Genetics, School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong Special Administrative Region, China
| | - Yisen Zhang
- Department of Interventional Neuroradiology, Beijing Neurosurgical Institute, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - George Kwok Chu Wong
- Division of Neurosurgery, Department of Surgery, The Chinese University of Hong Kong, Hong Kong Special Administrative Region, China
| |
Collapse
|
13
|
RNA Sequencing Data from Human Intracranial Aneurysm Tissue Reveals a Complex Inflammatory Environment Associated with Rupture. Mol Diagn Ther 2021; 25:775-790. [PMID: 34403136 DOI: 10.1007/s40291-021-00552-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/27/2021] [Indexed: 10/20/2022]
Abstract
BACKGROUND Intracranial aneurysm (IA) rupture leads to deadly subarachnoid hemorrhages. However, the mechanisms leading to rupture remain poorly understood. Altered gene expression within IA tissue is linked to the pathobiology of aneurysm development and progression. Here, we analyzed expression patterns of control tissue samples and compared them to those of unruptured and ruptured IA tissue samples using data from the Gene Expression Omnibus (GEO). METHODS FASTQ files for 21 ruptured IAs, 21 unruptured IAs, and 16 control tissue samples were accessed from the GEO database. DESeq2 was used for differential expression analysis in three comparisons: unruptured IA versus control, ruptured IA versus control, and ruptured versus unruptured IA. Genes that were differentially expressed in multiple comparisons were evaluated to find those progressively increasing/decreasing from control to unruptured to ruptured. Significance was tested by either analysis of variance/Gabriel or Brown-Forsythe/Games Howell (p < 0.05 was considered significant). We used additional RNA sequencing and proteomics datasets to evaluate if our differentially expressed genes (DEGs) were present in other studies. Bioinformatics analyses were performed with g:Profiler and Ingenuity Pathway Analysis. RESULTS In total, we identified 1768 DEGs, of which 318 were found in multiple comparisons. Unruptured versus control reflected vascular remodeling processes, while ruptured versus control reflected inflammatory responses and cell activation/signaling. When comparing ruptured to unruptured IAs, we found massive activation of inflammation, inflammatory responses, and leukocyte responses. Of the 318 genes in multiple comparisons, 127 were found to be significant in the multi-cohort correlation analysis. Those that progressively increased (70 genes) were associated with immune system processes, while those that progressively decreased (38 genes) did not return any gene ontology terms. Many of our DEGs were also found in the other IA tissue sequencing studies. CONCLUSIONS We found unruptured IAs relate more to remodeling processes, while ruptured IAs reflect more inflammatory and immune responses.
Collapse
|
14
|
Poppenberg KE, Zebraski HR, Avasthi N, Waqas M, Siddiqui AH, Jarvis JN, Tutino VM. Epigenetic landscapes of intracranial aneurysm risk haplotypes implicate enhancer function of endothelial cells and fibroblasts in dysregulated gene expression. BMC Med Genomics 2021; 14:162. [PMID: 34134708 PMCID: PMC8210394 DOI: 10.1186/s12920-021-01007-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Accepted: 06/02/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Genome-wide association studies have identified many single nucleotide polymorphisms (SNPs) associated with increased risk for intracranial aneurysm (IA). However, how such variants affect gene expression within IA is poorly understood. We used publicly-available ChIP-Seq data to study chromatin landscapes surrounding risk loci to determine whether IA-associated SNPs affect functional elements that regulate gene expression in cell types comprising IA tissue. METHODS We mapped 16 significant IA-associated SNPs to linkage disequilibrium (LD) blocks within human genome. Using ChIP-Seq data, we examined these regions for presence of H3K4me1, H3K27ac, and H3K9ac histone marks (typically associated with latent/active enhancers). This analysis was conducted in several cell types that are present in IA tissue (endothelial cells, smooth muscle cells, fibroblasts, macrophages, monocytes, neutrophils, T cells, B cells, NK cells). In cell types with significant histone enrichment, we used HiC data to investigate topologically associated domains (TADs) encompassing the LD blocks to identify genes that may be affected by IA-associated variants. Bioinformatics were performed to determine the biological significance of these genes. Genes within HiC-defined TADs were also compared to differentially expressed genes from RNA-seq/microarray studies of IA tissues. RESULTS We found that endothelial cells and fibroblasts, rather than smooth muscle or immune cells, have significant enrichment for enhancer marks on IA risk haplotypes (p < 0.05). Bioinformatics demonstrated that genes within TADs subsuming these regions are associated with structural extracellular matrix components and enzymatic activity. The majority of histone marked TADs (83% fibroblasts [IMR90], 77% HUVEC) encompassed at least one differentially expressed gene from IA tissue studies. CONCLUSIONS These findings provide evidence that genetic variants associated with IA risk act on endothelial cells and fibroblasts. There is strong circumstantial evidence that this may be mediated through altered enhancer function, as genes in TADs encompassing enhancer marks have also been shown to be differentially expressed in IA tissue. These genes are largely related to organization and regulation of the extracellular matrix. This study builds upon our previous (Poppenberg et al., BMC Med Genomics, 2019) by including a more diverse set of data from additional cell types and by identifying potential affected genes (i.e. those in TADs).
