1
|
Ghosh A, Jaaback K, Boulton A, Wong-Brown M, Raymond S, Dutta P, Bowden NA, Ghosh A. Fusobacterium nucleatum: An Overview of Evidence, Demi-Decadal Trends, and Its Role in Adverse Pregnancy Outcomes and Various Gynecological Diseases, including Cancers. Cells 2024; 13:717. [PMID: 38667331 PMCID: PMC11049087 DOI: 10.3390/cells13080717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 04/14/2024] [Accepted: 04/15/2024] [Indexed: 04/28/2024] Open
Abstract
Gynecological and obstetric infectious diseases are crucial to women's health. There is growing evidence that links the presence of Fusobacterium nucleatum (F. nucleatum), an anaerobic oral commensal and potential periodontal pathogen, to the development and progression of various human diseases, including cancers. While the role of this opportunistic oral pathogen has been extensively studied in colorectal cancer in recent years, research on its epidemiological evidence and mechanistic link to gynecological diseases (GDs) is still ongoing. Thus, the present review, which is the first of its kind, aims to undertake a comprehensive and critical reappraisal of F. nucleatum, including the genetics and mechanistic role in promoting adverse pregnancy outcomes (APOs) and various GDs, including cancers. Additionally, this review discusses new conceptual advances that link the immunomodulatory role of F. nucleatum to the development and progression of breast, ovarian, endometrial, and cervical carcinomas through the activation of various direct and indirect signaling pathways. However, further studies are needed to explore and elucidate the highly dynamic process of host-F. nucleatum interactions and discover new pathways, which will pave the way for the development of better preventive and therapeutic strategies against this pathobiont.
Collapse
Affiliation(s)
- Arunita Ghosh
- School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan, NSW 2308, Australia;
- Drug Repurposing and Medicines Research Program, Hunter Medical Research Institute, New Lambton Heights, NSW 2305, Australia;
| | - Ken Jaaback
- Hunter New England Centre for Gynecological Cancer, John Hunter Hospital, Newcastle, NSW 2305, Australia;
- School of Medicine and Public Health, University of Newcastle, Callaghan, NSW 2308, Australia
| | - Angela Boulton
- Newcastle Private Hospital, Newcastle, NSW 2305, Australia; (A.B.); (S.R.)
| | - Michelle Wong-Brown
- Drug Repurposing and Medicines Research Program, Hunter Medical Research Institute, New Lambton Heights, NSW 2305, Australia;
- School of Medicine and Public Health, University of Newcastle, Callaghan, NSW 2308, Australia
| | - Steve Raymond
- Newcastle Private Hospital, Newcastle, NSW 2305, Australia; (A.B.); (S.R.)
| | - Partha Dutta
- Department of Medicine, Division of Cardiology, University of Pittsburgh, Pittsburgh, PA 15261, USA;
- Department of Immunology, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Nikola A. Bowden
- Drug Repurposing and Medicines Research Program, Hunter Medical Research Institute, New Lambton Heights, NSW 2305, Australia;
- School of Medicine and Public Health, University of Newcastle, Callaghan, NSW 2308, Australia
| | - Arnab Ghosh
- School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan, NSW 2308, Australia;
- Drug Repurposing and Medicines Research Program, Hunter Medical Research Institute, New Lambton Heights, NSW 2305, Australia;
| |
Collapse
|
2
|
Miller DJ. Sperm in the Mammalian Female Reproductive Tract: Surfing Through the Tract to Try to Beat the Odds. Annu Rev Anim Biosci 2024; 12:301-319. [PMID: 37906840 PMCID: PMC11149062 DOI: 10.1146/annurev-animal-021022-040629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2023]
Abstract
Mammalian sperm are deposited in the vagina or the cervix/uterus at coitus or at artificial insemination, and the fertilizing sperm move through the female reproductive tract to the ampulla of the oviduct, the site of fertilization. But the destination of most sperm is not the oviduct. Most sperm are carried by retrograde fluid flow to the vagina, are phagocytosed, and/or do not pass barriers on the pathway to the oviduct. The sperm that reach the site of fertilization are the exceptions and winners of one of the most stringent selection processes in nature. This review discusses the challenges sperm encounter and how the few sperm that reach the site of fertilization overcome them. The sperm that reach the goal must navigate viscoelastic fluid, swim vigorously and cooperatively along the walls of the female tract, avoid the innate immune system, and respond to potential cues to direct their movement.
Collapse
Affiliation(s)
- David J Miller
- Department of Animal Sciences and Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA;
| |
Collapse
|
3
|
Scully D, Reese S, Kölle S. Cystic ovary disease (COD) alters structure and function of the bovine oviduct. Mol Reprod Dev 2024; 91:e23725. [PMID: 38282319 DOI: 10.1002/mrd.23725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 09/26/2023] [Accepted: 12/14/2023] [Indexed: 01/30/2024]
Abstract
Cystic ovary disease (COD) is a common cause of subfertility in dairy cattle. Therefore, the aim of this study was to provide novel concepts for cyst classification and to investigate the effects of COD on tubal microarchitecture, oviductal metabolic function, and the formation of the sperm reservoir. Bovine Fallopian tubes affected by follicular cysts, follicular cysts with luteinization and luteal cysts were investigated by a variety of microscopic and histological techniques and compared to control cows in metestrus and diestrus. We defined three types of cysts involved in COD, each of which had a characteristic wall thickness, inner wall appearance and cellular pattern within the cyst aspirate. Regarding the Fallopian tube, each cyst type was associated with a characteristic morphology, specifically the microarchitecture of the folds in ampulla, epithelial cell ratios, and ciliated/secretory cell size and form. Furthermore, each cyst type showed different patterns of tubal glycoprotein and acidic mucopolysaccharide synthesis, which was highly variable as compared to the controls. Our studies are the first to characterize the effects of COD on the Fallopian tube, which promotes the establishment of novel, cyst-specific therapeutic concepts in cattle and helps gain a holistic view of the causes of subfertility in cows with COD.
