1
|
Bahreini R, González-Cabrera J, Hernández-Rodríguez CS, Moreno-Martí S, Muirhead S, Labuschagne RB, Rueppell O. Arising amitraz and pyrethroids resistance mutations in the ectoparasitic Varroa destructor mite in Canada. Sci Rep 2025; 15:1587. [PMID: 39794392 PMCID: PMC11724071 DOI: 10.1038/s41598-025-85279-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Accepted: 01/01/2025] [Indexed: 01/13/2025] Open
Abstract
The ectoparasitic mite Varroa destructor remains a great threat for the beekeeping industry, for example contributing to excessive winter colony loss in Canada. For decades, beekeepers have sequentially used the registered synthetic varroacides tau-fluvalinate, coumaphos, amitraz, and flumethrin, leading to the risk of resistance evolution in the mites. In addition to the widespread resistance to coumaphos and pyrethroids, a decline in amitraz efficacy has recently been reported in numerous beekeeping regions in Canada. The goals of this study were to assess the evolution of resistance to amitraz in Canadian mite populations and to evaluate the presence and incidence of mutations previously associated with resistance to amitraz and pyrethroids in V. destructor. Our bioassay results confirmed the presence of amitraz-resistant mites in the population of Alberta. These phenotypic results were complemented by targeted genotyping of the octopamine receptor gene Octβ2R which revealed the presence of the mutation Y215H in 90% of tested apiaries with local allele frequencies ranging from 5 to 95%. The phenotypic resistance showed a significant correlation with the presence of this mutation across apiaries. In parallel, the L925I and L925M mutations in the voltage-gated sodium channel were identified in 100% of the tested apiaries with frequencies ranging from 33 to 97%, suggesting that resistance to pyrethroids remains widespread. These results support the notion that the practice of relying on a single treatment for a prolonged period can increase rates of resistance to current varroacides. Our findings suggest the need for large-scale resistance monitoring via genotyping to provide timely information to beekeepers and regulators. This will enable them to make an effective management plan, including rotation of available treatments to suppress or at least delay the evolution of resistance in V. destructor populations.
Collapse
Affiliation(s)
- Rassol Bahreini
- Department of Biological Sciences, University of Alberta, Edmonton, AB, Canada.
| | - Joel González-Cabrera
- Institute BIOTECMED, Universitat de València, Valencia, Spain
- Department of Genetics, Universitat de València, Valencia, Spain
| | - Carmen Sara Hernández-Rodríguez
- Institute BIOTECMED, Universitat de València, Valencia, Spain
- Department of Microbiology and Ecology, Universitat de València, Valencia, Spain
| | - Sara Moreno-Martí
- Institute BIOTECMED, Universitat de València, Valencia, Spain
- Department of Genetics, Universitat de València, Valencia, Spain
| | - Samantha Muirhead
- Plant and Bee Health Surveillance Section, Alberta Agriculture and Irrigation, Edmonton, AB, Canada
| | - Renata B Labuschagne
- Technology Transfer Program, Alberta Beekeepers Commission, Edmonton, AB, Canada
| | - Olav Rueppell
- Department of Biological Sciences, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
2
|
Payne AN, Prayugo V, Dolezal AG. A honey bee-associated virus remains infectious and quantifiable in postmortem hosts. J Invertebr Pathol 2024; 209:108258. [PMID: 39667616 DOI: 10.1016/j.jip.2024.108258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 12/02/2024] [Accepted: 12/05/2024] [Indexed: 12/14/2024]
Abstract
Corpse-mediated pathogen transmission is a viable route through which naïve hosts can become infected, but its likelihood for honey bee-associated viruses is largely unknown. While these viruses can be easily detected in deceased bees, it remains unclear if they stay infectious within postmortem hosts or if enough viral RNA degradation-and subsequently virus inactivation-occurs post-host death to render these viruses inviable. This knowledge gap has important implications for how researchers perform honey bee virus studies and for our general understanding of honey bee virus transmission. To better understand the resiliency of honey bee-associated viruses within deceased hosts, we first tested the hypothesis that postmortem specimens, stored in colony-normal temperature and humidity conditions, can be reliably used to quantify virus abundance. To determine this, we experimentally-infected adult honey bees with Israeli acute paralysis virus (IAPV) and then measured the virus levels of individuals sampled live or at different postmortem time points (4, 12, 24, and 48 hours post-death) using RT-qPCR and a standard curve absolute quantification method. We found no significant differences based on when bees were sampled, indicating that postmortem honey bees are statistically comparable to using live-sampled bees and can be reliably used to quantify absolute IAPV abundance. We then performed a follow-up experiment that determined whether or not the IAPV detected in postmortem bees remained infectious over time. We found that IAPV extracted from postmortem bees remained highly infectious for at least 48 hours post-death, indicating that any viral RNA degradation that may have occurred during the postmortem interval did not adversely affect IAPV's overall infectivity. The results from this study suggest that IAPV is more resilient to degradation than previously assumed, support the use of postmortem bees for downstream IAPV analyses, and indicate that postmortem hosts can act as sources of IAPV infection for susceptible individuals.
Collapse
Affiliation(s)
- Alexandria N Payne
- University of Illinois Urbana-Champaign, Urbana, IL 61801, United States; USDA-ARS Honey Bee Breeding, Genetics, and Physiology Unit, Baton Rouge, LA 70820, United States.
| | - Vincent Prayugo
- University of Illinois Urbana-Champaign, Urbana, IL 61801, United States
| | - Adam G Dolezal
- University of Illinois Urbana-Champaign, Urbana, IL 61801, United States
| |
Collapse
|
3
|
Vu ED, Chiavini BE, Gratton EM, Dolezal AG, Bonning BC. Representative honey bee viruses do not replicate in the small hive beetle, Aethina tumida Murray. J Invertebr Pathol 2024; 207:108207. [PMID: 39306322 DOI: 10.1016/j.jip.2024.108207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 09/16/2024] [Accepted: 09/18/2024] [Indexed: 09/28/2024]
Abstract
The small hive beetle (SHB), Aethina tumida Murray, is an invasive pest of the honey bee and causes significant damage through the consumption of colony resources and brood. Two assumptions related to honey bee virus transmission have been made about SHB: first, that SHB vectors honey bee viruses and second, that these viruses replicate in SHB based on the detection of both positive and negative strand viral genomic RNA within SHB. To clarify the role of SHB in virus transmission, we sought to address whether selected honey bee viruses replicate in SHB. Sequences derived from five honey bee viruses were identified in the transcriptomes of field-caught SHB from the U.S., but not in those of lab-reared SHB, suggesting that these viruses do not replicate in SHB. To elucidate whether the representative viruses, Israeli acute paralysis virus (IAPV; Dicistroviridae) and Deformed wing virus (DWV; Iflaviridae) replicate in SHB, we tested for replication in vitro in an SHB-derived cell line (BCIRL-AtumEN-1129-D6). Following treatment of the cell line with viral particles or viral RNA, the number of virus genomes was monitored by reverse transcription quantitative PCR (RT-qPCR). In contrast to the positive control, IAPV and DWV RNA levels steadily decreased over a period of 8 days. Collectively, these results from bioinformatic observations and in vitro experiments indicate that IAPV and DWV do not replicate in SHB. These results are consistent with the host specificity of most insect viruses within a single insect order and indicate that while SHB may serve as a mechanical vector of honey bee viruses within and between hives, this insect does not serve as a biological vector for these honey bee viruses.
Collapse
Affiliation(s)
- Emily D Vu
- Department of Entomology and Nematology, University of Florida, Gainesville, FL 32611, United States; University of Florida Genetics Institute, Gainesville, FL 32610, United States
| | - Benjamin E Chiavini
- Department of Entomology, University of Illinois at Urbana-Champaign, IL 61801, United States
| | - Elena M Gratton
- Department of Entomology, University of Illinois at Urbana-Champaign, IL 61801, United States
| | - Adam G Dolezal
- Department of Entomology, University of Illinois at Urbana-Champaign, IL 61801, United States
| | - Bryony C Bonning
- Department of Entomology and Nematology, University of Florida, Gainesville, FL 32611, United States; University of Florida Genetics Institute, Gainesville, FL 32610, United States.
| |
Collapse
|
4
|
Maia LJ, Silva AB, de Oliveira CH, Campos FS, da Silva LA, de Abreu FVS, Ribeiro BM. Sylvatic Mosquito Viromes in the Cerrado Biome of Minas Gerais, Brazil: Discovery of New Viruses and Implications for Arbovirus Transmission. Viruses 2024; 16:1276. [PMID: 39205250 PMCID: PMC11359572 DOI: 10.3390/v16081276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 08/01/2024] [Accepted: 08/05/2024] [Indexed: 09/04/2024] Open
Abstract
Studies on animal virome have mainly concentrated on chordates and medically significant invertebrates, often overlooking sylvatic mosquitoes, constituting a major part of mosquito species diversity. Despite their potential role in arbovirus transmission, the viromes of sylvatic mosquitoes remain largely unexplored. These mosquitoes may also harbor insect-specific viruses (ISVs), affecting arboviral transmission dynamics. The Cerrado biome, known for rapid deforestation and its status as a biodiversity hotspot, offers an ideal setting for investigating mosquito viromes due to potential zoonotic spillover risks from land use changes. This study aimed to characterize the viromes of sylvatic mosquitoes collected from various locations within Minas Gerais state, Brazil. The total RNA was extracted from mosquito pools of Psorophora albipes, Sabethes albiprivus, Sa. chloropterus, Psorophora ferox, and Coquillettidia venezuelensis species, followed by high-throughput sequencing (HTS). Bioinformatic analysis included quality control, contig assembly, and viral detection. Sequencing data analysis revealed 11 near-complete viral genomes (new viruses are indicated with asterisks) across seven viral families and one unassigned genus. These included: Xinmoviridae (Ferox mosquito mononega-like virus* and Albipes mosquito Gordis-like virus*), Phasmaviridae (Sabethes albiprivus phasmavirus*), Lispiviridae (Pedras lispivirus variant MG), Iflaviridae (Sabethes albiprivus iflavivirus*), Virgaviridae (Buriti virga-like virus variant MG and Sabethes albiprivus virgavirus 1*), Flaviviridae (Psorophora ferox flavivirus*), Mesoniviridae (Alphamesonivirus cavallyense variant MG), and the genus Negevirus (Biggie virus variant MG virus and Coquillettidia venezuelensis negevirus*). Moreover, the presence of ISVs and potential novel arboviruses underscores the need for ongoing surveillance and control strategies to mitigate the risk of emerging infectious diseases.
Collapse
Affiliation(s)
- Luis Janssen Maia
- Laboratório de Baculovírus, Departamento de Biologia Celular, Instituto de Ciências Biológicas, Universidade de Brasília (UnB), Brasília 70910-900, Brazil; (L.J.M.); (L.A.d.S.)
- Laboratório de Bioinformática e Biotecnologia, Universidade Federal do Tocantins (UFT), Gurupi 77402-970, Brazil;
| | - Arthur Batista Silva
- Laboratório de Bioinformática e Biotecnologia, Universidade Federal do Tocantins (UFT), Gurupi 77402-970, Brazil;
| | - Cirilo Henrique de Oliveira
- Laboratório de Comportamento de Insetos, Instituto Federal do Norte de Minas Gerais (IFNMG), Salinas 39560-000, Brazil;
- Programa de Pós-Graduação em Biodiversidade e Uso dos Recursos Naturais, Unimontes, Montes Claros 39401-089, Brazil
- Centro Colaborador de Entomologia/Lacoi/IFNMG/Secretaria Municipal de Saúde de Salinas, Salinas 39560-000, Brazil
| | - Fabricio Souza Campos
- Laboratório de Bioinformática e Biotecnologia, Universidade Federal do Tocantins (UFT), Gurupi 77402-970, Brazil;
- Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre 90035-003, Brazil
| | - Leonardo Assis da Silva
- Laboratório de Baculovírus, Departamento de Biologia Celular, Instituto de Ciências Biológicas, Universidade de Brasília (UnB), Brasília 70910-900, Brazil; (L.J.M.); (L.A.d.S.)
| | - Filipe Vieira Santos de Abreu
- Laboratório de Comportamento de Insetos, Instituto Federal do Norte de Minas Gerais (IFNMG), Salinas 39560-000, Brazil;
- Centro Colaborador de Entomologia/Lacoi/IFNMG/Secretaria Municipal de Saúde de Salinas, Salinas 39560-000, Brazil
| | - Bergmann Morais Ribeiro
- Laboratório de Baculovírus, Departamento de Biologia Celular, Instituto de Ciências Biológicas, Universidade de Brasília (UnB), Brasília 70910-900, Brazil; (L.J.M.); (L.A.d.S.)
| |
Collapse
|
5
|
Barth S, Affeldt S, Blaurock C, Lobedank I, Netsch A, Seitz K, Rümenapf T, Lamp B. Characterization of a Molecular Clone of Deformed Wing Virus B. Viruses 2024; 16:980. [PMID: 38932270 PMCID: PMC11209315 DOI: 10.3390/v16060980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 06/06/2024] [Accepted: 06/15/2024] [Indexed: 06/28/2024] Open
Abstract
Honey bees (Apis mellifera) play a crucial role in agriculture through their pollination activities. However, they have faced significant health challenges over the past decades that can limit colony performance and even lead to collapse. A primary culprit is the parasitic mite Varroa destructor, known for transmitting harmful bee viruses. Among these viruses is deformed wing virus (DWV), which impacts bee pupae during their development, resulting in either pupal demise or in the emergence of crippled adult bees. In this study, we focused on DWV master variant B. DWV-B prevalence has risen sharply in recent decades and appears to be outcompeting variant A of DWV. We generated a molecular clone of a typical DWV-B strain to compare it with our established DWV-A clone, examining RNA replication, protein expression, and virulence. Initially, we analyzed the genome using RACE-PCR and RT-PCR techniques. Subsequently, we conducted full-genome RT-PCR and inserted the complete viral cDNA into a bacterial plasmid backbone. Phylogenetic comparisons with available full-length sequences were performed, followed by functional analyses using a live bee pupae model. Upon the transfection of in vitro-transcribed RNA, bee pupae exhibited symptoms of DWV infection, with detectable viral protein expression and stable RNA replication observed in subsequent virus passages. The DWV-B clone displayed a lower virulence compared to the DWV-A clone after the transfection of synthetic RNA, as evidenced by a reduced pupal mortality rate of only 20% compared to 80% in the case of DWV-A and a lack of malformations in 50% of the emerging bees. Comparable results were observed in experiments with low infection doses of the passaged virus clones. In these tests, 90% of bees infected with DWV-B showed no clinical symptoms, while 100% of pupae infected with DWV-A died. However, at high infection doses, both DWV-A and DWV-B caused mortality rates exceeding 90%. Taken together, we have generated an authentic virus clone of DWV-B and characterized it in animal experiments.