Collapse
Affiliation(s)
- Kerry E Poppenberg
- Canon Stroke and Vascular Research Center, University at Buffalo, Clinical and Translational Research Center, 875 Ellicott Street, Buffalo, NY, 14214, USA
- Department of Neurosurgery, University at Buffalo, Buffalo, NY, USA
| | - Haley R Zebraski
- Canon Stroke and Vascular Research Center, University at Buffalo, Clinical and Translational Research Center, 875 Ellicott Street, Buffalo, NY, 14214, USA
- Department of Biomedical Engineering, University at Buffalo, Buffalo, NY, USA
| | - Naval Avasthi
- Canon Stroke and Vascular Research Center, University at Buffalo, Clinical and Translational Research Center, 875 Ellicott Street, Buffalo, NY, 14214, USA
- Department of Biomedical Engineering, University at Buffalo, Buffalo, NY, USA
| | - Muhammad Waqas
- Canon Stroke and Vascular Research Center, University at Buffalo, Clinical and Translational Research Center, 875 Ellicott Street, Buffalo, NY, 14214, USA
- Department of Neurosurgery, University at Buffalo, Buffalo, NY, USA
| | - Adnan H Siddiqui
- Canon Stroke and Vascular Research Center, University at Buffalo, Clinical and Translational Research Center, 875 Ellicott Street, Buffalo, NY, 14214, USA
- Department of Neurosurgery, University at Buffalo, Buffalo, NY, USA
| | - James N Jarvis
- Department of Pediatrics, University at Buffalo, Buffalo, NY, USA
| | - Vincent M Tutino
- Canon Stroke and Vascular Research Center, University at Buffalo, Clinical and Translational Research Center, 875 Ellicott Street, Buffalo, NY, 14214, USA.
- Department of Neurosurgery, University at Buffalo, Buffalo, NY, USA.
- Department of Biomedical Engineering, University at Buffalo, Buffalo, NY, USA.
- Department of Pathology and Anatomical Sciences, University at Buffalo, Buffalo, NY, USA.
- Department of Mechanical and Aerospace Engineering, University at Buffalo, Buffalo, NY, USA.
| |
Collapse
|
15
|
Tutino VM, Zebraski HR, Rajabzadeh-Oghaz H, Waqas M, Jarvis JN, Bach K, Mokin M, Snyder KV, Siddiqui AH, Poppenberg KE. Identification of Circulating Gene Expression Signatures of Intracranial Aneurysm in Peripheral Blood Mononuclear Cells. Diagnostics (Basel) 2021; 11:1092. [PMID: 34203780 PMCID: PMC8232768 DOI: 10.3390/diagnostics11061092] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 06/04/2021] [Accepted: 06/09/2021] [Indexed: 12/18/2022] Open
Abstract
Peripheral blood mononuclear cells (PBMCs) play an important role in the inflammation that accompanies intracranial aneurysm (IA) pathophysiology. We hypothesized that PBMCs have different transcriptional profiles in patients harboring IAs as compared to IA-free controls, which could be the basis for potential blood-based biomarkers for the disease. To test this, we isolated PBMC RNA from whole blood of 52 subjects (24 with IA, 28 without) and performed next-generation RNA sequencing to obtain their transcriptomes. In a randomly assigned discovery cohort of n = 39 patients, we performed differential expression analysis to define an IA-associated signature of 54 genes (q < 0.05 and an absolute fold-change ≥ 1.3). In the withheld validation dataset, these genes could delineate patients with IAs from controls, as the majority of them still had the same direction of expression difference. Bioinformatics analyses by gene ontology enrichment analysis and Ingenuity Pathway Analysis (IPA) demonstrated enrichment of structural regulation processes, intracellular signaling function, regulation of ion transport, and cell adhesion. IPA analysis showed that these processes were likely coordinated through NF-kB, cytokine signaling, growth factors, and TNF activity. Correlation analysis with aneurysm size and risk assessment metrics showed that 4/54 genes were associated with rupture risk. These findings highlight the potential to develop predictive biomarkers from PBMCs to identify patients harboring IAs.