Collapse
Affiliation(s)
- Deirdre Scully
- Department of Biomedical Sciences, School of Medicine, Health Sciences Centre, University College Dublin (UCD), Dublin, Ireland
| | - Sven Reese
- Institute of Anatomy, Histology and Embryology, School of Veterinary Medicine, LMU Munich, Munich, Munich, Germany
| | - Sabine Kölle
- Department of Biomedical Sciences, School of Medicine, Health Sciences Centre, University College Dublin (UCD), Dublin, Ireland
| |
Collapse
|
4
|
Neubrand L, Pothmann H, Besenfelder U, Havlicek V, Gabler C, Dolezal M, Aurich C, Drillich M, Wagener K. In vivo dynamics of pro-inflammatory factors, mucins, and polymorph nuclear neutrophils in the bovine oviduct during the follicular and luteal phase. Sci Rep 2023; 13:22353. [PMID: 38102308 PMCID: PMC10724147 DOI: 10.1038/s41598-023-49151-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 12/05/2023] [Indexed: 12/17/2023] Open
Abstract
Dynamic functional changes in the oviductal microenvironment are the prerequisite for the establishment of pregnancy. The objective of this study was to gain the first insights into oestrous cycle-dependent dynamics of polymorph nuclear neutrophils (PMN) and the mRNA abundance of selected genes and their correlations in the oviduct of living cows. Mini-cytobrush samples were taken from the oviducts of healthy heifers (n = 6) and cows (n = 7) during the follicular (FOL) and luteal phase (LUT) by transvaginal endoscopy. Total RNA was isolated from the samples and subjected to reverse transcription-quantitative PCR for selected pro-inflammatory factors, glycoproteins, and a metabolic marker. The percentage of PMN was determined by cytological examination. The mean PMN percentage was 2.8-fold greater during LUT than FOL. During LUT, significantly greater mRNA abundance of the pro-inflammatory factors IL1B, CXCL1, CXCL3, and CXCL8 was observed. The OVGP1 mRNA abundance was twice as high during FOL than in LUT. Pearson correlation, principal component analysis and heatmap analyses indicated characteristic functional patterns with strong correlations among investigated factors. Using this novel approach, we illustrate complex physiological dynamics and interactions of the mRNA expression of pro-inflammatory factors, mucins, OVGP1, and PMN in the oviduct during the oestrous cycle.
Collapse
Affiliation(s)
- L Neubrand
- Clinical Unit for Herd Health Management in Ruminants, University Clinic for Ruminants, Department for Farm Animals and Veterinary Public Health, University of Veterinary Medicine Vienna, Vienna, Austria
| | - H Pothmann
- Clinical Unit for Herd Health Management in Ruminants, University Clinic for Ruminants, Department for Farm Animals and Veterinary Public Health, University of Veterinary Medicine Vienna, Vienna, Austria
| | - U Besenfelder
- Reproduction Centre Wieselburg RCW, Institute for Animal Breeding and Genetics, Department for Biomedical Sciences, University of Veterinary Medicine Vienna, Vienna, Austria
- Institute of Biotechnology in Animal Production, Interuniversity Department of Agrobiotechnology (IFA Tulln), University of Natural Resources and Applied Life Sciences Vienna, Tulln, Austria
| | - V Havlicek
- Reproduction Centre Wieselburg RCW, Institute for Animal Breeding and Genetics, Department for Biomedical Sciences, University of Veterinary Medicine Vienna, Vienna, Austria
- Institute of Biotechnology in Animal Production, Interuniversity Department of Agrobiotechnology (IFA Tulln), University of Natural Resources and Applied Life Sciences Vienna, Tulln, Austria
| | - C Gabler
- Institute of Veterinary Biochemistry, Faculty of Veterinary Medicine, Freie Universität Berlin, Berlin, Germany
| | - M Dolezal
- Platform for Bioinformatics and Biostatistics, Department for Biomedical Sciences, University of Veterinary Medicine Vienna, Vienna, Austria
| | - C Aurich
- Centre for Artificial Insemination and Embryo Transfer, Department for Small Animals and Horses, University of Veterinary Medicine Vienna, Vienna, Austria
| | - M Drillich
- Clinical Unit for Herd Health Management in Ruminants, University Clinic for Ruminants, Department for Farm Animals and Veterinary Public Health, University of Veterinary Medicine Vienna, Vienna, Austria
- Unit for Reproduction Medicine and Udder Health, Clinic for Farm Animals, Faculty of Veterinary Medicine, Freie Universität Berlin, Berlin, Germany
| | - K Wagener
- Clinical Unit for Herd Health Management in Ruminants, University Clinic for Ruminants, Department for Farm Animals and Veterinary Public Health, University of Veterinary Medicine Vienna, Vienna, Austria.