Collapse
Affiliation(s)
- Sandra Barth
- Institute of Virology, Faculty of Veterinary Medicine, Justus-Liebig-University Giessen, Schubertstrasse 81, 35392 Giessen, Germany; (S.B.); (S.A.); (C.B.); (I.L.); (A.N.)
| | - Sebastian Affeldt
- Institute of Virology, Faculty of Veterinary Medicine, Justus-Liebig-University Giessen, Schubertstrasse 81, 35392 Giessen, Germany; (S.B.); (S.A.); (C.B.); (I.L.); (A.N.)
| | - Claudia Blaurock
- Institute of Virology, Faculty of Veterinary Medicine, Justus-Liebig-University Giessen, Schubertstrasse 81, 35392 Giessen, Germany; (S.B.); (S.A.); (C.B.); (I.L.); (A.N.)
| | - Irmin Lobedank
- Institute of Virology, Faculty of Veterinary Medicine, Justus-Liebig-University Giessen, Schubertstrasse 81, 35392 Giessen, Germany; (S.B.); (S.A.); (C.B.); (I.L.); (A.N.)
| | - Anette Netsch
- Institute of Virology, Faculty of Veterinary Medicine, Justus-Liebig-University Giessen, Schubertstrasse 81, 35392 Giessen, Germany; (S.B.); (S.A.); (C.B.); (I.L.); (A.N.)
| | - Kerstin Seitz
- Institute of Virology, Department for Pathobiology, University of Veterinary Medicine, Veterinaerplatz 1, 1210 Vienna, Austria; (K.S.); (T.R.)
| | - Till Rümenapf
- Institute of Virology, Department for Pathobiology, University of Veterinary Medicine, Veterinaerplatz 1, 1210 Vienna, Austria; (K.S.); (T.R.)
| | - Benjamin Lamp
- Institute of Virology, Faculty of Veterinary Medicine, Justus-Liebig-University Giessen, Schubertstrasse 81, 35392 Giessen, Germany; (S.B.); (S.A.); (C.B.); (I.L.); (A.N.)
| |
Collapse
|
6
|
Jobart B, Delatte H, Lebreton G, Cazanove N, Esnault O, Clémencet J, Blot N. Parasite and virus dynamics in the honeybee Apis mellifera unicolor on a tropical island recently invaded by Varroa destructor. J Invertebr Pathol 2024; 204:108125. [PMID: 38705353 DOI: 10.1016/j.jip.2024.108125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 04/26/2024] [Accepted: 05/02/2024] [Indexed: 05/07/2024]
Abstract
In La Réunion, the established honeybee subspecies Apis mellifera unicolor, an endemic subspecies of African lineage, is facing considerable challenges. Since the introduction of the Varroa destructor mite in 2017 high colony losses have been recorded. We investigated the dynamics of V. destructor and two viruses, the Deformed Wing Virus (DWV), known to be transmitted by the mite, and the Chronic Bee Paralysis Virus (CBPV), in A. m. unicolor. Colonies from two apiaries located at 300 and 900 m a.s.l were monitored twice for one year without any acaricide treatment. The brood area, V. destructor infestation rates, DWV and CBPV prevalence and load were recorded monthly. A. m. unicolor maintained brood rearing throughout the year. Varroa destructor infestation resulted in high colony mortality (up to 85 %) and high phoretic mite rates (up to 52 mites per hundred bees). The establishment of DWV in colonies occurred after that of V. destructor and the mite infestation rate had a significant effect on the virus prevalence and load. CBPV appeared only transiently throughout the surveys. The data showed that, in tropical colonies with permanent brood rearing, V. destructor and DWV can reach high levels, but are still subject to seasonal variations that appear to be influenced by environmental conditions. This suggests that beekeeping practices could be adapted by favouring sites and periods for transhumance or acaricide treatment.
Collapse
Affiliation(s)
- Benoit Jobart
- CIRAD, UMR PVBMT, F-97410 Saint-Pierre, La Réunion, France; Université de La Réunion, UMR PVBMT, F-97400 Saint Denis, La Réunion, France
| | - Hélène Delatte
- CIRAD, UMR PVBMT, F-97410 Saint-Pierre, La Réunion, France
| | | | | | - Olivier Esnault
- Université de La Réunion, UMR PVBMT, F-97400 Saint Denis, La Réunion, France
| | - Johanna Clémencet
- Université de La Réunion, UMR PVBMT, F-97400 Saint Denis, La Réunion, France
| | - Nicolas Blot
- Université Clermont Auvergne, CNRS, Laboratoire "Microorganismes: Génome Et Environnement, Clermont-Ferrand, France; UMR PVBMT, F-97410 Saint-Pierre, La Réunion, France.
| |
Collapse
|
7
|
Zhang Z, Villalobos EM, Nikaido S, Martin SJ. Seasonal Variability in the Prevalence of DWV Strains in Individual Colonies of European Honeybees in Hawaii. INSECTS 2024; 15:219. [PMID: 38667349 PMCID: PMC11050578 DOI: 10.3390/insects15040219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 03/19/2024] [Accepted: 03/21/2024] [Indexed: 04/28/2024]
Abstract
The most prevalent viral pathogen of honeybees is Deformed Wing Virus (DWV) and its two most widely studied and common master-variants are DWV-A and DWV-B. The prevalence of DWV variants in the UK and in the US is changing, with the prevalence of the DWV-A strain declining and DWV-B increasing over time. In 2012, only DWV-A was detected on the Hawaiian Islands of Oahu. In this study we focused on a colony-level survey of DWV strains in a single apiary and examined the prevalence of DWV variants over the course of two years. In 2018 and 2019, a total of 16 colonies underwent viral testing in January, May, and September. Of those 16 colonies, four were monitored in both 2018 and 2019. Individual colonies showed variability of DWV master variants throughout the sampling period. DWV-A was consistently detected; however, the detection of DWV-B was variable across time in individual colonies. Ultimately, this study demonstrated a seasonal variation in both viral prevalence and load for DWV-B, providing a perspective on the dynamic nature of DWV master variants emerging in Hawaii.
Collapse
Affiliation(s)
- Zhening Zhang
- Department of Plant and Environmental Protection Sciences, College of Tropical Agriculture and Human Resources, University of Hawaii, 3050 Maile Way, 310 Gilmore Hall, Honolulu, HI 96822, USA; (E.M.V.); (S.N.)
| | - Ethel M. Villalobos
- Department of Plant and Environmental Protection Sciences, College of Tropical Agriculture and Human Resources, University of Hawaii, 3050 Maile Way, 310 Gilmore Hall, Honolulu, HI 96822, USA; (E.M.V.); (S.N.)
| | - Scott Nikaido
- Department of Plant and Environmental Protection Sciences, College of Tropical Agriculture and Human Resources, University of Hawaii, 3050 Maile Way, 310 Gilmore Hall, Honolulu, HI 96822, USA; (E.M.V.); (S.N.)
| | - Stephen J. Martin
- School of Environment and Life Sciences, The University of Salford, Manchester M5 4WT, UK;
| |
Collapse
|
8
|
Nikulin SL, Hesketh-Best PJ, Mckeown DA, Spivak M, Schroeder DC. A semi-automated and high-throughput approach for the detection of honey bee viruses in bee samples. PLoS One 2024; 19:e0297623. [PMID: 38483922 PMCID: PMC10939240 DOI: 10.1371/journal.pone.0297623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 01/10/2024] [Indexed: 03/17/2024] Open
Abstract
Deformed wing virus (DWV) was first detected in dead honey bees in 1982 but has been in honey bees for at least 300 years. Due to its high prevalence and virulence, they have been linked with the ongoing decline in honey bee populations worldwide. A rapid, simple, semi-automated, high-throughput, and cost-effective method of screening colonies for viruses would benefit bee research and the beekeeping industry. Here we describe a semi-automated approach that combines an RNA-grade liquid homogenizer followed by magnetic bead capture for total virus nucleic acid extraction. We compare it to the more commonly applied nucleic acid column-based purification method and use qPCR plus Oxford Nanopore Technologies sequencing to evaluate the accuracy of analytical results for both methods. Our results showed high reproducibility and accuracy for both approaches. The semi-automated method described here allows for faster screening of viral loads in units of 96 samples at a time. We developed this method to monitor viral loads in honey bee colonies, but it could be easily applied for any PCR or genomic-based screening assays.
Collapse
Affiliation(s)
- Sofia Levin Nikulin
- Department of Entomology, University of Minnesota, Saint Paul, Minnesota, United States of America
| | - Poppy J. Hesketh-Best
- Department of Veterinary Population Medicine, University of Minnesota, Saint Paul, Minnesota, United States of America
| | - Dean A. Mckeown
- Department of Veterinary Population Medicine, University of Minnesota, Saint Paul, Minnesota, United States of America
| | - Marla Spivak
- Department of Entomology, University of Minnesota, Saint Paul, Minnesota, United States of America
| | - Declan C. Schroeder
- Department of Veterinary Population Medicine, University of Minnesota, Saint Paul, Minnesota, United States of America
| |
Collapse
|
9
|
Lamas ZS, Krichton M, Ryabov EV, Hawthorne DJ, Evans JD. Susceptible and infectious states for both vector and host in a dynamic pathogen-vector-host system. Proc Biol Sci 2024; 291:20232293. [PMID: 38196351 PMCID: PMC10777147 DOI: 10.1098/rspb.2023.2293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 12/01/2023] [Indexed: 01/11/2024] Open
Abstract
Deformed wing virus (DWV) is a resurgent insect pathogen of honeybees that is efficiently transmitted by vectors and through host social contact. Continual transmission of DWV between hosts and vectors is required to maintain the pathogen within the population, and this vector-host-pathogen system offers unique disease transmission dynamics for pathogen maintenance between vectors and a social host. In a series of experiments, we measured vector-vector, host-host and host-vector transmission routes and show how these maintain DWV in honeybee populations. We found co-infestations on shared hosts allowed for movement of DWV from mite to mite. Additionally, two social behaviours of the honeybee, trophallaxis and cannibalization of pupae, provide routes for horizontal transmission from bee to bee. Circulation of the virus solely among hosts through communicable modes provides a reservoir of DWV for naïve Varroa to acquire and subsequently vector the pathogen. Our findings illustrate the importance of community transmission between hosts and vector transmission. We use these results to highlight the key avenues used by DWV during maintenance and infection and point to similarities with a handful of other infectious diseases of zoonotic and medical importance.