Collapse
Affiliation(s)
- Vincent M. Tutino
- Canon Stroke and Vascular Research Center, University at Buffalo, Buffalo, NY 14203, USA; (H.R.-O.); (M.W.); (K.V.S.); (A.H.S.); (K.E.P.)
- Department of Pathology and Anatomical Sciences, University at Buffalo, Buffalo, NY 14203, USA
- Department of Neurosurgery, University at Buffalo, Buffalo, NY 14203, USA
- Department of Mechanical and Aerospace Engineering, University at Buffalo, Buffalo, NY 14228, USA
| | - Haley R. Zebraski
- Department of Biomedical Engineering, University at Buffalo, Buffalo, NY 14228, USA;
| | - Hamidreza Rajabzadeh-Oghaz
- Canon Stroke and Vascular Research Center, University at Buffalo, Buffalo, NY 14203, USA; (H.R.-O.); (M.W.); (K.V.S.); (A.H.S.); (K.E.P.)
- Department of Neurosurgery, University at Buffalo, Buffalo, NY 14203, USA
| | - Muhammad Waqas
- Canon Stroke and Vascular Research Center, University at Buffalo, Buffalo, NY 14203, USA; (H.R.-O.); (M.W.); (K.V.S.); (A.H.S.); (K.E.P.)
- Department of Neurosurgery, University at Buffalo, Buffalo, NY 14203, USA
| | - James N. Jarvis
- Department of Pediatrics, University at Buffalo, Buffalo, NY 14203, USA;
| | - Konrad Bach
- Department of Neurosurgery and Brain Repair, University of South Florida, Tampa, FL 33620, USA; (K.B.); (M.M.)
| | - Maxim Mokin
- Department of Neurosurgery and Brain Repair, University of South Florida, Tampa, FL 33620, USA; (K.B.); (M.M.)
| | - Kenneth V. Snyder
- Canon Stroke and Vascular Research Center, University at Buffalo, Buffalo, NY 14203, USA; (H.R.-O.); (M.W.); (K.V.S.); (A.H.S.); (K.E.P.)
- Department of Neurosurgery, University at Buffalo, Buffalo, NY 14203, USA
| | - Adnan H. Siddiqui
- Canon Stroke and Vascular Research Center, University at Buffalo, Buffalo, NY 14203, USA; (H.R.-O.); (M.W.); (K.V.S.); (A.H.S.); (K.E.P.)
- Department of Neurosurgery, University at Buffalo, Buffalo, NY 14203, USA
| | - Kerry E. Poppenberg
- Canon Stroke and Vascular Research Center, University at Buffalo, Buffalo, NY 14203, USA; (H.R.-O.); (M.W.); (K.V.S.); (A.H.S.); (K.E.P.)