| |
Collapse
|
5
|
Andone BA, Handrea-Dragan IM, Botiz I, Boca S. State-of-the-art and future perspectives in infertility diagnosis: Conventional versus nanotechnology-based assays. NANOMEDICINE : NANOTECHNOLOGY, BIOLOGY, AND MEDICINE 2023; 54:102709. [PMID: 37717928 DOI: 10.1016/j.nano.2023.102709] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 08/27/2023] [Accepted: 09/07/2023] [Indexed: 09/19/2023]
Abstract
According to the latest World Health Organization statistics, around 50 to 80 million people worldwide suffer from infertility, amongst which male factors are responsible for around 20 to 30 % of all infertility cases while 50 % were attributed to the female ones. As it is becoming a recurrent health problem worldwide, clinicians require more accurate methods for the improvement of both diagnosis and treatment schemes. By emphasizing the potential use of innovative methods for the rapid identification of the infertility causes, this review presents the news from this dynamic domain and highlights the benefits brought by emerging research fields. A systematic description of the standard techniques used in clinical protocols for diagnosing infertility in both genders is firstly provided, followed by the presentation of more accurate and comprehensive nanotechnology-related analysis methods such as nanoscopic-resolution imaging, biosensing approaches and assays that employ nanomaterials in their design. Consequently, the implementation of nanotechnology related tools in clinical practice, as recently demonstrated in the selection of spermatozoa, the detection of key proteins in the fertilization process or the testing of DNA integrity or the evaluation of oocyte quality, might confer excellent advantages both for improving the assessment of infertility, and for the success of the fertilization process.
Collapse
Affiliation(s)
- Bianca-Astrid Andone
- Interdisciplinary Research Institute in Bio-Nano-Sciences, Babes-Bolyai University, 42 T. Laurian Str., 400271 Cluj-Napoca, Romania; Faculty of Physics, Babes-Bolyai University, 1 M. Kogalniceanu Str., 400084 Cluj-Napoca, Romania
| | - Iuliana M Handrea-Dragan
- Interdisciplinary Research Institute in Bio-Nano-Sciences, Babes-Bolyai University, 42 T. Laurian Str., 400271 Cluj-Napoca, Romania; Faculty of Physics, Babes-Bolyai University, 1 M. Kogalniceanu Str., 400084 Cluj-Napoca, Romania
| | - Ioan Botiz
- Interdisciplinary Research Institute in Bio-Nano-Sciences, Babes-Bolyai University, 42 T. Laurian Str., 400271 Cluj-Napoca, Romania
| | - Sanda Boca
- Interdisciplinary Research Institute in Bio-Nano-Sciences, Babes-Bolyai University, 42 T. Laurian Str., 400271 Cluj-Napoca, Romania; National Institute for Research and Development of Isotopic and Molecular Technologies, 67-103 Donat Str., 400293 Cluj-Napoca, Romania.
| |
Collapse
|
6
|
Lazim N, Elias MH, Sutaji Z, Abdul Karim AK, Abu MA, Ugusman A, Syafruddin SE, Mokhtar MH, Ahmad MF. Expression of HOXA10 Gene in Women with Endometriosis: A Systematic Review. Int J Mol Sci 2023; 24:12869. [PMID: 37629050 PMCID: PMC10454210 DOI: 10.3390/ijms241612869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 07/31/2023] [Accepted: 08/01/2023] [Indexed: 08/27/2023] Open
Abstract
The homeobox A10 (HOXA10) gene is known to be related to endometriosis; however, due to a lack of knowledge/evidence in the pathogenesis of endometriosis, the mechanisms that link HOXA10 to endometriosis still need to be clarified. This review addresses the difference in the expression of the HOXA10 gene in endometriotic women versus non-endometriotic women across populations by country and discusses its influences on women's fertility. An organized search of electronic databases was conducted in Scopus, ScienceDirect, PubMed, and Web of Science. The keywords used were (HOXA10 OR "homeobox A10" OR PL OR HOX1 OR HOX1H OR HOX1.8) AND ("gene expression") AND (endometriosis). The initial search resulted in 623 articles, 10 of which were included in this review. All ten papers included in this study were rated fair in terms of the quality of the studies conducted. The expression of the HOXA10 gene was found to be downregulated in most studies. However, one study provided evidence of the downregulation and upregulation of HOXA10 gene expression due to the localization of endometriotic lesions. Measuring the expression of the HOXA10 gene in women is clinically essential to predicting endometriosis, endometrial receptivity, and the development of pinopodes in the endometrium during the luteal phase.
Collapse
Affiliation(s)
- Nurunnajah Lazim
- Advanced Reproductive Centre (ARC) HCTM UKM, Department of Obstetrics & Gynecology, Faculty of Medicine, National University of Malaysia, Jalan Yaacob Latiff, Bandar Tun Razak, Kuala Lumpur 56000, Malaysia; (N.L.); (M.H.E.); (Z.S.); (M.A.A.); (A.K.A.K.)
| | - Marjanu Hikmah Elias
- Advanced Reproductive Centre (ARC) HCTM UKM, Department of Obstetrics & Gynecology, Faculty of Medicine, National University of Malaysia, Jalan Yaacob Latiff, Bandar Tun Razak, Kuala Lumpur 56000, Malaysia; (N.L.); (M.H.E.); (Z.S.); (M.A.A.); (A.K.A.K.)