Collapse
Affiliation(s)
- Zachary S. Lamas
- Bee Research Laboratory, United States Department of Agriculture—Agricultural Research Service, Beltsville 06415, MD, USA
- Department of Entomology, University of Maryland, College Park 20742-5031, MD, USA
| | - Maiya Krichton
- Bee Research Laboratory, United States Department of Agriculture—Agricultural Research Service, Beltsville 06415, MD, USA
- Department of Entomology, University of Maryland, College Park 20742-5031, MD, USA
| | - Eugene V. Ryabov
- Bee Research Laboratory, United States Department of Agriculture—Agricultural Research Service, Beltsville 06415, MD, USA
- Department of Entomology, University of Maryland, College Park 20742-5031, MD, USA
- The James Hutton Institute, Invergowrie, Dundee, UK
| | - David J. Hawthorne
- Department of Entomology, University of Maryland, College Park 20742-5031, MD, USA
| | - Jay D. Evans
- Bee Research Laboratory, United States Department of Agriculture—Agricultural Research Service, Beltsville 06415, MD, USA
| |
Collapse
|
10
|
Doublet V, Oddie MAY, Mondet F, Forsgren E, Dahle B, Furuseth-Hansen E, Williams GR, De Smet L, Natsopoulou ME, Murray TE, Semberg E, Yañez O, de Graaf DC, Le Conte Y, Neumann P, Rimstad E, Paxton RJ, de Miranda JR. Shift in virus composition in honeybees ( Apis mellifera) following worldwide invasion by the parasitic mite and virus vector Varroa destructor. ROYAL SOCIETY OPEN SCIENCE 2024; 11:231529. [PMID: 38204792 PMCID: PMC10776227 DOI: 10.1098/rsos.231529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 12/13/2023] [Indexed: 01/12/2024]
Abstract
Invasive vectors can induce dramatic changes in disease epidemiology. While viral emergence following geographical range expansion of a vector is well known, the influence a vector can have at the level of the host's pathobiome is less well understood. Taking advantage of the formerly heterogeneous spatial distribution of the ectoparasitic mite Varroa destructor that acts as potent virus vector among honeybees Apis mellifera, we investigated the impact of its recent global spread on the viral community of honeybees in a retrospective study of historical samples. We hypothesized that the vector has had an effect on the epidemiology of several bee viruses, potentially altering their transmissibility and/or virulence, and consequently their prevalence, abundance, or both. To test this, we quantified the prevalence and loads of 14 viruses from honeybee samples collected in mite-free and mite-infested populations in four independent geographical regions. The presence of the mite dramatically increased the prevalence and load of deformed wing virus, a cause of unsustainably high colony losses. In addition, several other viruses became more prevalent or were found at higher load in mite-infested areas, including viruses not known to be actively varroa-transmitted, but which may increase opportunistically in varroa-parasitized bees.
Collapse
Affiliation(s)
- Vincent Doublet
- Institute of Evolutionary Ecology and Conservation Genomics, University of Ulm, Albert-Einstein-Allee 11, 89081 Ulm, Germany
- Institute for Biology, Martin Luther University Halle-Wittenberg, Halle (Saale) 061200, Germany
| | - Melissa A. Y. Oddie
- Department of Ecology, Swedish University of Agricultural Sciences, Uppsala 750 07, Sweden
- Norwegian Beekeepers Association, Kløfta 2040, Norway
| | - Fanny Mondet
- INRAE, UR 406 Abeilles et Environnement, Avignon 84914, France
| | - Eva Forsgren
- Department of Ecology, Swedish University of Agricultural Sciences, Uppsala 750 07, Sweden
| | - Bjørn Dahle
- Norwegian Beekeepers Association, Kløfta 2040, Norway
| | - Elisabeth Furuseth-Hansen
- Department of Food Safety and Infection Biology, Norwegian University of Life Sciences, Ås 1432, Norway
| | - Geoffrey R. Williams
- Institute of Bee Health, Vetsuisse Faculty, University of Bern, Bern 3097, Switzerland
- Entomology & Plant Pathology, Auburn University, Auburn, AL 36832, USA
| | - Lina De Smet
- Department of Biochemistry and Microbiology, Ghent University, Ghent 9000, Belgium
| | - Myrsini E. Natsopoulou
- Institute for Biology, Martin Luther University Halle-Wittenberg, Halle (Saale) 061200, Germany
| | - Tomás E. Murray
- Institute for Biology, Martin Luther University Halle-Wittenberg, Halle (Saale) 061200, Germany
| | - Emilia Semberg
- Department of Ecology, Swedish University of Agricultural Sciences, Uppsala 750 07, Sweden
| | - Orlando Yañez
- Institute of Bee Health, Vetsuisse Faculty, University of Bern, Bern 3097, Switzerland
| | - Dirk C. de Graaf
- Department of Biochemistry and Microbiology, Ghent University, Ghent 9000, Belgium
| | - Yves Le Conte
- INRAE, UR 406 Abeilles et Environnement, Avignon 84914, France
| | - Peter Neumann
- Institute of Bee Health, Vetsuisse Faculty, University of Bern, Bern 3097, Switzerland
| | - Espen Rimstad
- Department of Food Safety and Infection Biology, Norwegian University of Life Sciences, Ås 1432, Norway
| | - Robert J. Paxton
- Institute for Biology, Martin Luther University Halle-Wittenberg, Halle (Saale) 061200, Germany
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, 04103, Germany
| | - Joachim R. de Miranda
- Department of Ecology, Swedish University of Agricultural Sciences, Uppsala 750 07, Sweden
| |
Collapse
|
11
|
Damayo JE, McKee RC, Buchmann G, Norton AM, Ashe A, Remnant EJ. Virus replication in the honey bee parasite, Varroa destructor. J Virol 2023; 97:e0114923. [PMID: 37966226 PMCID: PMC10746231 DOI: 10.1128/jvi.01149-23] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 10/06/2023] [Indexed: 11/16/2023] Open
Abstract
IMPORTANCE The parasitic mite Varroa destructor is a significant driver of worldwide colony losses of our most important commercial pollinator, the Western honey bee Apis mellifera. Declines in honey bee health are frequently attributed to the viruses that mites vector to honey bees, yet whether mites passively transmit viruses as a mechanical vector or actively participate in viral amplification and facilitate replication of honey bee viruses is debated. Our work investigating the antiviral RNA interference response in V. destructor demonstrates that key viruses associated with honey bee declines actively replicate in mites, indicating that they are biological vectors, and the host range of bee-associated viruses extends to their parasites, which could impact virus evolution, pathogenicity, and spread.
Collapse
Affiliation(s)
- James E. Damayo
- School of Life and Environmental Sciences, University of Sydney, Sydney, New South Wales, Australia
| | - Rebecca C. McKee
- School of Life and Environmental Sciences, University of Sydney, Sydney, New South Wales, Australia
| | - Gabriele Buchmann
- School of Life and Environmental Sciences, University of Sydney, Sydney, New South Wales, Australia
- Institute of Plant Genetics, Heinrich-Heine University, Duesseldorf, Germany
| | - Amanda M. Norton
- School of Life and Environmental Sciences, University of Sydney, Sydney, New South Wales, Australia
- Academic Support Unit, Research and Advanced Instrumentation, University of the Sunshine Coast, Sippy Downs, Queensland, Australia
| | - Alyson Ashe
- School of Life and Environmental Sciences, University of Sydney, Sydney, New South Wales, Australia
| | - Emily J. Remnant
- School of Life and Environmental Sciences, University of Sydney, Sydney, New South Wales, Australia
| |
Collapse
|
12
|
Reuscher CM, Barth S, Gockel F, Netsch A, Seitz K, Rümenapf T, Lamp B. Processing of the 3C/D Region of the Deformed Wing Virus (DWV). Viruses 2023; 15:2344. [PMID: 38140585 PMCID: PMC10748302 DOI: 10.3390/v15122344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 11/17/2023] [Accepted: 11/27/2023] [Indexed: 12/24/2023] Open
Abstract
The deformed wing virus (DWV) belongs to the genus Iflavirus and the family Iflaviridae within the order Picornavirales. It is an important pathogen of the Western honey bee, Apis mellifera, causing major losses among honey bee colonies in association with the ectoparasitic mite Varroa destructor. Although DWV is one of the best-studied insect viruses, the mechanisms of viral replication and polyprotein processing have been poorly studied in the past. We investigated the processing of the protease-polymerase region at the C-terminus of the polyprotein in more detail using recombinant expression, novel serological reagents, and virus clone mutagenesis. Edman degradation of purified maturated polypeptides uncovered the C- and N-termini of the mature 3C-like (3CL) protease and RNA-dependent RNA polymerase (3DL, RdRp), respectively. Autocatalytic processing of the recombinant DWV 3CL protease occurred at P1 Q2118 and P1' G2119 (KPQ/GST) as well as P1 Q2393 and P1' S2394 (HAQ/SPS) cleavage sites. New monoclonal antibodies (Mab) detected the mature 3CL protease with an apparent molecular mass of 32 kDa, mature 3DL with an apparent molecular mass of 55 kDa as well as a dominant 3CDL precursor of 90 kDa in DWV infected honey bee pupae. The observed pattern corresponds well to data obtained via recombinant expression and N-terminal sequencing. Finally, we were able to show that 3CL protease activity and availability of the specific protease cleavage sites are essential for viral replication, protein synthesis, and establishment of infection using our molecular clone of DWV-A.
Collapse
Affiliation(s)
- Carina Maria Reuscher
- Institute of Virology, Faculty of Veterinary Medicine, Justus-Liebig-University, Biomedical Research Center (BFS), Schubertstrasse 81, 35392 Giessen, Germany (S.B.); (F.G.)
| | - Sandra Barth
- Institute of Virology, Faculty of Veterinary Medicine, Justus-Liebig-University, Biomedical Research Center (BFS), Schubertstrasse 81, 35392 Giessen, Germany (S.B.); (F.G.)
| | - Fiona Gockel
- Institute of Virology, Faculty of Veterinary Medicine, Justus-Liebig-University, Biomedical Research Center (BFS), Schubertstrasse 81, 35392 Giessen, Germany (S.B.); (F.G.)
- Institute of Medical Virology, Justus Liebig University, Biomedical Research Center (BFS), Schubertstrasse 81, 35392 Giessen, Germany
| | - Anette Netsch
- Institute of Virology, Faculty of Veterinary Medicine, Justus-Liebig-University, Biomedical Research Center (BFS), Schubertstrasse 81, 35392 Giessen, Germany (S.B.); (F.G.)
| | - Kerstin Seitz
- Department for Pathobiology, Institute of Virology, University of Veterinary Medicine, Veterinaerplatz 1, 1210 Vienna, Austria; (K.S.); (T.R.)
| | - Till Rümenapf
- Department for Pathobiology, Institute of Virology, University of Veterinary Medicine, Veterinaerplatz 1, 1210 Vienna, Austria; (K.S.); (T.R.)
| | - Benjamin Lamp
- Institute of Virology, Faculty of Veterinary Medicine, Justus-Liebig-University, Biomedical Research Center (BFS), Schubertstrasse 81, 35392 Giessen, Germany (S.B.); (F.G.)
| |
Collapse
|
13
|
Dickey M, Whilden M, Ellis JT, Rangel J. A preliminary survey reveals that common viruses are found at low titers in a wild population of honey bees (Apis mellifera). JOURNAL OF INSECT SCIENCE (ONLINE) 2023; 23:26. [PMID: 38098224 PMCID: PMC10721442 DOI: 10.1093/jisesa/iead117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 08/22/2023] [Accepted: 11/29/2023] [Indexed: 12/18/2023]
Abstract
A major threat to honey bee (Apis mellifera Linnaeus, Hymenoptera: Apidae) health continues to be parasitism by the mite Varroa destructor, which has been linked to high colony losses worldwide. Besides feeding on developing and adult bees, Varroa is also a prolific vector of honey bee-associated viruses. Because they live in unmanaged conditions, wild honey bee colonies are not treated against Varroa, which has enabled the natural selection of more mite-tolerant bees. To date, few studies have explored the prevalence of viruses in unmanaged colonies. The Welder Wildlife Refuge (WWR) in Texas is a unique site to study the viral landscape of unmanaged honey bees in the United States. The goals of this study were to identify and quantify viruses in wild colonies at the WWR, to examine changes in the prevalence of viruses in these colonies over time, and to compare the presence and titers of viruses between wild colonies at the WWR and those from the nearest managed apiary. We collected bees from colonies at the WWR in 2013, 2016, and 2021, and analyzed selected viruses for their presence and titers via quantitative polymerase chain reaction. In 2021, we also sampled bees from the nearest managed apiary for comparison. We found low average virus titers in all wild colonies sampled, and no difference in virus titers between colonies at the WWR and those from the managed apiary. Our study indicates that virus titers in wild colonies at the WWR are similar to those found in nearby colonies, and that these titers fluctuate over time.
Collapse
Affiliation(s)
- Myra Dickey
- Department of Entomology, Texas A&M University, College Station, TX, USA
| | - Mckaela Whilden
- Department of Entomology, Texas A&M University, College Station, TX, USA
| | | | - Juliana Rangel
- Department of Entomology, Texas A&M University, College Station, TX, USA
| |
Collapse
|
14
|
Cook SC, Ryabov EV, Becker C, Rogers CW, Posada-Florez F, Evans JD, Chen YP. Deformed wing virus of honey bees is inactivated by cold plasma ionized hydrogen peroxide. FRONTIERS IN INSECT SCIENCE 2023; 3:1216291. [PMID: 38469475 PMCID: PMC10926414 DOI: 10.3389/finsc.2023.1216291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Accepted: 07/18/2023] [Indexed: 03/13/2024]
Abstract
Deformed wing virus (DWV) is a widespread pathogen of Apis mellifera honey bees, and is considered a major causative factor for the collapse of infected honey bee colonies. DWV can be horizontally transmitted among bees through various oral routes, including via food sharing and by interactions of bees with viral-contaminated solid hive substrates. Cold plasma ionized hydrogen peroxide (iHP) is used extensively by the food production, processing and medical industries to clean surfaces of microbial contaminants. In this study, we investigated the use of iHP to inactivate DWV particles in situ on a solid substrate. iHP-treated DWV sources were ~105-fold less infectious when injected into naïve honey bee pupae compared to DWV receiving no iHP treatment, matching injected controls containing no DWV. iHP treatment also greatly reduced the incidence of overt DWV infections (i.e., pupae having >109 copies of DWV). The level of DWV inactivation achieved with iHP treatment was higher than other means of viral inactivation such as gamma irradiation, and iHP treatment is likely simpler and safer. Treatment of DWV contaminated hive substrates with iHP, even with honey bees present, may be an effective way to decrease the impacts of DWV infection on honey bees.