- Department of Neurosurgery, University at Buffalo, Buffalo, NY 14203, USA
| |
Collapse
|
16
|
Niu S, Zhao Y, Ma B, Zhang R, Rong Z, Ni L, Di X, Liu C. Construction and Validation of a New Model for the Prediction of Rupture in Patients with Intracranial Aneurysms. World Neurosurg 2021; 149:e437-e446. [PMID: 33567366 DOI: 10.1016/j.wneu.2021.02.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 01/31/2021] [Accepted: 02/01/2021] [Indexed: 11/25/2022]
Abstract
BACKGROUND Despite progress in the detection of biological molecules that contribute to intracranial aneurysm (IA) development, many pathophysiological mechanisms remain unclear, particularly with regard to predicting IA rupture. In this study, we aimed to identify hub genes and construct a new model to predict IA rupture. METHODS Four datasets (62 ruptured IAs, 16 unruptured IAs, and 31 normal controls) were downloaded from the Gene Expression Omnibus. Differentially expressed genes (DEGs) were identified between the IAs and normal controls. All overlapping genes were analyzed using weighted gene co-expression network analysis. Functional enrichment analyses were performed using key modules. We then intersected the key module genes with DEGs. Protein-protein interaction networks were assessed to identify key hub genes. Least absolute shrinkage and selection operator logistic regression analysis was performed to construct a prediction model. A receiver operating characteristic curve was constructed to evaluate the reliability of the scoring system. RESULTS After intersection and normalization, 433 DEGs were identified and 15,388 genes were selected for weighted gene co-expression network analysis. The black module with 1145 genes exhibited the highest correlation with IA rupture. Many potential mechanisms are involved, such as the inflammatory response, innate immune response, extracellular exosome, and extracellular space. Thirty hub genes were selected from the protein-protein interaction, and 4 independent risk genes, TNFAIP6, NCF2, OSM, and IRAK3, were identified in the least absolute shrinkage and selection operator logistic regression model. CONCLUSIONS Our prediction model not only serves as a useful tool for assessing the risk of IA rupture, but the key genes identified herein could also serve as biomarkers and therapeutic targets.
Collapse
Affiliation(s)
- Shuai Niu
- Department of Vascular Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yue Zhao
- Department of Thoracic Surgery, Changhai Hospital, Second Military Medical University, Shanghai, China; Department of Thoracic Surgery, Shanghai Pulmonary Hospital, Tongji University, Shanghai, China
| | - Baitao Ma
- Department of Vascular Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Rui Zhang
- Department of Vascular Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Zhihua Rong
- Department of Vascular Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Leng Ni
- Department of Vascular Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xiao Di
- Department of Vascular Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Changwei Liu
- Department of Vascular Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
| |
Collapse
|
17
|
Li X, Zhao H, Liu J, Tong J. Long Non-coding RNA MIAT Knockdown Prevents the Formation of Intracranial Aneurysm by Downregulating ENC1 via MYC. Front Physiol 2021; 11:572605. [PMID: 33551826 PMCID: PMC7860976 DOI: 10.3389/fphys.2020.572605] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Accepted: 11/18/2020] [Indexed: 12/19/2022] Open
Abstract
Intracranial aneurysm (IA) is vascular enlargement occurred on the wall of cerebral vessels and can result in fatal subarachnoid hemorrhage when ruptured. Recent studies have supported the important role of long non-coding RNAs (lncRNAs) in IA treatment. This study identified functional significance of lncRNA myocardial infarction associated transcript (MIAT) in IA. Myocardial infarction associated transcript and ectodermal-neural cortex 1 (ENC1) expression was detected by reverse transcription quantitative polymerase chain reaction. Cell counting kit 8 assay flow cytometry were conducted to detect cell viability and apoptosis of endothelial cells in IA. The interaction among MIAT, ENC1, and myelocytomatosis oncogene (MYC) was analyzed by RNA pull down, RNA immunoprecipitation assay, chromatin immunoprecipitation assay, and dual luciferase reporter assay. Intracranial aneurysm was induced by ligating the left carotid artery and the bilateral posterior branch of the renal artery in rats for studying the role of MIAT and ENC1 in vivo. Myocardial infarction associated transcript and ENC1 were upregulated in IA. Endothelial cells in IA presented a decreased cell viability and an increased apoptotic rate. Myocardial infarction associated transcript could regulate the expression of ENC1, and MYC could bind to the promoter region of ENC1. High expression of MIAT increased endothelial cell apoptosis and vascular endothelial injury, while MIAT knockdown was identified to reduce the risk of IA both in vitro and in vivo through regulating ENC1. To sum up, MIAT silencing is preventive for IA occurrence by decreasing the MYC-mediated ENC1 expression, which represents a novel therapeutic target for IA.