- Faculty of Medicine & Health Sciences, Universiti Sains Islam Malaysia, Nilai 71800, Negeri Sembilan, Malaysia
| | - Zulazmi Sutaji
- Advanced Reproductive Centre (ARC) HCTM UKM, Department of Obstetrics & Gynecology, Faculty of Medicine, National University of Malaysia, Jalan Yaacob Latiff, Bandar Tun Razak, Kuala Lumpur 56000, Malaysia; (N.L.); (M.H.E.); (Z.S.); (M.A.A.); (A.K.A.K.)
- Faculty of Medicine & Health Sciences, Universiti Sains Islam Malaysia, Nilai 71800, Negeri Sembilan, Malaysia
| | - Abdul Kadir Abdul Karim
- Advanced Reproductive Centre (ARC) HCTM UKM, Department of Obstetrics & Gynecology, Faculty of Medicine, National University of Malaysia, Jalan Yaacob Latiff, Bandar Tun Razak, Kuala Lumpur 56000, Malaysia; (N.L.); (M.H.E.); (Z.S.); (M.A.A.); (A.K.A.K.)
| | - Mohammad Azrai Abu
- Advanced Reproductive Centre (ARC) HCTM UKM, Department of Obstetrics & Gynecology, Faculty of Medicine, National University of Malaysia, Jalan Yaacob Latiff, Bandar Tun Razak, Kuala Lumpur 56000, Malaysia; (N.L.); (M.H.E.); (Z.S.); (M.A.A.); (A.K.A.K.)
| | - Azizah Ugusman
- Department of Physiology, Faculty of Medicine, National University of Malaysia, Jalan Yaacob Latiff, Bandar Tun Razak, Kuala Lumpur 56000, Malaysia; (A.U.); (M.H.M.)
| | - Saiful Effendi Syafruddin
- Medical Molecular Biology Institute, National University of Malaysia, Jalan Yaacob Latiff, Bandar Tun Razak, Kuala Lumpur 56000, Malaysia;
| | - Mohd Helmy Mokhtar
- Department of Physiology, Faculty of Medicine, National University of Malaysia, Jalan Yaacob Latiff, Bandar Tun Razak, Kuala Lumpur 56000, Malaysia; (A.U.); (M.H.M.)
| | - Mohd Faizal Ahmad
- Advanced Reproductive Centre (ARC) HCTM UKM, Department of Obstetrics & Gynecology, Faculty of Medicine, National University of Malaysia, Jalan Yaacob Latiff, Bandar Tun Razak, Kuala Lumpur 56000, Malaysia; (N.L.); (M.H.E.); (Z.S.); (M.A.A.); (A.K.A.K.)
| |
Collapse
|
7
|
Wang K, Wang K, Wang J, Yu F, Ye C. Protective Effect of Clostridium butyricum on Escherichia coli-Induced Endometritis in Mice via Ameliorating Endometrial Barrier and Inhibiting Inflammatory Response. Microbiol Spectr 2022; 10:e0328622. [PMID: 36321897 PMCID: PMC9769554 DOI: 10.1128/spectrum.03286-22] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Accepted: 10/10/2022] [Indexed: 11/05/2022] Open
Abstract
Endometritis is a common reproductive disease occurs both in human and animals. Clostridium butyricum is a Gram-positive anaerobic bacterium that can ferment various carbohydrates into butyric acid. In this study, we investigated the effects of C. butyricum on Escherichia coli-induced endometritis and clarified the underlying mechanism. We first verified the protective effect of C. butyricum in vivo by establishing a mouse model of E. coli-induced endometritis. It was determined that C. butyricum pretreatment significantly reversed E. coli-induced uterine histopathological changes. Meanwhile, C. butyricum pretreatment significantly decreased the production of pro-inflammatory mediators and the levels of myeloperoxidase (MPO) and malondialdehyde (MDA). We found that C. butyricum could inhibit TLR4-mediated phosphorylation of NF-κB and the activity of histone deacetylase (HDAC). Furthermore, C. butyricum significantly increased the expression of the tight junction proteins (TJPs) ZO-1, claudin-3, and occludin. Additionally, treatment with C. butyricum culture supernatant dramatically suppressed the degree of inflammation in the uterus, and inactivated C. butyricum did not exert a protective effect. We subsequently investigated butyrate levels in both the uterus and blood and observed a marked augment in the C. butyricum treatment group. Collectively, our data suggest that C. butyricum maintains epithelial barrier function and suppresses inflammatory response during E. coli-induced endometritis and that the protective effect of C. butyricum may be related to the production of butyrate. IMPORTANCE Endometritis is a common reproductive disease both in human and animals. It impairs female fertility by disrupting endometrial function. Antibiotics are widely used to treat endometritis in clinical practice, but the misuse of antibiotics often leads to antibiotic resistance. Therefore, there is an urgent need for new therapeutic agents to treat bacterial endometritis and overcome bacterial resistance. In this study, we found that C. butyricum could protect from E. coli-induced endometritis.