Collapse
Affiliation(s)
- Steven C. Cook
- United States Department of Agriculture - Agricultural Research (USDA-ARS) Service, Bee Research Laboratory, Beltsville, MD, United States
| | - Eugene V. Ryabov
- United States Department of Agriculture - Agricultural Research (USDA-ARS) Service, Bee Research Laboratory, Beltsville, MD, United States
- Department of Entomology, University of Maryland, College Park, MD, United States
| | | | - Curtis W. Rogers
- United States Department of Agriculture - Agricultural Research (USDA-ARS) Service, Bee Research Laboratory, Beltsville, MD, United States
| | - Francisco Posada-Florez
- United States Department of Agriculture - Agricultural Research (USDA-ARS) Service, Bee Research Laboratory, Beltsville, MD, United States
| | - Jay D. Evans
- United States Department of Agriculture - Agricultural Research (USDA-ARS) Service, Bee Research Laboratory, Beltsville, MD, United States
| | - Yan Ping Chen
- United States Department of Agriculture - Agricultural Research (USDA-ARS) Service, Bee Research Laboratory, Beltsville, MD, United States
| |
Collapse
|
15
|
Woodford L, Steketee PC, Evans DJ. Doomed drones? Using passage experiments and mathematical modelling to determine Deformed wing virus population dynamics in male honeybees. Proc Biol Sci 2023; 290:20231010. [PMID: 37339741 PMCID: PMC10281807 DOI: 10.1098/rspb.2023.1010] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Accepted: 05/25/2023] [Indexed: 06/22/2023] Open
Abstract
Varroa destructor is an ectoparasitic mite of honeybees which vectors a range of pathogenic viruses, the most notable being Deformed wing virus (DWV). Mites parasitise bees during pupal development and male honeybees, drones, have a longer development cycle than female workers (24 versus 21 days), allow for more progeny mites to develop per foundress (1.6-2.5 compared to 0.7-1.45). How this longer exposure time influences evolution of the transmitted virus population is unknown. Using uniquely tagged viruses recovered from cDNA we investigated the replication, competition and morbidity of DWV genotypes in drones. Assays examining virus replication and morbidity revealed drones are highly susceptible to both predominant genotypes of DWV. In virus passage studies using an equimolar inocula of major DNA genotypes and their recombinants, the recombinant form dominated but did not reach 100% of the virus population within 10 passages. Using an in-silico model of the virus-mite-bee system we examined bottlenecks during virus acquisition by the mite and subsequent injection of viruses into the host, which may play a significant role in shaping virus diversity. This study furthers our understanding of the variables influencing DWV diversity changes and provides insight into areas of future research in the mite-virus-bee system.
Collapse
Affiliation(s)
- Luke Woodford
- Department of Biology, University of St. Andrews, Biomedical Sciences Research Complex, St. Andrews, None KY16 9ST, UK
| | - Pieter C. Steketee
- The Roslin Institute, Easter Bush Campus, Midlothian, Edinburgh, EH25 9RG, UK
| | - David J. Evans
- Department of Biology, University of St. Andrews, Biomedical Sciences Research Complex, St. Andrews, None KY16 9ST, UK
| |
Collapse
|
16
|
Nguyen TT, Yoo MS, Truong AT, Lee JH, Youn SY, Lee SJ, Kim DH, Yoon SS, Cho YS. First identification of Tyrophagus curvipenis (Acari: Acaridae) and pathogen detection in Apis mellifera colonies in the Republic of Korea. Sci Rep 2023; 13:9469. [PMID: 37301922 PMCID: PMC10257717 DOI: 10.1038/s41598-023-36695-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 06/08/2023] [Indexed: 06/12/2023] Open
Abstract
Mites of the genus Tyrophagus (Acari: Acaridae) are among the most widely distributed mites. The species in this genus cause damage to stored products and crops, and pose a threat to human health. However, the influence of Tyrophagus spp. in apiculture remains unknown. In 2022, a study focusing on the identification of Tyrophagus species within five apiaries was conducted in Chungcheongnam Province, Republic of Korea. Its specific objective was to investigate the presence of Tyrophagus mites in response to the reported high mortality of honey bee colonies in this area. Morphological identification and phylogenetic analysis using the mitochondrial gene cytochrome-c oxidase subunit 1 (CO1) confirmed for the first time the presence of the mite species Tyrophagus curvipenis in a honey bee colony in the Republic of Korea. Two honey bee pathogens were detected in the mite, a viral pathogen (deformed wing virus, DWV) and a protozoal pathogen (Trypanosoma spp.). The presence of the two honey bee pathogens in the mite suggests that this mite could contribute to the spread of related honey bee diseases. However, the direct influence of the mite T. curvipenis on honey bee health remains unknown and should be further investigated.
Collapse
Affiliation(s)
- Thi-Thu Nguyen
- Laboratory of Parasitic and Honey Bee Diseases, Bacterial Disease Division, Department of Animal and Plant Health Research, Animal and Plant Quarantine Agency, Center for Honey Bee Disease Control, 39660, Gimcheon, Republic of Korea
| | - Mi-Sun Yoo
- Laboratory of Parasitic and Honey Bee Diseases, Bacterial Disease Division, Department of Animal and Plant Health Research, Animal and Plant Quarantine Agency, Center for Honey Bee Disease Control, 39660, Gimcheon, Republic of Korea
| | - A-Tai Truong
- Laboratory of Parasitic and Honey Bee Diseases, Bacterial Disease Division, Department of Animal and Plant Health Research, Animal and Plant Quarantine Agency, Center for Honey Bee Disease Control, 39660, Gimcheon, Republic of Korea
- Faculty of Biotechnology, Thai Nguyen University of Sciences, Thai Nguyen, Vietnam
| | - Jong Ho Lee
- Plant Pest Control Division, Department of Plant Quarantine, Animal and Plant Quarantine Agency, Gimcheon, 39660, Republic of Korea
| | - So Youn Youn
- Laboratory of Parasitic and Honey Bee Diseases, Bacterial Disease Division, Department of Animal and Plant Health Research, Animal and Plant Quarantine Agency, Center for Honey Bee Disease Control, 39660, Gimcheon, Republic of Korea
| | - Se-Ji Lee
- Laboratory of Parasitic and Honey Bee Diseases, Bacterial Disease Division, Department of Animal and Plant Health Research, Animal and Plant Quarantine Agency, Center for Honey Bee Disease Control, 39660, Gimcheon, Republic of Korea
| | - Dong-Ho Kim
- Laboratory of Parasitic and Honey Bee Diseases, Bacterial Disease Division, Department of Animal and Plant Health Research, Animal and Plant Quarantine Agency, Center for Honey Bee Disease Control, 39660, Gimcheon, Republic of Korea
| | - Soon-Seek Yoon
- Laboratory of Parasitic and Honey Bee Diseases, Bacterial Disease Division, Department of Animal and Plant Health Research, Animal and Plant Quarantine Agency, Center for Honey Bee Disease Control, 39660, Gimcheon, Republic of Korea
| | - Yun Sang Cho
- Laboratory of Parasitic and Honey Bee Diseases, Bacterial Disease Division, Department of Animal and Plant Health Research, Animal and Plant Quarantine Agency, Center for Honey Bee Disease Control, 39660, Gimcheon, Republic of Korea.
| |
Collapse
|
17
|
Arzumanyan H, Avagyan H, Voskanyan H, Simonyan L, Simonyan J, Semirjyan Z, Karalyan Z. First molecular detection of the presence of honey bee viruses in insects, Varroa destructor mites, and pollinated plants in an isolated region of Armenia. Vet World 2023; 16:1029-1034. [PMID: 37576754 PMCID: PMC10420706 DOI: 10.14202/vetworld.2023.1029-1034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 04/12/2023] [Indexed: 08/15/2023] Open
Abstract
Background and Aim Recently, viral diseases of honey bees (Apis mellifera) have presented an increasing threat to beekeeping. This study aimed to examine the presence of honey bee viruses in Apis and non-Apis bee species, the mite Varroa destructor, and pollinated plants in Armenia. Materials and Methods Sampling was performed in Tavush Province, in the northeast of the Republic of Armenia, from August to November 2019. Overall, 200 A. mellifera bees, 50 V. destructor mites, and 20 wasps were collected (corresponding to three bees, five mites, and 2-11 wasps in each investigated sample) and homogenized for RNA isolation and detection of viruses. Ten pollinated plants were taken from each plant, and 2 g of each sample was used for homogenization. In each investigated case Apis mellifera, Varroa destructor, Vespula germanica and plants received percentages of the virus presence. Results Six important honey bee viruses (acute bee paralysis virus [ABPV], deformed wing virus [DWV], A. mellifera norovirus [ANV], Lake Sinai virus-2 [LSV-2], Big Sioux River virus [BSRV], and A. mellifera filamentous virus [AmFV]) were detected in samples by polymerase chain reaction. Our results showed that DWV, ANV, and ABPV were the most common viruses in honey bees. All viruses were detected in wasps, but LSV-2 and ANV were present in almost all samples. Conclusion Our results showed that almost all viruses were present in V. destructor. Although ANV is very common in honey bees, it did not appear in any mite samples. Our study indicates that viruses typically associated with honey bees were also actively infecting wasps. Our data suggest that the survival of viruses in plants can be an important source of seasonal transmission of viruses to bees. In addition, pollinated plants can potentially serve as reservoirs for honey bee viruses.
Collapse
Affiliation(s)
- Hranush Arzumanyan
- Laboratory of Cell Biology and Virology, Institute of Molecular Biology of NAS RA, Yerevan, Armenia
| | - Hranush Avagyan
- Laboratory of Cell Biology and Virology, Institute of Molecular Biology of NAS RA, Yerevan, Armenia
- Experimental Laboratory, Yerevan State Medical University, Yerevan, Armenia
| | - Henry Voskanyan
- Laboratory of Cell Biology and Virology, Institute of Molecular Biology of NAS RA, Yerevan, Armenia
- Scientific Center for Risks Assessment and Analysis in Food Safety Area, CJCS, Yerevan, Armenia
| | - Liana Simonyan
- Scientific Center for Risks Assessment and Analysis in Food Safety Area, CJCS, Yerevan, Armenia
| | - Jon Simonyan
- Scientific Center for Risks Assessment and Analysis in Food Safety Area, CJCS, Yerevan, Armenia
| | - Zara Semirjyan
- Laboratory of Cell Biology and Virology, Institute of Molecular Biology of NAS RA, Yerevan, Armenia
- Experimental Laboratory, Yerevan State Medical University, Yerevan, Armenia
| | - Zaven Karalyan
- Laboratory of Cell Biology and Virology, Institute of Molecular Biology of NAS RA, Yerevan, Armenia
- Department of Medical Biology, Yerevan State Medical University, Yerevan, Armenia
| |
Collapse
|
18
|
Schüler V, Liu YC, Gisder S, Horchler L, Groth D, Genersch E. Significant, but not biologically relevant: Nosema ceranae infections and winter losses of honey bee colonies. Commun Biol 2023; 6:229. [PMID: 36859713 PMCID: PMC9977864 DOI: 10.1038/s42003-023-04587-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 02/13/2023] [Indexed: 03/03/2023] Open
Abstract
The Western honey bee Apis mellifera, which provides about 90% of commercial pollination, is under threat from diverse abiotic and biotic factors. The ectoparasitic mite Varroa destructor vectoring deformed wing virus (DWV) has been identified as the main biotic contributor to honey bee colony losses worldwide, while the role of the microsporidium Nosema ceranae is still controversially discussed. In an attempt to solve this controversy, we statistically analyzed a unique data set on honey bee colony health collected from a cohort of honey bee colonies over 15 years and comprising more than 3000 data sets on mite infestation levels, Nosema spp. infections, and winter losses. Multivariate statistical analysis confirms that V. destructor is the major cause of colony winter losses. Although N. ceranae infections are also statistically significantly correlated with colony losses, determination of the effect size reveals that N. ceranae infections are of no or low biological relevance.
Collapse
Affiliation(s)
- Vivian Schüler
- Institute for Bee Research, Department of Molecular Microbiology and Bee Diseases, Friedrich-Engels-Str. 32, 16540, Hohen Neuendorf, Germany
| | - Yuk-Chien Liu
- Institute for Bee Research, Department of Molecular Microbiology and Bee Diseases, Friedrich-Engels-Str. 32, 16540, Hohen Neuendorf, Germany
- University of Potsdam, Institute of Biochemistry and Biology, Karl-Liebknecht-Str. 24-25, 14476, Potsdam-Golm, Germany
| | - Sebastian Gisder
- Institute for Bee Research, Department of Molecular Microbiology and Bee Diseases, Friedrich-Engels-Str. 32, 16540, Hohen Neuendorf, Germany
| | - Lennart Horchler
- Institute for Bee Research, Department of Molecular Microbiology and Bee Diseases, Friedrich-Engels-Str. 32, 16540, Hohen Neuendorf, Germany
| | - Detlef Groth
- University of Potsdam, Institute of Biochemistry and Biology, Karl-Liebknecht-Str. 24-25, 14476, Potsdam-Golm, Germany
| | - Elke Genersch
- Institute for Bee Research, Department of Molecular Microbiology and Bee Diseases, Friedrich-Engels-Str. 32, 16540, Hohen Neuendorf, Germany.