Collapse
Affiliation(s)
- Xinguo Li
- Department of Neurosurgery, The First Hospital of China Medical University, Shenyang, China
| | - Hang Zhao
- Department of Gastroenterology, The First Hospital of China Medical University, Shenyang, China
| | - Jihui Liu
- Department of Neurosurgery, The First Hospital of China Medical University, Shenyang, China
| | - Jing Tong
- Department of Gastroenterology, The First Hospital of China Medical University, Shenyang, China
| |
Collapse
|
18
|
Kushamae M, Miyata H, Shirai M, Shimizu K, Oka M, Koseki H, Abekura Y, Ono I, Nozaki K, Mizutani T, Aoki T. Involvement of neutrophils in machineries underlying the rupture of intracranial aneurysms in rats. Sci Rep 2020; 10:20004. [PMID: 33203959 PMCID: PMC7672058 DOI: 10.1038/s41598-020-74594-9] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Accepted: 10/05/2020] [Indexed: 12/20/2022] Open
Abstract
Subarachnoid hemorrhage due to rupture of an intracranial aneurysm has a quite poor prognosis after the onset of symptoms, despite the modern technical advances. Thus, the mechanisms underlying the rupture of lesions should be clarified. To this end, we obtained gene expression profile data and identified the neutrophil-related enriched terms in rupture-prone lesions using Gene Ontology analysis. Next, to validate the role of neutrophils in the rupture of lesions, granulocyte-colony stimulating factor (G-CSF) was administered to a rat model, in which more than half of induced lesions spontaneously ruptured, leading to subarachnoid hemorrhage. As a result, G-CSF treatment not only increased the number of infiltrating neutrophils, but also significantly facilitated the rupture of lesions. To clarify the mechanisms of how neutrophils facilitate this rupture, we used HL-60 cell line and found an enhanced collagenolytic activity, corresponding to matrix metalloproteinase 9 (MMP9), upon inflammatory stimuli. The immunohistochemical analyses revealed the accumulation of neutrophils around the site of rupture and the production of MMP9 from these cells in situ. Consistently, the collagenolytic activity of MMP9 could be detected in the lysate of ruptured lesions. These results suggest the crucial role of neutrophils to the rupture of intracranial aneurysms; implying neutrophils as a therapeutic or diagnostic target candidate.
Collapse
Affiliation(s)
- Mika Kushamae
- Department of Molecular Pharmacology, Research Institute, National Cerebral and Cardiovascular Center, 6-1 Kishibeshinmachi, Suita City, Osaka, 564-8565, Japan.,Core Research for Evolutional Science and Technology (CREST) from Japan Agency for Medical Research and Development (AMED), National Cerebral and Cardiovascular Center, 6-1 Kishibeshinmachi, Suita City, Osaka, Japan.,Department of Neurosurgery, Showa University School of Medicine, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo, Japan
| | - Haruka Miyata
- Department of Molecular Pharmacology, Research Institute, National Cerebral and Cardiovascular Center, 6-1 Kishibeshinmachi, Suita City, Osaka, 564-8565, Japan.,Core Research for Evolutional Science and Technology (CREST) from Japan Agency for Medical Research and Development (AMED), National Cerebral and Cardiovascular Center, 6-1 Kishibeshinmachi, Suita City, Osaka, Japan.,Department of Neurosurgery, Shiga University of Medical Science, Seta Tsukinowa-Cho, Otsu City, Shiga, Japan
| | - Manabu Shirai
- Omics Research Center, National Cerebral and Cardiovascular Center, 6-1 Kishibeshinmachi, Suita City, Osaka, Japan
| | - Kampei Shimizu
- Department of Molecular Pharmacology, Research Institute, National Cerebral and Cardiovascular Center, 6-1 Kishibeshinmachi, Suita City, Osaka, 564-8565, Japan.,Core Research for Evolutional Science and Technology (CREST) from Japan Agency for Medical Research and Development (AMED), National Cerebral and Cardiovascular Center, 6-1 Kishibeshinmachi, Suita City, Osaka, Japan.,Department of Neurosurgery, Kyoto University Graduate School of Medicine, 54 Kawahara-cho Shogoin, Sakyo-ku, Kyoto, Japan
| | - Mieko Oka
- Department of Molecular Pharmacology, Research Institute, National Cerebral and Cardiovascular Center, 6-1 Kishibeshinmachi, Suita City, Osaka, 564-8565, Japan.,Core Research for Evolutional Science and Technology (CREST) from Japan Agency for Medical Research and Development (AMED), National Cerebral and Cardiovascular Center, 6-1 Kishibeshinmachi, Suita City, Osaka, Japan.,Department of Neurosurgery, Tokyo Women's Medical University, 8-1 Kawata-cho, Shinjyuku-ku, Tokyo, Japan
| | - Hirokazu Koseki