Collapse
Affiliation(s)
- Kexin Wang
- Department of Anesthesiology, China-Japan Union Hospital of Jilin University, Changchun, Jilin, China
| | - Ke Wang
- Department of Obstetrics and Gynecology, China-Japan Union Hospital of Jilin University, Changchun, Jilin, China
| | - Junrong Wang
- Department of Obstetrics and Gynecology, China-Japan Union Hospital of Jilin University, Changchun, Jilin, China
| | - Fan Yu
- Department of Gastroenterology and Hepatology, China-Japan Union Hospital of Jilin University, Changchun, Jilin, China
| | - Cong Ye
- Department of Obstetrics and Gynecology, China-Japan Union Hospital of Jilin University, Changchun, Jilin, China
| |
Collapse
|
8
|
Berg DK, Ledgard A, Donnison M, McDonald R, Henderson HV, Meier S, Juengel JL, Burke CR. The first week following insemination is the period of major pregnancy failure in pasture-grazed dairy cows. J Dairy Sci 2022; 105:9253-9270. [PMID: 36153157 DOI: 10.3168/jds.2021-21773] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Accepted: 06/13/2022] [Indexed: 11/19/2022]
Abstract
A 60% pregnancy success for inseminations is targeted to optimize production efficiency for dairy cows within a seasonal, pasture-grazed system. Routine measures of pregnancy success are widely available but are limited, in practice, to a gestation stage beyond the first 28 d. Although some historical data exist on embryonic mortality before this stage, productivity of dairy systems and genetics of the cows have advanced significantly in recent decades. Accordingly, the aim was to construct an updated estimate of pregnancy success at key developmental stages during the first 70 d after insemination. Blood samples were collected for progesterone concentrations on d 0 and 7. A temporal series of 4 groups spanning fertilization through d 70 were conducted on 4 seasonal, pasture-grazed dairy farms (n = 1,467 cows) during the first 21 d of the seasonal breeding period. Morphological examination was undertaken on embryos collected on d 7 (group E7) and 15 (group E15), and pregnancy was diagnosed via ultrasonography on approximately d 28 and 35 (group E35) as well as d 70 (group E70). Fertilization, embryo, and fetal evaluation for viability established a pregnancy success pattern. Additionally, cow and on-farm risk factor variables associated with pregnancy success were evaluated. We estimated pregnancy success rates of 70.9%, 59.1%, 63.8%, 62.3%, and 56.7% at d 7, 15, 28, 35, and 70, respectively. Fertilization failure (15.8%) and embryonic arrest before the morula stage (10.3%) were the major developmental events contributing to first-week pregnancy failures. Embryo elongation failure of 7% contributed to pregnancy failure during the second week. The risk factors for pregnancy success that were related to the cows included interval between calving and insemination, and d-7 plasma progesterone concentrations, whereas insemination sire was associated with pregnancy outcome. Most pregnancy failure occurs during the first week among seasonal-calving pasture-grazed dairy cows.
Collapse
Affiliation(s)
- D K Berg
- AgResearch Ltd., Ruakura Agricultural Centre, 10 Bisley Rd., Hamilton 3214, New Zealand.
| | - A Ledgard
- AgResearch Ltd., Ruakura Agricultural Centre, 10 Bisley Rd., Hamilton 3214, New Zealand
| | - M Donnison
- AgResearch Ltd., Ruakura Agricultural Centre, 10 Bisley Rd., Hamilton 3214, New Zealand
| | - R McDonald
- AgResearch Ltd., Ruakura Agricultural Centre, 10 Bisley Rd., Hamilton 3214, New Zealand
| | - H V Henderson
- AgResearch Ltd., Ruakura Agricultural Centre, 10 Bisley Rd., Hamilton 3214, New Zealand
| | - S Meier
- DairyNZ Ltd., Private Bag 3221, Hamilton, New Zealand
| | - J L Juengel
- AgResearch Ltd., Invermay, Puddle Alley Rd., Mosgiel 9092, New Zealand
| | - C R Burke
- DairyNZ Ltd., Private Bag 3221, Hamilton, New Zealand
| |
Collapse
|
9
|
Skovorodin E, Bogolyuk S, Yurina A. Clinical, laboratory, and morphological diagnosis of diseases in the oviducts and paraovarian structures of cows. CANADIAN JOURNAL OF VETERINARY RESEARCH = REVUE CANADIENNE DE RECHERCHE VETERINAIRE 2022; 86:194-202. [PMID: 35794969 PMCID: PMC9251803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 10/07/2021] [Indexed: 01/03/2023]
Abstract
The objective of this research was to study the spread of diseases in the oviducts and paraovarian structures of cows diagnosed using clinical, laboratory, and morphological analysis methods. Rectal examinations of 283 cows were conducted on farms to study their reproductive function. A thorough morphological study of the reproductive organs was carried out and the ovaries and uterus were weighed and measured. The method to detect blockage of the oviducts involved filling the oviducts with air under excessive pressure and assessing the patency based on the pressure drop. During postmortem macroscopic examination of the reproductive organs of infertile cows, the most common diseases of the oviducts and pathology of paraovarian structures detected were hydrosalpinx (6.9%), cysts on oviduct walls (3.4%), ovarian-bursal adhesions (37.8%), cysts and adhesions in the mesovarian ligament and mesosalpinx (17.0%), cysts of the ovary network (3.4%), and serous inclusion cysts on the surface of the ovary (6.9%). Clinically pronounced pathology of the oviducts was detected in 2.5% of infertile cows. The proposed method for diagnosing obstruction of the oviducts made it possible to find the hidden pathology of these organs, which manifested itself in increased patency and relative and total obstruction.