- Freie Universität Berlin, Department of Veterinary Medicine, Institute of Microbiology and Epizootics, Robert-von-Ostertag-Str. 7, 14163, Berlin, Germany.
| |
Collapse
|
19
|
The promise of probiotics in honeybee health and disease management. Arch Microbiol 2023; 205:73. [PMID: 36705763 DOI: 10.1007/s00203-023-03416-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Revised: 12/27/2022] [Accepted: 01/11/2023] [Indexed: 01/28/2023]
Abstract
Over the last decades, losses of bee populations have been observed worldwide. A panoply of biotic and abiotic factors, as well as the interplay among them, has been suggested to be responsible for bee declines, but definitive causes have not yet been identified. Among pollinators, the honeybee Apis mellifera is threatened by various diseases and environmental stresses, which have been shown to impact the insect gut microbiota that is known to be fundamental for host metabolism, development and immunity. Aimed at preserving the gut homeostasis, many researches are currently focusing on improving the honeybee health through the administration of probiotics e.g., by boosting the innate immune response against microbial infections. Here, we review the knowledge available on the characterization of the microbial diversity associated to honeybees and the use of probiotic symbionts as a promising approach to maintain honeybee fitness, sustaining a healthy gut microbiota and enhancing its crucial relationship with the host immune system.
Collapse
|
20
|
Lamas ZS, Solmaz S, Ryabov EV, Mowery J, Heermann M, Sonenshine D, Evans JD, Hawthorne DJ. Promiscuous feeding on multiple adult honey bee hosts amplifies the vectorial capacity of Varroa destructor. PLoS Pathog 2023; 19:e1011061. [PMID: 36656843 PMCID: PMC9851535 DOI: 10.1371/journal.ppat.1011061] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 12/12/2022] [Indexed: 01/20/2023] Open
Abstract
Varroa destructor is a cosmopolitan pest and leading cause of colony loss of the European honey bee. Historically described as a competent vector of honey bee viruses, this arthropod vector is the cause of a global pandemic of Deformed wing virus, now endemic in honeybee populations in all Varroa-infested regions. Our work shows that viral spread is driven by Varroa actively switching from one adult bee to another as they feed. Assays using fluorescent microspheres were used to indicate the movement of fluids in both directions between host and vector when Varroa feed. Therefore, Varroa could be in either an infectious or naïve state dependent upon the disease status of their host. We tested this and confirmed that the relative risk of a Varroa feeding depended on their previous host's infectiousness. Varroa exhibit remarkable heterogeneity in their host-switching behavior, with some Varroa infrequently switching while others switch at least daily. As a result, relatively few of the most active Varroa parasitize the majority of bees. This multiple-feeding behavior has analogs in vectorial capacity models of other systems, where promiscuous feeding by individual vectors is a leading driver of vectorial capacity. We propose that the honeybee-Varroa relationship offers a unique opportunity to apply principles of vectorial capacity to a social organism, as virus transmission is both vectored and occurs through multiple host-to-host routes common to a crowded society.
Collapse
Affiliation(s)
- Zachary S. Lamas
- Department of Entomology, University of Maryland, College Park, Maryland, United States of America
- United States Department of Agriculture—Agricultural Research Service, Bee Research Laboratory, Beltsville, Maryland, United States of America
- * E-mail:
| | - Serhat Solmaz
- Department of Entomology, University of Maryland, College Park, Maryland, United States of America
- Apiculture Research Institute, Ministry of Agriculture and Forestry, Ordu, Turkey
| | - Eugene V. Ryabov
- Department of Entomology, University of Maryland, College Park, Maryland, United States of America
- United States Department of Agriculture—Agricultural Research Service, Bee Research Laboratory, Beltsville, Maryland, United States of America
| | - Joseph Mowery
- United States Department of Agriculture—Agricultural Research Service, Electron & Confocal Microscopy Unit, Beltsville, Maryland, United States of America
| | - Matthew Heermann
- United States Department of Agriculture—Agricultural Research Service, Bee Research Laboratory, Beltsville, Maryland, United States of America
| | - Daniel Sonenshine
- United States Department of Agriculture—Agricultural Research Service, Bee Research Laboratory, Beltsville, Maryland, United States of America
| | - Jay D. Evans
- United States Department of Agriculture—Agricultural Research Service, Bee Research Laboratory, Beltsville, Maryland, United States of America
| | - David J. Hawthorne
- Department of Entomology, University of Maryland, College Park, Maryland, United States of America
| |
Collapse
|
21
|
Eliash N, Suenaga M, Mikheyev AS. Vector-virus interaction affects viral loads and co-occurrence. BMC Biol 2022; 20:284. [PMID: 36527054 PMCID: PMC9758805 DOI: 10.1186/s12915-022-01463-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Accepted: 11/10/2022] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Vector-borne viral diseases threaten human and wildlife worldwide. Vectors are often viewed as a passive syringe injecting the virus. However, to survive, replicate and spread, viruses must manipulate vector biology. While most vector-borne viral research focuses on vectors transmitting a single virus, in reality, vectors often carry diverse viruses. Yet how viruses affect the vectors remains poorly understood. Here, we focused on the varroa mite (Varroa destructor), an emergent parasite that can carry over 20 honey bee viruses, and has been responsible for colony collapses worldwide, as well as changes in global viral populations. Co-evolution of the varroa and the viral community makes it possible to investigate whether viruses affect vector gene expression and whether these interactions affect viral epidemiology. RESULTS Using a large set of available varroa transcriptomes, we identified how abundances of individual viruses affect the vector's transcriptional network. We found no evidence of competition between viruses, but rather that some virus abundances are positively correlated. Furthermore, viruses that are found together interact with the vector's gene co-expression modules in similar ways, suggesting that interactions with the vector affect viral epidemiology. We experimentally validated this observation by silencing candidate genes using RNAi and found that the reduction in varroa gene expression was accompanied by a change in viral load. CONCLUSIONS Combined, the meta-transcriptomic analysis and experimental results shed light on the mechanism by which viruses interact with each other and with their vector to shape the disease course.
Collapse
Affiliation(s)
- Nurit Eliash
- grid.18098.380000 0004 1937 0562Shamir Research Institute, University of Haifa, Katzrin, Israel ,grid.250464.10000 0000 9805 2626Okinawa Institute of Science and Technology, 1919-1 Tancha Onna-son, Okinawa, 904-0495 Japan
| | - Miyuki Suenaga
- grid.250464.10000 0000 9805 2626Okinawa Institute of Science and Technology, 1919-1 Tancha Onna-son, Okinawa, 904-0495 Japan
| | - Alexander S. Mikheyev
- grid.250464.10000 0000 9805 2626Okinawa Institute of Science and Technology, 1919-1 Tancha Onna-son, Okinawa, 904-0495 Japan ,grid.1001.00000 0001 2180 7477Australian National University, Canberra, ACT, 2600 Australia
| |
Collapse
|
22
|
Lin Z, Zhang N, Wang Z, Zhuang M, Wang Q, Niu D, Page P, Wang K, Niu Q, Ji T. Acute and chronic viruses mediated by an ectoparasite targeting different developmental stages of honeybee ( Apis mellifera and Apis cerana) brood. Front Vet Sci 2022; 9:951159. [PMID: 36277062 PMCID: PMC9583130 DOI: 10.3389/fvets.2022.951159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Accepted: 09/19/2022] [Indexed: 11/04/2022] Open
Abstract
The health of the western honeybee, Apis mellifera, the most crucial pollinator, has been challenged globally over the past decades. An ectoparasitic mite, Varroa destructor, together with the viruses it vectored, is generally regarded as the vital pathogenic agent. Although the poor health status of A. mellifera compared to its eastern counterpart, Apis cerana, has been broadly identified, the underlying mechanism remains poorly understood and comparison between susceptible and resistant hosts will potentially ameliorate this predicament. Here, we investigated the impacts of two widespread viruses-deformed wing virus type A (DWV-A) and Israeli acute paralysis virus (IAPV), mediated by V. destructor mite, on the capped developing honeybee brood, in the absence of adult workers, of A. mellifera and A. cerana, with positive and negative controls. Our results demonstrated that the endogenous viruses imposed limited damage on the hosts even if the brood was wounded. In contrast, the exogenous viruses introduced by ectoparasites triggered variable mortality of the infested brood between host species. Intriguingly, death causes of both honeybee species presented a similar trend: the acute IAPV generally causes morbidity and mortality of late larvae, while the chronic DWV-A typically leads to brood mortality during and after pupation. Notably, the susceptible immature A. cerana individuals, supported by higher observed mortality and a lower virus tolerance, serve the interests of the colony and foster the overall survival of a resistant honeybee superorganism. These results improve our understanding of the interactions between viruses carried by ectoparasites and their developing hosts, and the novel insight of weak individuals fostering strong colonies may promote breeding efforts to mitigate the indefensible colony losses globally.
Collapse
Affiliation(s)
- Zheguang Lin
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Nan Zhang
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Zhi Wang
- Apiculture Science Institute of Jilin Province, Jilin, China
| | | | - Qi Wang
- Apiculture Science Institute of Jilin Province, Jilin, China
- College of Forestry, Beihua University, Jilin, China
| | - Defang Niu
- College of Food Science and Technology, Jiangsu Agri-animal Husbandry Vocational College, Taizhou, China
| | - Paul Page
- Institute of Agricultural Technology, Suranaree University of Technology, Nakhon Ratchasima, Thailand
| | - Kang Wang
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Qingsheng Niu
- Apiculture Science Institute of Jilin Province, Jilin, China
| | - Ting Ji
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| |
Collapse
|
23
|
Huang WF, Li R, Jin L, Huang S. Procedures and potential pitfalls for constructing a bee-infecting RNA virus clone. FRONTIERS IN INSECT SCIENCE 2022; 2:908702. [PMID: 38468785 PMCID: PMC10926416 DOI: 10.3389/finsc.2022.908702] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 08/29/2022] [Indexed: 03/13/2024]
Abstract
Viruses are factors that can fluctuate insect populations, including honey bees. Most honey bee infecting viruses are single positive-stranded RNA viruses that may not specifically infect honey bees and can be hazardous to other pollinator insects. In addition, these viruses could synergize with other stressors to worsen the honey bee population decline. To identify the underlying detailed mechanisms, reversed genetic studies with infectious cDNA clones of the viruses are necessary. Moreover, an infectious cDNA clone can be applied to studies as an ideal virus isolate that consists of a single virus species with a uniform genotype. However, only a few infectious cDNA clones have been reported in honey bee studies since the first infectious cDNA clone was published four decades ago. This article discusses steps, rationales, and potential issues in bee-infecting RNA virus cloning. In addition, failed experiences of cloning a Deformed wing virus isolate that was phylogenetically identical to Kakugo virus were addressed. We hope the information provided in this article can facilitate further developments of reverse-genetic studies of bee-infecting viruses to clarify the roles of virus diseases in the current pollinator declines.
Collapse
Affiliation(s)
- Wei-Fone Huang
- College of Animal Science (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou, China
| | | | | | | |
Collapse
|
24
|
Transmission of deformed wing virus between Varroa destructor foundresses, mite offspring and infested honey bees. Parasit Vectors 2022; 15:333. [PMID: 36151583 PMCID: PMC9502634 DOI: 10.1186/s13071-022-05463-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Accepted: 08/22/2022] [Indexed: 11/16/2022] Open
Abstract
Background Varroa destructor is the major ectoparasite of the western honey bee (Apis mellifera). Through both its parasitic life-cycle and its role as a vector of viral pathogens, it can cause major damage to honey bee colonies. The deformed wing virus (DWV) is the most common virus transmitted by this ectoparasite, and the mite is correlated to increased viral prevalence and viral loads in infested colonies. DWV variants A and B (DWV-A and DWV-B, respectively) are the two major DWV variants, and they differ both in their virulence and transmission dynamics. Methods We studied the transmission of DWV between bees, parasitic mites and their offspring by quantifying DWV loads in bees and mites collected in in vitro and in situ environments. In vitro, we artificially transmitted DWV-A to mites and quantified both DWV-A and DWV-B in mites and bees. In situ, we measured the natural presence of DWV-B in bees, mites and mites’ offspring. Results Bee and mite viral loads were correlated, and mites carrying both variants were associated with higher mortality of the infected host. Mite infestation increased the DWV-B loads and decreased the DWV-A loads in our laboratory conditions. In situ, viral quantification in the mite offspring showed that, after an initially non-infected egg stage, the DWV-B loads were more closely correlated with the foundress (mother) mites than with the bee hosts. Conclusions The association between mites and DWV-B was highlighted in this study. The parasitic history of a mite directly impacts its DWV infection potential during the rest of its life-cycle (in terms of variant and viral loads). Regarding the mite’s progeny, we hypothesize that the route of contamination is likely through the feeding site rather than by vertical transmission, although further studies are needed to confirm this hypothesis. Graphical Abstract ![]()
Supplementary Information The online version contains supplementary material available at 10.1186/s13071-022-05463-9.