- Department of Molecular Pharmacology, Research Institute, National Cerebral and Cardiovascular Center, 6-1 Kishibeshinmachi, Suita City, Osaka, 564-8565, Japan.,Core Research for Evolutional Science and Technology (CREST) from Japan Agency for Medical Research and Development (AMED), National Cerebral and Cardiovascular Center, 6-1 Kishibeshinmachi, Suita City, Osaka, Japan.,Department of Neurosurgery, The Jikei University School of Medicine, 3-25-8 Nishishimbashi, Minato-ku, Tokyo, Japan
| | - Yu Abekura
- Department of Molecular Pharmacology, Research Institute, National Cerebral and Cardiovascular Center, 6-1 Kishibeshinmachi, Suita City, Osaka, 564-8565, Japan.,Core Research for Evolutional Science and Technology (CREST) from Japan Agency for Medical Research and Development (AMED), National Cerebral and Cardiovascular Center, 6-1 Kishibeshinmachi, Suita City, Osaka, Japan.,Department of Neurosurgery, Kyoto University Graduate School of Medicine, 54 Kawahara-cho Shogoin, Sakyo-ku, Kyoto, Japan
| | - Isao Ono
- Department of Molecular Pharmacology, Research Institute, National Cerebral and Cardiovascular Center, 6-1 Kishibeshinmachi, Suita City, Osaka, 564-8565, Japan.,Core Research for Evolutional Science and Technology (CREST) from Japan Agency for Medical Research and Development (AMED), National Cerebral and Cardiovascular Center, 6-1 Kishibeshinmachi, Suita City, Osaka, Japan.,Department of Neurosurgery, Kyoto University Graduate School of Medicine, 54 Kawahara-cho Shogoin, Sakyo-ku, Kyoto, Japan
| | - Kazuhiko Nozaki
- Department of Neurosurgery, Shiga University of Medical Science, Seta Tsukinowa-Cho, Otsu City, Shiga, Japan
| | - Tohru Mizutani
- Department of Neurosurgery, Showa University School of Medicine, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo, Japan
| | - Tomohiro Aoki
- Department of Molecular Pharmacology, Research Institute, National Cerebral and Cardiovascular Center, 6-1 Kishibeshinmachi, Suita City, Osaka, 564-8565, Japan. .,Core Research for Evolutional Science and Technology (CREST) from Japan Agency for Medical Research and Development (AMED), National Cerebral and Cardiovascular Center, 6-1 Kishibeshinmachi, Suita City, Osaka, Japan.
| |
Collapse
|
19
|
Abekura Y, Ono I, Kawashima A, Takizawa K, Koseki H, Miyata H, Shimizu K, Oka M, Kushamae M, Miyamoto S, Kataoka H, Ishii A, Aoki T. Eicosapentaenoic acid prevents the progression of intracranial aneurysms in rats. J Neuroinflammation 2020; 17:129. [PMID: 32331514 PMCID: PMC7181479 DOI: 10.1186/s12974-020-01802-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Accepted: 04/02/2020] [Indexed: 12/12/2022] Open
Abstract
Background As subarachnoid hemorrhage due to rupture of an intracranial aneurysm (IA) has quite a poor outcome despite of an intensive medical care, development of a novel treatment targeting unruptured IAs based on the correct understanding of pathogenesis is mandatory for social health. Methods Using previously obtained gene expression profile data from surgically resected unruptured human IA lesions, we selected G-protein coupled receptor 120 (GPR120) as a gene whose expression is significantly higher in lesions than that in control arterial walls. To corroborate a contribution of GPR120 signaling to the pathophysiology, we used an animal model of IAs and examine the effect of a GPR120 agonist on the progression of the disease. IA lesion was induced in rats through an increase of hemodynamic stress achieved by a one-sided carotid ligation and induced hypervolemia. Eicosapentaenoic acid (EPA) was used as an agonist for GPR120 in this study and its effect on the size of IAs, the thinning of media, and infiltration of macrophages in lesions were examined. Result EPA administered significantly suppressed the size of IAs and the degenerative changes in the media in rats. EPA treatment also inhibited infiltration of macrophages, a hallmark of inflammatory responses in lesions. In in vitro experiments using RAW264.7 cells, pre-treatment of EPA partially suppressed lipopolysaccharide-induced activation of nuclear factor-kappa B and also the transcriptional induction of monocyte chemoattractant protein 1 (MCP-1), a major chemoattractant for macrophages to accumulate in lesions. As a selective agonist of GPR120, TUG-891, could reproduce the effect of EPA in RAW264.7 cells, EPA presumably acted on this receptor to suppress inflammatory responses. Consistently, EPA remarkably suppressed MCP-1 expression in lesions, suggesting the in vivo relevance of in vitro studies. Conclusions These results combined together suggest the potential of the medical therapy targeting GPR120 or using EPA to prevent the progression of IAs.