Collapse
Affiliation(s)
- Evgeny Skovorodin
- Department of Morphology, Pathology, Pharmacy and Non-communicable Diseases, Federal State Budgetary Educational Establishment of Higher Education, Bashkir State Agrarian University, Ufa, Russia
| | - Svetlana Bogolyuk
- Department of Morphology, Pathology, Pharmacy and Non-communicable Diseases, Federal State Budgetary Educational Establishment of Higher Education, Bashkir State Agrarian University, Ufa, Russia
| | - Alena Yurina
- Department of Morphology, Pathology, Pharmacy and Non-communicable Diseases, Federal State Budgetary Educational Establishment of Higher Education, Bashkir State Agrarian University, Ufa, Russia
| |
Collapse
|
10
|
Sadeghi M, Azari M, Kafi M, Hossein N, Ghaemi M, Najafi M, Eshghi D. Bovine salpingitis: histopathology, bacteriology, cytology and transcriptomic approaches and its impact on the oocyte competence. Anim Reprod Sci 2022; 242:107004. [DOI: 10.1016/j.anireprosci.2022.107004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 05/04/2022] [Accepted: 05/16/2022] [Indexed: 11/16/2022]
|
11
|
Scully DM, Campion D, McCartney F, Dulohery K, Reese S, Kölle S. Cystic ovary disease impairs transport speed, smooth muscle contraction, and epithelial ion transport in the bovine oviduct. Mol Reprod Dev 2021; 88:558-570. [PMID: 34164863 DOI: 10.1002/mrd.23521] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 04/28/2021] [Accepted: 06/16/2021] [Indexed: 01/29/2023]
Abstract
Cystic ovary disease (COD) is a common cause of bovine infertility but the impact of this disease on the oviduct is unknown. The aim of this study was to analyze the effects of COD on particle transport speed (PTS), ciliary beat frequency, myosalpinx contraction, and epithelial ion transport. Oviducts were obtained from cows affected by COD and compared with those of healthy, mid-diestrus cows. PTS and CBF were examined using live-cell imaging. Smooth muscle contraction and epithelial ion transport were investigated using organ baths and Ussing chambers. Our results showed that muscarinic receptors are involved in cholinergic signaling in the oviduct and that forskolin-induced cyclic AMP production is involved in active ion transport in the oviductal epithelium. Oviducts from cows with luteal cysts revealed significantly decreased PTS (p = 0.02). Further to that, in the oviducts of COD cows, the cholinergic regulation of smooth muscle contractions and active epithelial ion transport were significantly diminished (p < 0.0001). These results imply that in COD cows, oviductal transport is compromised by decreased fluid flow speed and reduced cholinergic regulation of smooth muscle contraction and ion transport. This knowledge contributes to a more comprehensive understanding of COD supporting the development of novel therapeutic concepts for infertility treatment.
Collapse
Affiliation(s)
- Deirdre M Scully
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, Texas, USA.,Health Sciences Centre, School of Medicine, University College Dublin (UCD), Dublin, Ireland
| | - Deirdre Campion
- Veterinary Sciences Centre, School of Veterinary Medicine, University College Dublin, Dublin, Ireland
| | - Fiona McCartney
- Veterinary Sciences Centre, School of Veterinary Medicine, University College Dublin, Dublin, Ireland
| | - Kate Dulohery
- Health Sciences Centre, School of Medicine, University College Dublin (UCD), Dublin, Ireland.,Faculty of Health Sciences, Sunderland University, Sunderland, UK
| | - Sven Reese
- Institute of Anatomy, Histology, and Embryology, School of Veterinary Medicine, LMU Munich, Munich, Germany
| | - Sabine Kölle
- Health Sciences Centre, School of Medicine, University College Dublin (UCD), Dublin, Ireland
| |
Collapse
|
12
|
Santana Gonzalez L, Rota IA, Artibani M, Morotti M, Hu Z, Wietek N, Alsaadi A, Albukhari A, Sauka-Spengler T, Ahmed AA. Mechanistic Drivers of Müllerian Duct Development and Differentiation Into the Oviduct. Front Cell Dev Biol 2021; 9:605301. [PMID: 33763415 PMCID: PMC7982813 DOI: 10.3389/fcell.2021.605301] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Accepted: 01/28/2021] [Indexed: 12/15/2022] Open
Abstract
The conduits of life; the animal oviducts and human fallopian tubes are of paramount importance for reproduction in amniotes. They connect the ovary with the uterus and are essential for fertility. They provide the appropriate environment for gamete maintenance, fertilization and preimplantation embryonic development. However, serious pathologies, such as ectopic pregnancy, malignancy and severe infections, occur in the oviducts. They can have drastic effects on fertility, and some are life-threatening. Despite the crucial importance of the oviducts in life, relatively little is known about the molecular drivers underpinning the embryonic development of their precursor structures, the Müllerian ducts, and their successive differentiation and maturation. The Müllerian ducts are simple rudimentary tubes comprised of an epithelial lumen surrounded by a mesenchymal layer. They differentiate into most of the adult female reproductive tract (FRT). The earliest sign of Müllerian duct formation is the thickening of the anterior mesonephric coelomic epithelium to form a placode of two distinct progenitor cells. It is proposed that one subset of progenitor cells undergoes partial epithelial-mesenchymal transition (pEMT), differentiating into immature Müllerian luminal cells, and another subset undergoes complete EMT to become Müllerian mesenchymal cells. These cells invaginate and proliferate forming the Müllerian ducts. Subsequently, pEMT would be reversed to generate differentiated epithelial cells lining the fully formed Müllerian lumen. The anterior Müllerian epithelial cells further specialize into the oviduct epithelial subtypes. This review highlights the key established molecular and genetic determinants of the processes involved in Müllerian duct development and the differentiation of its upper segment into oviducts. Furthermore, an extensive genome-wide survey of mouse knockout lines displaying Müllerian or oviduct phenotypes was undertaken. In addition to widely established genetic determinants of Müllerian duct development, our search has identified surprising associations between loss-of-function of several genes and high-penetrance abnormalities in the Müllerian duct and/or oviducts. Remarkably, these associations have not been investigated in any detail. Finally, we discuss future directions for research on Müllerian duct development and oviducts.