Collapse
|
25
|
Ryabov EV, Posada-Florez F, Rogers C, Lamas ZS, Evans JD, Chen Y, Cook SC. The vectoring competence of the mite Varroa destructor for deformed wing virus of honey bees is dynamic and affects survival of the mite. FRONTIERS IN INSECT SCIENCE 2022; 2:931352. [PMID: 38468796 PMCID: PMC10926515 DOI: 10.3389/finsc.2022.931352] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 09/12/2022] [Indexed: 03/13/2024]
Abstract
The ectoparasitic mite, Varroa destructor and the viruses it vectors, including types A and B of Deformed wing virus (DWV), pose a major threat to honey bees, Apis mellifera. Analysis of 256 mites collected from the same set of field colonies on five occasions from May to October 2021 showed that less than a half of them, 39.8% (95% confidence interval (CI): 34.0 - 46.0%), were able to induce a high (overt) level DWV infection with more than 109 viral genomes per bee in the pupa after 6 days of feeding, with both DWV-A and DWV-B being vectored at similar rates. To investigate the effect of the phoretic (or dispersal) stage on adult bees on the mites' ability to vector DWV, the mites from two collection events were divided into two groups, one of which was tested immediately for their infectiveness, and the other was kept with adult worker bees in cages for 12 days prior to testing their infectiveness. We found that while 39.2% (95% CI: 30.0 - 49.1%) of the immediately tested mites induced overt-level infections, 12-day passage on adult bees significantly increased the infectiousness to 89.8% (95% CI: 79.2 - 95.6%). It is likely that Varroa mites that survive brood interruptions in field colonies are increasingly infectious. The mite lifespan was affected by the DWV type it transmitted to pupae. The mites, which induced high DWV-B but not DWV-A infection had an average lifespan of 15.5 days (95% CI: 11.8 - 19.2 days), which was significantly shorter than those of the mites which induced high DWV-A but not DWV-B infection, with an average lifespan of 24.3 days (95% CI: 20.2 - 28.5), or the mites which did not induce high levels of DWV-A or DWV-B, with an average survival of 21.2 days (95% CI: 19.0 - 23.5 days). The mites which transmitted high levels of both DWV-A and DWV-B had an intermediate average survival of 20.5 days (95% CI: 15.1 - 25.9 days). The negative impact of DWV-B on mite survival could be a consequence of the ability of DWV-B, but not DWV-A to replicate in Varroa.
Collapse
Affiliation(s)
- Eugene V. Ryabov
- United States Department of Agriculture - Agricultural Research Service, Bee Research Laboratory, Beltsville, MD, United States
- Department of Entomology, University of Maryland, College Park, MD, United States
| | - Francisco Posada-Florez
- United States Department of Agriculture - Agricultural Research Service, Bee Research Laboratory, Beltsville, MD, United States
| | - Curtis Rogers
- United States Department of Agriculture - Agricultural Research Service, Bee Research Laboratory, Beltsville, MD, United States
| | - Zachary S. Lamas
- Department of Entomology, University of Maryland, College Park, MD, United States
| | - Jay D. Evans
- United States Department of Agriculture - Agricultural Research Service, Bee Research Laboratory, Beltsville, MD, United States
| | - Yanping Chen
- United States Department of Agriculture - Agricultural Research Service, Bee Research Laboratory, Beltsville, MD, United States
| | - Steven C. Cook
- United States Department of Agriculture - Agricultural Research Service, Bee Research Laboratory, Beltsville, MD, United States
| |
Collapse
|
26
|
Paxton RJ, Schäfer MO, Nazzi F, Zanni V, Annoscia D, Marroni F, Bigot D, Laws-Quinn ER, Panziera D, Jenkins C, Shafiey H. Epidemiology of a major honey bee pathogen, deformed wing virus: potential worldwide replacement of genotype A by genotype B. Int J Parasitol Parasites Wildl 2022; 18:157-171. [PMID: 35592272 PMCID: PMC9112108 DOI: 10.1016/j.ijppaw.2022.04.013] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 04/16/2022] [Accepted: 04/29/2022] [Indexed: 01/10/2023]
Abstract
The western honey bee (Apis mellifera) is of major economic and ecological importance, with elevated rates of colony losses in temperate regions over the last two decades thought to be largely caused by the exotic ectoparasitic mite Varroa destructor and deformed wing virus (DWV), which the mite transmits. DWV currently exists as two main genotypes: the formerly widespread DWV-A and the more recently described and rapidly expanding DWV-B. It is an excellent system to understand viral evolution and the replacement of one viral variant by another. Here we synthesise published results on the distribution and prevalence of DWV-A and -B over the period 2008-2021 and present novel data for Germany, Italy and the UK to suggest that (i) DWV-B has rapidly expanded worldwide since its first description in 2004 and (ii) that it is potentially replacing DWV-A. Both genotypes are also found in wild bee species. Based on a simple mathematical model, we suggest that interference between viral genotypes when co-infecting the same host is key to understanding their epidemiology. We finally discuss the consequences of genotype replacement for beekeeping and for wild pollinator species.
Collapse
Affiliation(s)
- Robert J. Paxton
- General Zoology, Institute for Biology, Martin Luther University Halle-Wittenberg, Hoher Weg 8, 06120, Halle (Saale), Germany
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Puschstrasse 4, 04103, Leipzig, Germany
| | - Marc O. Schäfer
- Institute of Infectology Medicine, Federal Research Institute for Animal Health, Friedrich-Loeffler-Institut, Südufer 10, 17493, Greifswald, Insel Riems, Germany
| | - Francesco Nazzi
- Dipartimento di Scienze AgroAlimentari, Ambientali e Animali, Università degli Studi di Udine, Via delle Scienze 206, 33100, Udine, Italy
| | - Virginia Zanni
- Dipartimento di Scienze AgroAlimentari, Ambientali e Animali, Università degli Studi di Udine, Via delle Scienze 206, 33100, Udine, Italy
| | - Desiderato Annoscia
- Dipartimento di Scienze AgroAlimentari, Ambientali e Animali, Università degli Studi di Udine, Via delle Scienze 206, 33100, Udine, Italy
| | - Fabio Marroni
- Dipartimento di Scienze AgroAlimentari, Ambientali e Animali, Università degli Studi di Udine, Via delle Scienze 206, 33100, Udine, Italy
| | - Diane Bigot
- General Zoology, Institute for Biology, Martin Luther University Halle-Wittenberg, Hoher Weg 8, 06120, Halle (Saale), Germany
| | - Eoin R. Laws-Quinn
- General Zoology, Institute for Biology, Martin Luther University Halle-Wittenberg, Hoher Weg 8, 06120, Halle (Saale), Germany
| | - Delphine Panziera
- General Zoology, Institute for Biology, Martin Luther University Halle-Wittenberg, Hoher Weg 8, 06120, Halle (Saale), Germany
| | - Christina Jenkins
- General Zoology, Institute for Biology, Martin Luther University Halle-Wittenberg, Hoher Weg 8, 06120, Halle (Saale), Germany
| | - Hassan Shafiey
- General Zoology, Institute for Biology, Martin Luther University Halle-Wittenberg, Hoher Weg 8, 06120, Halle (Saale), Germany
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Puschstrasse 4, 04103, Leipzig, Germany
| |
Collapse
|
27
|
Woodford L, Christie CR, Campbell EM, Budge GE, Bowman AS, Evans DJ. Quantitative and Qualitative Changes in the Deformed Wing Virus Population in Honey Bees Associated with the Introduction or Removal of Varroa destructor. Viruses 2022; 14:v14081597. [PMID: 35893663 PMCID: PMC9332399 DOI: 10.3390/v14081597] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 07/08/2022] [Accepted: 07/19/2022] [Indexed: 02/06/2023] Open
Abstract
Varroa destructor is an ectoparasitic mite associated with significant losses of honeybee colonies globally. The mite vectors a range of pathogenic viruses, the most important of which is the Deformed wing virus (DWV). In the absence of Varroa, DWV exists as a low-level, highly diverse virus population. However, when transmitted by Varroa, certain variants become highly elevated, and may become near-clonal and cause symptomatic infections. Mite transmission between colonies can occur when parasitised workers drift from or rob adjacent hives. These activities can result in elevated mite levels, but the resulting change in the DWV population, the primary determinant of winter colony losses, has not been determined. In reciprocal studies, we investigated the influence of the removal of mites, or their acquisition, on the DWV population. When mites were removed from heavily infested colonies, there was a striking and rapid reduction in virus load. Conversely, siting Varroa-naïve colonies in a mite-infested apiary resulted in the acquisition of mites and concomitant changes in the virus population. We observed both near-clonal and highly divergent virus populations regardless of titre, suggesting changes were stochastic and colony-specific. Our findings have implications for the outcome of strategies in areas with total or patchy implementation of Varroa control plans.
Collapse
Affiliation(s)
- Luke Woodford
- Biomedical Sciences Research Complex, University of St. Andrews, St. Andrews KY16 9ST, UK;
- Correspondence:
| | - Craig R. Christie
- Institute of Biological and Environmental Sciences, School of Biological Sciences, University of Aberdeen, Aberdeen AB24 3FX, UK; (C.R.C.); (E.M.C.); (A.S.B.)
| | - Ewan M. Campbell
- Institute of Biological and Environmental Sciences, School of Biological Sciences, University of Aberdeen, Aberdeen AB24 3FX, UK; (C.R.C.); (E.M.C.); (A.S.B.)
| | - Giles E. Budge
- School of Natural and Environmental Sciences, Newcastle University, Newcastle NE1 7RU, UK;
| | - Alan S. Bowman
- Institute of Biological and Environmental Sciences, School of Biological Sciences, University of Aberdeen, Aberdeen AB24 3FX, UK; (C.R.C.); (E.M.C.); (A.S.B.)
| | - David J. Evans
- Biomedical Sciences Research Complex, University of St. Andrews, St. Andrews KY16 9ST, UK;
| |
Collapse
|
28
|
Penn HJ, Simone-Finstrom MD, Chen Y, Healy KB. Honey Bee Genetic Stock Determines Deformed Wing Virus Symptom Severity but not Viral Load or Dissemination Following Pupal Exposure. Front Genet 2022; 13:909392. [PMID: 35719388 PMCID: PMC9204523 DOI: 10.3389/fgene.2022.909392] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 04/22/2022] [Indexed: 12/15/2022] Open
Abstract
Honey bees exposed to Varroa mites incur substantial physical damage in addition to potential exposure to vectored viruses such as Deformed wing virus (DWV) that exists as three master variants (DWV-A, DWV-B, and DWV-C) and recombinants. Although mite-resistant bees have been primarily bred to mitigate the impacts of Varroa mites, mite resistance may be associated with increased tolerance or resistance to the vectored viruses. The goal of our study is to determine if five honey bee stocks (Carniolan, Italian, Pol-Line, Russian, and Saskatraz) differ in their resistance or tolerance to DWV based on prior breeding for mite resistance. We injected white-eyed pupae with a sublethal dose (105) of DWV or exposed them to mites and then evaluated DWV levels and dissemination and morphological symptoms upon adult emergence. While we found no evidence of DWV resistance across stocks (i.e., similar rates of viral replication and dissemination), we observed that some stocks exhibited reduced symptom severity suggestive of differential tolerance. However, DWV tolerance was not consistent across mite-resistant stocks as Russian bees were most tolerant, while Pol-Line exhibited the most severe symptoms. DWV variants A and B exhibited differential dissemination patterns that interacted significantly with the treatment group but not bee stock. Furthermore, elevated DWV-B levels reduced adult emergence time, while both DWV variants were associated with symptom likelihood and severity. These data indicate that the genetic differences underlying bee resistance to Varroa mites are not necessarily correlated with DWV tolerance and may interact differentially with DWV variants, highlighting the need for further work on mechanisms of tolerance and bee stock-specific physiological interactions with pathogen variants.
Collapse
Affiliation(s)
- Hannah J. Penn
- United States Department of Agriculture, Agricultural Research Service, Sugarcane Research Unit, Houma, LA, United States
| | - Michael D. Simone-Finstrom
- United States Department of Agriculture, Agricultural Research Service, Honey Bee Breeding, Genetics and Physiology Research Unit, Baton Rouge, LA, United States
| | - Yanping Chen
- United States Department of Agriculture, Agricultural Research Service, Bee Research Laboratory, Beltsville, MD, United States
| | - Kristen B. Healy
- Department of Entomology, Louisiana State University and AgCenter, Baton Rouge, LA, United States
| |
Collapse
|
29
|
Lester PJ, Felden A, Baty JW, Bulgarella M, Haywood J, Mortensen AN, Remnant EJ, Smeele ZE. Viral communities in the parasite Varroa destructor and in colonies of their honey bee host (Apis mellifera) in New Zealand. Sci Rep 2022; 12:8809. [PMID: 35614309 PMCID: PMC9133037 DOI: 10.1038/s41598-022-12888-w] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Accepted: 05/11/2022] [Indexed: 11/11/2022] Open
Abstract
The parasitic mite Varroa destructor is a leading cause of mortality for Western honey bee (Apis mellifera) colonies around the globe. We sought to confirm the presence and likely introduction of only one V. destructor haplotype in New Zealand, and describe the viral community within both V. destructor mites and the bees that they parasitise. A 1232 bp fragment from mitochondrial gene regions suggests the likely introduction of only one V. destructor haplotype to New Zealand. Seventeen viruses were found in bees. The most prevalent and abundant was the Deformed wing virus A (DWV-A) strain, which explained 95.0% of the variation in the viral community of bees. Black queen cell virus, Sacbrood virus, and Varroa destructor virus 2 (VDV-2) played secondary roles. DWV-B and the Israeli acute paralysis virus appeared absent from New Zealand. Ten viruses were observed in V. destructor, with > 99.9% of viral reads from DWV-A and VDV-2. Substantially more variation in viral loads was observed in bees compared to mites. Where high levels of VDV-2 occurred in mites, reduced DWV-A occurred in both the mites and the bees co-occurring within the same hive. Where there were high loads of DWV-A in mites, there were typically high viral loads in bees.