Collapse
Affiliation(s)
- Yu Abekura
- Department of Molecular Pharmacology, Research Institute, National Cerebral and Cardiovascular Center, Suita, Osaka, 564-8565, Japan.,Department of Neurosurgery, Kyoto University Graduate School of Medicine, Kyoto, Japan.,Core Research for Evolutional Science and Technology (CREST) from Japan Agency for Medical Research and Development (AMED), National Cerebral and Cardiovascular Center, Osaka, Japan
| | - Isao Ono
- Department of Molecular Pharmacology, Research Institute, National Cerebral and Cardiovascular Center, Suita, Osaka, 564-8565, Japan.,Department of Neurosurgery, Kyoto University Graduate School of Medicine, Kyoto, Japan.,Core Research for Evolutional Science and Technology (CREST) from Japan Agency for Medical Research and Development (AMED), National Cerebral and Cardiovascular Center, Osaka, Japan
| | - Akitsugu Kawashima
- Department of Neurosurgery, Tokyo Women's Medical University Yachiyo Medical Center, Chiba, Japan
| | - Katsumi Takizawa
- Department of Neurosurgery, Asahikawa Red Cross Hospital, Hokkaido, Japan
| | - Hirokazu Koseki
- Department of Molecular Pharmacology, Research Institute, National Cerebral and Cardiovascular Center, Suita, Osaka, 564-8565, Japan.,Core Research for Evolutional Science and Technology (CREST) from Japan Agency for Medical Research and Development (AMED), National Cerebral and Cardiovascular Center, Osaka, Japan.,Department of Neurosurgery, The JIKEI University Hospital, Tokyo, Japan
| | - Haruka Miyata
- Department of Molecular Pharmacology, Research Institute, National Cerebral and Cardiovascular Center, Suita, Osaka, 564-8565, Japan.,Core Research for Evolutional Science and Technology (CREST) from Japan Agency for Medical Research and Development (AMED), National Cerebral and Cardiovascular Center, Osaka, Japan.,Department of Neurosurgery, Shiga University of Medical Science, Shiga, Japan
| | - Kampei Shimizu
- Department of Molecular Pharmacology, Research Institute, National Cerebral and Cardiovascular Center, Suita, Osaka, 564-8565, Japan.,Department of Neurosurgery, Kyoto University Graduate School of Medicine, Kyoto, Japan.,Core Research for Evolutional Science and Technology (CREST) from Japan Agency for Medical Research and Development (AMED), National Cerebral and Cardiovascular Center, Osaka, Japan
| | - Mieko Oka
- Department of Molecular Pharmacology, Research Institute, National Cerebral and Cardiovascular Center, Suita, Osaka, 564-8565, Japan.,Core Research for Evolutional Science and Technology (CREST) from Japan Agency for Medical Research and Development (AMED), National Cerebral and Cardiovascular Center, Osaka, Japan.,Department of Neurosurgery, Tokyo Women's Medical University, Tokyo, Japan
| | - Mika Kushamae
- Department of Molecular Pharmacology, Research Institute, National Cerebral and Cardiovascular Center, Suita, Osaka, 564-8565, Japan.,Core Research for Evolutional Science and Technology (CREST) from Japan Agency for Medical Research and Development (AMED), National Cerebral and Cardiovascular Center, Osaka, Japan.,Department of Neurosurgery, Showa University, Tokyo, Japan
| | - Susumu Miyamoto
- Department of Neurosurgery, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Hiroharu Kataoka
- Department of Neurosurgery, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Akira Ishii
- Department of Neurosurgery, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Tomohiro Aoki
- Department of Molecular Pharmacology, Research Institute, National Cerebral and Cardiovascular Center, Suita, Osaka, 564-8565, Japan. .,Core Research for Evolutional Science and Technology (CREST) from Japan Agency for Medical Research and Development (AMED), National Cerebral and Cardiovascular Center, Osaka, Japan.
| |
Collapse
|