Collapse
Affiliation(s)
- Laura Santana Gonzalez
- MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, United Kingdom.,Nuffield Department of Women's and Reproductive Health, University of Oxford, Oxford, United Kingdom
| | - Ioanna A Rota
- MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, United Kingdom.,Developmental Immunology Research Group, Department of Paediatrics, University of Oxford, Oxford, United Kingdom
| | - Mara Artibani
- MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, United Kingdom.,Nuffield Department of Women's and Reproductive Health, University of Oxford, Oxford, United Kingdom.,Gene Regulatory Networks in Development and Disease Laboratory, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Matteo Morotti
- MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, United Kingdom.,Nuffield Department of Women's and Reproductive Health, University of Oxford, Oxford, United Kingdom
| | - Zhiyuan Hu
- MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, United Kingdom.,Nuffield Department of Women's and Reproductive Health, University of Oxford, Oxford, United Kingdom
| | - Nina Wietek
- MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, United Kingdom.,Nuffield Department of Women's and Reproductive Health, University of Oxford, Oxford, United Kingdom
| | - Abdulkhaliq Alsaadi
- MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, United Kingdom.,Nuffield Department of Women's and Reproductive Health, University of Oxford, Oxford, United Kingdom
| | - Ashwag Albukhari
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Tatjana Sauka-Spengler
- MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, United Kingdom.,Gene Regulatory Networks in Development and Disease Laboratory, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Ahmed A Ahmed
- MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, United Kingdom.,Nuffield Department of Women's and Reproductive Health, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
13
|
Bovine sperm-oviduct interactions are characterized by specific sperm behaviour, ultrastructure and tubal reactions which are impacted by sex sorting. Sci Rep 2020; 10:16522. [PMID: 33020549 PMCID: PMC7536416 DOI: 10.1038/s41598-020-73592-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Accepted: 09/18/2020] [Indexed: 02/07/2023] Open
Abstract
To date sperm-oviduct interactions have largely been investigated under in vitro conditions. Therefore we set out to characterize the behaviour of bovine spermatozoa within the sperm reservoir under near in vivo conditions and in real-time using a novel live cell imaging technology and a newly established fluorescent sperm binding assay. Sperm structure and tubal reactions after sperm binding were analysed using scanning and transmission electron microscopy and histochemistry. As a model to specify the impact of stress on sperm-oviduct interactions, frozen-thawed conventional and sex-sorted spermatozoa from the same bulls (n = 7) were co-incubated with oviducts obtained from cows immediately after slaughter. Our studies revealed that within the oviductal sperm reservoir agile (bound at a tangential angle of about 30°, actively beating undulating tail), lagging (bound at a lower angle, reduced tail movement), immotile (absence of tail movement) and hyperactivated (whip-like movement of tail) spermatozoa occur, the prevalence of which changes in a time-dependent pattern. After formation of the sperm reservoir, tubal ciliary beat frequency is significantly increased (p = 0.022) and the epithelial cells show increased activity of endoplasmic reticula. After sex sorting, spermatozoa occasionally display abnormal movement patterns characterized by a 360° rotating head and tail. Sperm binding in the oviduct is significantly reduced (p = 0.008) following sexing. Sex-sorted spermatozoa reveal deformations in the head, sharp bends in the tail and a significantly increased prevalence of damaged mitochondria (p < 0.001). Our results imply that the oviductal cells specifically react to the binding of spermatozoa, maintaining sperm survival within the tubal reservoir. The sex-sorting process, which is associated with mechanical, chemical and time stress, impacts sperm binding to the oviduct and mitochondrial integrity affecting sperm motility and function.