Collapse
Affiliation(s)
- Philip J Lester
- Centre for Biodiversity and Restoration Ecology, School of Biological Sciences, Victoria University of Wellington, PO Box 600, Wellington, 6012, New Zealand.
| | - Antoine Felden
- Centre for Biodiversity and Restoration Ecology, School of Biological Sciences, Victoria University of Wellington, PO Box 600, Wellington, 6012, New Zealand
| | - James W Baty
- Centre for Biodiversity and Restoration Ecology, School of Biological Sciences, Victoria University of Wellington, PO Box 600, Wellington, 6012, New Zealand
| | - Mariana Bulgarella
- Centre for Biodiversity and Restoration Ecology, School of Biological Sciences, Victoria University of Wellington, PO Box 600, Wellington, 6012, New Zealand
| | - John Haywood
- School of Mathematics and Statistics, Victoria University of Wellington, PO Box 600, Wellington, 6012, New Zealand
| | - Ashley N Mortensen
- The New Zealand Institute for Plant and Food Research Limited, Private Bag 3230, Waikato Mail Centre, Hamilton, 3240, New Zealand
| | - Emily J Remnant
- Behaviour, Ecology and Evolution Laboratory, School of Life and Environmental Sciences, University of Sydney, Science Road, Sydney, NSW, 2006, Australia
| | - Zoe E Smeele
- Centre for Biodiversity and Restoration Ecology, School of Biological Sciences, Victoria University of Wellington, PO Box 600, Wellington, 6012, New Zealand
| |
Collapse
|
30
|
Penn HJ, Simone-Finstrom MD, de Guzman LI, Tokarz PG, Dickens R. Colony-Level Viral Load Influences Collective Foraging in Honey Bees. FRONTIERS IN INSECT SCIENCE 2022; 2:894482. [PMID: 38468777 PMCID: PMC10926460 DOI: 10.3389/finsc.2022.894482] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Accepted: 04/13/2022] [Indexed: 03/13/2024]
Abstract
Nutrition is an important component of social insect colony health especially in the face of stressors such as parasitism and viral infections. Honey bees are known to preferentially select nectar and pollen based on macronutrient and phytochemical contents and in response to pathogen loads. However, given that honey bees live in colonies, collective foraging decisions may be impacted directly by forager infection status but also by colony health. This field experiment was conducted to determine if honey bee viral infections are correlated with pollen and nectar foraging and if these associations are impacted more by colony or forager infection. By comparing regressions with and without forager and colony variables and through structural equation models, we were able to determine the relative contributions of colony and forager virus loads on forager decisions. We found that foragers had higher numbers and levels of BQCV and CBPV but lower levels of DWV viruses than their respective colonies. Overall, individuals appeared to forage based a combination of their own and colony health but with greater weight given to colony metrics. Colony parasitism by Varroa mites, positively correlated with both forager and colony DWV-B levels, was negatively associated with nectar weight. Further, colony DWV-B levels were negatively associated with individually foraged pollen protein: lipid ratios but positively correlated with nectar weight and sugar content. This study shows that both colony and forager health can simultaneously mediate individual foraging decisions and that the importance of viral infections and parasite levels varies with foraging metrics. Overall, this work highlights the continued need to explore the interactions of disease, nutrition, and genetics in social interactions and structures.
Collapse
Affiliation(s)
- Hannah J. Penn
- USDA ARS, Sugarcane Research Unit, Houma, LA, United States
| | - Michael D. Simone-Finstrom
- USDA ARS, Honey Bee Breeding, Genetics and Physiology Research Laboratory, Baton Rouge, LA, United States
| | - Lilia I. de Guzman
- USDA ARS, Honey Bee Breeding, Genetics and Physiology Research Laboratory, Baton Rouge, LA, United States
| | - Philip G. Tokarz
- USDA ARS, Honey Bee Breeding, Genetics and Physiology Research Laboratory, Baton Rouge, LA, United States
| | - Rachel Dickens
- USDA ARS, Honey Bee Breeding, Genetics and Physiology Research Laboratory, Baton Rouge, LA, United States
| |
Collapse
|
31
|
The Virome of Healthy Honey Bee Colonies: Ubiquitous Occurrence of Known and New Viruses in Bee Populations. mSystems 2022; 7:e0007222. [PMID: 35532210 PMCID: PMC9239248 DOI: 10.1128/msystems.00072-22] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
The Western honey bee,
Apis mellifera
, is a vital part of our ecosystem as well as cultural heritage. Annual colony losses endanger beekeeping.
Collapse
|
32
|
Molecular Detection and Differentiation of Arthropod, Fungal, Protozoan, Bacterial and Viral Pathogens of Honeybees. Vet Sci 2022; 9:vetsci9050221. [PMID: 35622749 PMCID: PMC9145064 DOI: 10.3390/vetsci9050221] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 04/26/2022] [Accepted: 04/27/2022] [Indexed: 02/01/2023] Open
Abstract
The honeybee Apis mellifera is highly appreciated worldwide because of its products, but also as it is a pollinator of crops and wild plants. The beehive is vulnerable to infections due to arthropods, fungi, protozoa, bacteria and/or viruses that manage to by-pass the individual and social immune mechanisms of bees. Due to the close proximity of bees in the beehive and their foraging habits, infections easily spread within and between beehives. Moreover, international trade of bees has caused the global spread of infections, several of which result in significant losses for apiculture. Only in a few cases can infections be diagnosed with the naked eye, by direct observation of the pathogen in the case of some arthropods, or by pathogen-associated distinctive traits. Development of molecular methods based on the amplification and analysis of one or more genes or genomic segments has brought significant progress to the study of bee pathogens, allowing for: (i) the precise and sensitive identification of the infectious agent; (ii) the analysis of co-infections; (iii) the description of novel species; (iv) associations between geno- and pheno-types and (v) population structure studies. Sequencing of bee pathogen genomes has allowed for the identification of new molecular targets and the development of specific genotypification strategies.
Collapse
|
33
|
A derived honey bee stock confers resistance to Varroa destructor and associated viral transmission. Sci Rep 2022; 12:4852. [PMID: 35393440 PMCID: PMC8989980 DOI: 10.1038/s41598-022-08643-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Accepted: 02/23/2022] [Indexed: 12/11/2022] Open
Abstract
The ectoparasite Varroa destructor is the greatest threat to managed honey bee (Apis mellifera) colonies globally. Despite significant efforts, novel treatments to control the mite and its vectored pathogens have shown limited efficacy, as the host remains naïve. A prospective solution lies in the development of Varroa-resistant honey bee stocks, but a paucity of rigorous selection data restricts widespread adoption. Here, we characterise the parasite and viral dynamics of a Varroa-resistant honey bee stock, designated ‘Pol-line’, using a large-scale longitudinal study. Results demonstrate markedly reduced Varroa levels in this stock, diminished titres of three major viruses (DWV-A, DWV-B, and CBPV), and a two-fold increase in survival. Levels of a fourth virus that is not associated with Varroa—BQCV—do not differ between stocks, supporting a disruption of the transmission pathway. Further, we show that when decoupled from the influence of Varroa levels, viral titres do not constitute strong independent predictors of colony mortality risk. These findings highlight the need for a reassessment of Varroa etiology, and suggest that derived stocks represent a tractable solution to the Varroa pandemic.
Collapse
|
34
|
Bahreini R, Nasr M, Docherty C, Muirhead S, de Herdt O, Feindel D. Miticidal activity of fenazaquin and fenpyroximate against Varroa destructor, an ectoparasite of Apis mellifera. PEST MANAGEMENT SCIENCE 2022; 78:1686-1697. [PMID: 34994089 PMCID: PMC9303763 DOI: 10.1002/ps.6788] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 12/09/2021] [Accepted: 01/07/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND The Varroa mite (Varroa destructor) is an ectoparasite that can affect the health of honey bees (Apis mellifera) and contributes to the loss of colony productivity. The limited availability of Varroacides with different modes of action in Canada has resulted in the development of chemical resistance in mite populations. Therefore, an urgent need to evaluate new potential miticides that are safe for bees and exhibit high efficacy against Varroa exists. In this study, the acute contact toxicity of 26 active ingredients (19 chemical classes), already available on the market, was evaluated on V. destructor and A. mellifera under laboratory conditions using an apiarium bioassay. In this assay, groups of Varroa-infested worker bees were exposed to different dilutions of candidate compounds. In semi-field trials, Varroa-infested honey bees were randomly treated with four vetted candidate compounds from the apiarium assay in mini-colonies. RESULTS Among tested compounds, fenazaquin (quinazoline class) and fenpyroximate (pyrazole class) had higher mite mortality and lower bee mortality over a 24 h exposure period in apiariums. These two compounds, plus spirotetramat and spirodiclofen, were selected for semi-field evaluation based on the findings of the apiarium bioassay trials and previous laboratory studies. Consistent with the apiarium bioassay, semi-field results showed fenazaquin and fenpyroximate had high efficacy (>80%), reducing Varroa abundance by 80% and 68%, respectively. CONCLUSION These findings suggest that fenazaquin would be an effective Varroacide, along with fenpyroximate, which was previously registered for in-hive use as Hivastan. Both compounds have the potential to provide beekeepers with an alternative option for managing Varroa mites in honey bee colonies. © 2022 The Authors. Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.
Collapse
Affiliation(s)
- Rassol Bahreini
- Plant and Bee Health Surveillance SectionAlberta Agriculture and ForestryEdmontonABCanada
| | - Medhat Nasr
- Plant and Bee Health Surveillance SectionAlberta Agriculture and ForestryEdmontonABCanada
| | - Cassandra Docherty
- Plant and Bee Health Surveillance SectionAlberta Agriculture and ForestryEdmontonABCanada
| | - Samantha Muirhead
- Plant and Bee Health Surveillance SectionAlberta Agriculture and ForestryEdmontonABCanada
| | - Olivia de Herdt
- Plant and Bee Health Surveillance SectionAlberta Agriculture and ForestryEdmontonABCanada
| | - David Feindel
- Plant and Bee Health Surveillance SectionAlberta Agriculture and ForestryEdmontonABCanada
| |
Collapse
|
35
|
Kumar D, Alburaki M, Tahir F, Goblirsch M, Adamczyk J, Karim S. An Insight Into the microRNA Profile of the Ectoparasitic Mite Varroa destructor (Acari: Varroidae), the Primary Vector of Honey Bee Deformed Wing Virus. Front Cell Infect Microbiol 2022; 12:847000. [PMID: 35372101 PMCID: PMC8966896 DOI: 10.3389/fcimb.2022.847000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Accepted: 02/17/2022] [Indexed: 11/15/2022] Open
Abstract
The remarkably adaptive mite Varroa destructor is the most important honey bee ectoparasite. Varroa mites are competent vectors of deformed wing virus (DWV), and the Varroa-virus complex is a major determinant of annual honey bee colony mortality and collapse. MicroRNAs (miRNAs) are 22-24 nucleotide non-coding RNAs produced by all plants and animals and some viruses that influence biological processes through post-transcriptional regulation of gene expression. Knowledge of miRNAs and their function in mite biology remains limited. Here we constructed small RNA libraries from male and female V. destructor using Illumina's small RNA-Seq platform. A total of 101,913,208 and 91,904,732 small RNA reads (>18 nucleotides) from male and female mites were analyzed using the miRDeep2 algorithm. A conservative approach predicted 306 miRNAs, 18 of which were upregulated and 13 downregulated in female V. destructor compared with males. Quantitative real-time PCR validated the expression of selected differentially-expressed female Varroa miRNAs. This dataset provides a list of potential miRNA targets involved in regulating vital Varroa biological processes and paves the way for developing strategies to target Varroa and their viruses.