Collapse
|
14
|
Morillo VA, Akthar I, Fiorenza MF, Takahashi KI, Sasaki M, Marey MA, Suarez SS, Miyamoto A. Toll-like receptor 2 mediates the immune response of the bovine oviductal ampulla to sperm binding. Mol Reprod Dev 2020; 87:1059-1069. [PMID: 32914493 DOI: 10.1002/mrd.23422] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 08/06/2020] [Accepted: 08/28/2020] [Indexed: 12/15/2022]
Abstract
We previously reported that sperm binding to cultured bovine oviduct epithelial cells induces an anti-inflammatory immune response. Now we have developed a differentiated explant model to focus on the oviductal ampulla, where fertilization occurs, and to study the effect of sperm capacitation on the immune response. We used heparin to stimulate bovine sperm capacitation. Fluorescence imaging showed that 5,5',6,6'-tetrachloro-1,1',3,3'-tetraethylbenzimidazolyl-carbocyanine iodide-labeled sperm pretreated with (Hep(+) ) or without (Hep( -) ) heparin rapidly attached to the explant ciliated epithelium in similar numbers. However, only Hep(+) sperm upregulated explant messenger RNA (mRNA) transcription of TLR2, IL8, TGFB1, and PGES, without changes in TNFA and IL-10 expression, while Hep( -) sperm only upregulated PGES. The responses were primarily anti-inflammatory, with a greater response produced by Hep(+) sperm, which also produced a substantial increase in TLR2 protein expression in the epithelium. The addition of TLR1/2 (toll-like receptor 1/2) antagonist to the Hep(+) and (Hep( -) ) sperm-explant coincubations reduced sperm attachment to the epithelium and inhibited TLR2 protein expression and some of the Hep(+) sperm-induced mRNA transcription. Our observations suggest that the ampullar epithelium immunologically reacts more strongly to sperm that have undergone heparin stimulation of capacitation. This anti-inflammatory response could serve to protect capacitated sperm as they approach the oocyte in the ampulla.
Collapse
Affiliation(s)
- Vernadyn A Morillo
- Graduate School of Animal and Food Hygiene, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Japan.,Department of Clinical Sciences, College of Veterinary Medicine, Nueva Vizcaya State University, Nueva Vizcaya, Philippines
| | - Ihshan Akthar
- Graduate School of Animal and Food Hygiene, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Japan
| | - Mariani F Fiorenza
- Graduate School of Animal and Food Hygiene, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Japan.,Laboratory of Biotechnology and Animal Reproduction - BioRep, Federal University of Santa Maria (UFSM), Santa Maria, Rio Grande do Sul, Brazil
| | | | - Motoki Sasaki
- Department of Veterinary Medicine, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Japan
| | - Mohamed A Marey
- Graduate School of Animal and Food Hygiene, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Japan.,Department of Theriogenology, Faculty of Veterinary Medicine, Damanhur University, Behera, Egypt
| | - Susan S Suarez
- Department of Biomedical Sciences, Cornell University, Ithaca, New York, USA
| | - Akio Miyamoto
- Graduate School of Animal and Food Hygiene, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Japan
| |
Collapse
|
15
|
Skovorodin E, Mustafin R, Bogoliuk S, Bazekin G, Gimranov V. Clinical and structural changes in reproductive organs and endocrine glands of sterile cows. Vet World 2020; 13:774-781. [PMID: 32546925 PMCID: PMC7245708 DOI: 10.14202/vetworld.2020.774-781] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2019] [Accepted: 03/12/2020] [Indexed: 11/16/2022] Open
Abstract
Aim The study aimed to determine both macroscopic and microscopic changes in the reproductive organs of sterile cows. Materials and Methods Careful clinical and gynecological examinations (using histological and histochemical methods) of organs of culled sterile cows, such as ovaries, oviducts, the uterus, pars anterior adenohypophysis, thyroid body, and adrenals, were performed. Results It was found that 20% of the examined cows in the farms of the Republic of Bashkortostan had pathology of reproductive organs. Ovarian dysfunction was diagnosed in 31% of sterile cows. Histological and histochemical studies revealed that high atresia of all types of ovarian follicles is associated with hypofunction of the ovaries. This was related to stromal vascular dystrophy and was accompanied by atrophy of thecal endocrine elements, resulting in decrease of endocrine and generative function of ovaries. Conclusion Essential elements of the ovarian dysfunction pathogenesis are disorders of the functional system "ovary-pituitary-adrenal-thyroid gland" and the abnormality of utero-ovarian relationships, which differ significantly during hypofunction, in case of follicular cysts, and in case of persistent corpora lutea. This difference in abnormalities of utero-ovarian relationships should be considered when developing diagnostic and treatment methods and determining preventive measures.
Collapse
Affiliation(s)
- Evgeny Skovorodin
- Department of Morphology, Pathology, Pharmacy, and Non-communicable Diseases, Federal State Budget Educational Institution of Higher Education Bashkir State Agrarian University, Ufa, Russia
| | - Ravil Mustafin
- Department of Morphology, Pathology, Pharmacy, and Non-communicable Diseases, Federal State Budget Educational Institution of Higher Education Bashkir State Agrarian University, Ufa, Russia
| | - Svetlana Bogoliuk
- Department of Morphology, Pathology, Pharmacy, and Non-communicable Diseases, Federal State Budget Educational Institution of Higher Education Bashkir State Agrarian University, Ufa, Russia
| | - George Bazekin
- Department of Morphology, Pathology, Pharmacy, and Non-communicable Diseases, Federal State Budget Educational Institution of Higher Education Bashkir State Agrarian University, Ufa, Russia
| | - Valian Gimranov
- Department of Morphology, Pathology, Pharmacy, and Non-communicable Diseases, Federal State Budget Educational Institution of Higher Education Bashkir State Agrarian University, Ufa, Russia
| |
Collapse
|