Collapse
Affiliation(s)
- Deepak Kumar
- School of Biological, Environmental, and Earth Sciences, University of Southern Mississippi, Hattiesburg, MS, United States
| | - Mohamed Alburaki
- Bee Research Laboratory, Beltsville, United States Department of Agriculture, Agricultural Research Service (USDA ARS), Beltsville, MD, United States
| | - Faizan Tahir
- School of Biological, Environmental, and Earth Sciences, University of Southern Mississippi, Hattiesburg, MS, United States
| | - Michael Goblirsch
- Southern Horticultural Research Unit, USDA ARS, Poplarville, MS, United States
| | - John Adamczyk
- Southern Horticultural Research Unit, USDA ARS, Poplarville, MS, United States
| | - Shahid Karim
- School of Biological, Environmental, and Earth Sciences, University of Southern Mississippi, Hattiesburg, MS, United States
- Center for Molecular and Cellular Biology, University of Southern Mississippi, Hattiesburg, Hattiesburg, MS, United States
| |
Collapse
|
36
|
de Miranda JR, Brettell LE, Chejanovsky N, Childers AK, Dalmon A, Deboutte W, de Graaf DC, Doublet V, Gebremedhn H, Genersch E, Gisder S, Granberg F, Haddad NJ, Kaden R, Manley R, Matthijnssens J, Meeus I, Migdadi H, Milbrath MO, Mondet F, Remnant EJ, Roberts JMK, Ryabov EV, Sela N, Smagghe G, Somanathan H, Wilfert L, Wright ON, Martin SJ, Ball BV. Cold case: The disappearance of Egypt bee virus, a fourth distinct master strain of deformed wing virus linked to honeybee mortality in 1970's Egypt. Virol J 2022; 19:12. [PMID: 35033134 PMCID: PMC8760790 DOI: 10.1186/s12985-022-01740-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Accepted: 12/31/2021] [Indexed: 01/11/2023] Open
Abstract
In 1977, a sample of diseased adult honeybees (Apis mellifera) from Egypt was found to contain large amounts of a previously unknown virus, Egypt bee virus, which was subsequently shown to be serologically related to deformed wing virus (DWV). By sequencing the original isolate, we demonstrate that Egypt bee virus is in fact a fourth unique, major variant of DWV (DWV-D): more closely related to DWV-C than to either DWV-A or DWV-B. DWV-A and DWV-B are the most common DWV variants worldwide due to their close relationship and transmission by Varroa destructor. However, we could not find any trace of DWV-D in several hundred RNA sequencing libraries from a worldwide selection of honeybee, varroa and bumblebee samples. This means that DWV-D has either become extinct, been replaced by other DWV variants better adapted to varroa-mediated transmission, or persists only in a narrow geographic or host range, isolated from common bee and beekeeping trade routes.
Collapse
Affiliation(s)
- Joachim R de Miranda
- Department of Ecology, Swedish University of Agricultural Sciences, 750-07, Uppsala, Sweden.
| | - Laura E Brettell
- Hawkesbury Institute for the Environment, Western Sydney University, Locked Bag 1797, Renrith, NSW, 2751, Australia.,School of Environment and Life Sciences, University of Salford, Manchester, M5 4WT, UK.,Department of Vector Biology, Liverpool School of Tropical Medicine, Liverpool, L3 5QA, UK
| | - Nor Chejanovsky
- Institute of Plant Protection, The Volcani Center, PO Box 15159, 7528809, Rishon Lezion, Israel
| | - Anna K Childers
- Bee Research Laboratory, Beltsville Agricultural Research Center, USDA, Beltsville, MD, 20705, USA
| | - Anne Dalmon
- Abeilles et Environnement, INRAE, 84914, Avignon, France
| | - Ward Deboutte
- Department of Microbiology, Immunology and Transplantation, Rega Institute, Laboratory for Clinical and Epidemiological Virology, University of Leuven, 3000, Leuven, Belgium.,Max Planck Institute of Immunobiology and Epigenetics, Stübeweg 51, 79108, Freiburg, Germany
| | - Dirk C de Graaf
- Laboratory of Molecular Entomology and Bee Pathology, Ghent University, 9000, Ghent, Belgium
| | - Vincent Doublet
- College of Life and Environmental Sciences, University of Exeter, Penryn, TR10 9FE, UK.,Institute of Evolutionary Ecology and Conservation Genomics, University of Ulm, Albert-Einstein-Allee 11, 89081, Ulm, Germany
| | - Haftom Gebremedhn
- Laboratory of Molecular Entomology and Bee Pathology, Ghent University, 9000, Ghent, Belgium.,Tigray Agricultural Research Institute, P.O. Box 492, Mekelle, Ethiopia
| | - Elke Genersch
- Institut Für Mikrobiologie Und Tierseuchen, Fachbereich Veterinärmedizin, Freie Universität Berlin, Berlin, Germany.,Department of Molecular Microbiology and Bee Diseases, Institute for Bee Research, Hohen Neuendorf, Germany
| | - Sebastian Gisder
- Department of Molecular Microbiology and Bee Diseases, Institute for Bee Research, Hohen Neuendorf, Germany
| | - Fredrik Granberg
- Department of Biomedical Sciences and Veterinary Public Health, Swedish University of Agricultural Sciences, 750-07, Uppsala, Sweden
| | - Nizar J Haddad
- Bee Research Department, National Agricultural Research Center, Baq'a, Jordan
| | - Rene Kaden
- Department of Ecology, Swedish University of Agricultural Sciences, 750-07, Uppsala, Sweden.,Clinical Microbiology, Department of Medical Sciences, Uppsala University, 753 09, Uppsala, Sweden
| | - Robyn Manley
- College of Life and Environmental Sciences, University of Exeter, Penryn, TR10 9FE, UK
| | - Jelle Matthijnssens
- Department of Microbiology, Immunology and Transplantation, Rega Institute, Laboratory for Clinical and Epidemiological Virology, University of Leuven, 3000, Leuven, Belgium
| | - Ivan Meeus
- Laboratory of Agrozoology, Department of Plants and Crops, Ghent University, Coupure Links 653, 9000, Ghent, Belgium
| | - Hussein Migdadi
- Bee Research Department, National Agricultural Research Center, Baq'a, Jordan
| | - Meghan O Milbrath
- Department of Ecology, Swedish University of Agricultural Sciences, 750-07, Uppsala, Sweden
| | - Fanny Mondet
- Abeilles et Environnement, INRAE, 84914, Avignon, France
| | - Emily J Remnant
- Behaviour, Ecology and Evolution (BEE) Lab, School of Life and Environmental Sciences, The University of Sydney, Camperdown, 2006, Australia
| | - John M K Roberts
- Commonwealth Scientific and Industrial Research Organisation, Canberra, 2601, Australia
| | - Eugene V Ryabov
- Bee Research Laboratory, Beltsville Agricultural Research Center, USDA, Beltsville, MD, 20705, USA
| | - Noa Sela
- Institute of Plant Protection, The Volcani Center, PO Box 15159, 7528809, Rishon Lezion, Israel
| | - Guy Smagghe
- Laboratory of Agrozoology, Department of Plants and Crops, Ghent University, Coupure Links 653, 9000, Ghent, Belgium
| | - Hema Somanathan
- School of Biology, Indian Institute of Science Education and Research, Thiruvananthapuram, Kerala, 695551, India
| | - Lena Wilfert
- College of Life and Environmental Sciences, University of Exeter, Penryn, TR10 9FE, UK.,Institute of Evolutionary Ecology and Conservation Genomics, University of Ulm, Albert-Einstein-Allee 11, 89081, Ulm, Germany
| | - Owen N Wright
- Centre for Research in Animal Behaviour, College of Life and Environmental Sciences, University of Exeter, Exeter, EX4 4QG, UK
| | - Stephen J Martin
- School of Environment and Life Sciences, University of Salford, Manchester, M5 4WT, UK.,Rothamsted Research, Harpenden, Hertfordshire, AL5 2JQ, UK
| | - Brenda V Ball
- Rothamsted Research, Harpenden, Hertfordshire, AL5 2JQ, UK
| |
Collapse
|
37
|
Reams T, Rangel J. Understanding the Enemy: A Review of the Genetics, Behavior and Chemical Ecology of Varroa destructor, the Parasitic Mite of Apis mellifera. JOURNAL OF INSECT SCIENCE (ONLINE) 2022; 22:18. [PMID: 35137134 PMCID: PMC8825774 DOI: 10.1093/jisesa/ieab101] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Indexed: 05/27/2023]
Abstract
Varroa destructor (Mesostigmata: Varroidae) is arguably the most damaging parasitic mite that attacks honey bees worldwide. Since its initial host switch from the Asian honey bee (Apis cerana) (Hymenoptera: Apidae) to the Western honey bee (Apis mellifera) (Hymenoptera: Apidae), Varroa has become a widely successful invasive species, attacking honey bees on almost every continent where apiculture is practiced. Two haplotypes of V. destructor (Japanese and Korean) parasitize A. mellifera, both of which vector various honey bee-associated viruses. As the population of Varroa grows within a colony in the spring and summer, so do the levels of viral infections. Not surprisingly, high Varroa parasitization impacts bees at the individual level, causing bees to exhibit lower weight, decreased learning capacity, and shorter lifespan. High levels of Varroa infestation can lead to colony-wide varroosis and eventually colony death, especially when no control measures are taken against the mites. Varroa has become a successful parasite of A. mellifera because of its ability to reproduce within both drone cells and worker cells, which allows populations to expand rapidly. Varroa uses several chemical cues to complete its life cycle, many of which remain understudied and should be further explored. Given the growing reports of pesticide resistance by Varroa in several countries, a better understanding of the mite's basic biology is needed to find alternative pest management strategies. This review focuses on the genetics, behavior, and chemical ecology of V. destructor within A. mellifera colonies, and points to areas of research that should be exploited to better control this pervasive honey bee enemy.
Collapse
Affiliation(s)
- Taylor Reams
- Department of Entomology, Texas A&M University, 2475 TAMU, College Station, TX 77843, USA
| | - Juliana Rangel
- Department of Entomology, Texas A&M University, 2475 TAMU, College Station, TX 77843, USA
| |
Collapse
|
38
|
Gusachenko ON, Woodford L, Balbirnie-Cumming K, Evans DJ. First come, first served: superinfection exclusion in Deformed wing virus is dependent upon sequence identity and not the order of virus acquisition. THE ISME JOURNAL 2021; 15:3704-3713. [PMID: 34193965 PMCID: PMC8630095 DOI: 10.1038/s41396-021-01043-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 06/14/2021] [Accepted: 06/15/2021] [Indexed: 02/06/2023]
Abstract
Deformed wing virus (DWV) is the most important globally distributed pathogen of honey bees and, when vectored by the ectoparasite Varroa destructor, is associated with high levels of colony losses. Divergent DWV types may differ in their pathogenicity and are reported to exhibit superinfection exclusion upon sequential infections, an inevitability in a Varroa-infested colony. We used a reverse genetic approach to investigate competition and interactions between genetically distinct or related virus strains, analysing viral load over time, tissue distribution with reporter gene-expressing viruses and recombination between virus variants. Transient competition occurred irrespective of the order of virus acquisition, indicating no directionality or dominance. Over longer periods, the ability to compete with a pre-existing infection correlated with the genetic divergence of the inoculae. Genetic recombination was observed throughout the DWV genome with recombinants accounting for ~2% of the population as determined by deep sequencing. We propose that superinfection exclusion, if it occurs at all, is a consequence of a cross-reactive RNAi response to the viruses involved, explaining the lack of dominance of one virus type over another. A better understanding of the consequences of dual- and superinfection will inform development of cross-protective honey bee vaccines and landscape-scale DWV transmission and evolution.
Collapse
Affiliation(s)
- Olesya N. Gusachenko
- grid.11914.3c0000 0001 0721 1626Biomedical Sciences Research Complex, University of St. Andrews, North Haugh, St. Andrews, UK
| | - Luke Woodford
- grid.11914.3c0000 0001 0721 1626Biomedical Sciences Research Complex, University of St. Andrews, North Haugh, St. Andrews, UK
| | - Katharin Balbirnie-Cumming
- grid.11914.3c0000 0001 0721 1626Biomedical Sciences Research Complex, University of St. Andrews, North Haugh, St. Andrews, UK
| | - David J. Evans
- grid.11914.3c0000 0001 0721 1626Biomedical Sciences Research Complex, University of St. Andrews, North Haugh, St. Andrews, UK
| |
Collapse
|
39
|
Ray AM, Davis SL, Rasgon JL, Grozinger CM. Simulated vector transmission differentially influences dynamics of two viral variants of deformed wing virus in honey bees ( Apis mellifera). J Gen Virol 2021; 102:001687. [PMID: 34816791 PMCID: PMC8742989 DOI: 10.1099/jgv.0.001687] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Accepted: 09/21/2021] [Indexed: 12/31/2022] Open
Abstract
Understanding how vectors alter the interactions between viruses and their hosts is a fundamental question in virology and disease ecology. In honey bees, transmission of deformed wing virus (DWV) by parasitic Varroa mites has been associated with elevated disease and host mortality, and Varroa transmission has been hypothesized to lead to increased viral titres or select for more virulent variants. Here, we mimicked Varroa transmission by serially passaging a mixed population of two DWV variants, A and B, by injection through in vitro reared honey bee pupae and tracking these viral populations through five passages. The DWV-A and DWV-B variant proportions shifted dynamically through passaging, with DWV-B outcompeting DWV-A after one passage, but levels of both variants becoming equivalent by Passage 5. Sequencing analysis revealed a dominant, recombinant DWV-B strain (DWV-A derived 5' IRES region with the rest of the genome DWV-B), with low nucleotide diversity that decreased through passaging. DWV-A populations had higher nucleotide diversity compared to DWV-B, but this also decreased through passaging. Selection signatures were found across functional regions of the DWV-A and DWV-B genomes, including amino acid mutations in the putative capsid protein region. Simulated vector transmission differentially impacted two closely related viral variants which could influence viral interactions with the host, demonstrating surprising plasticity in vector-host-viral dynamics.
Collapse
Affiliation(s)
- Allyson M. Ray
- Molecular, Cellular, and Integrative Biosciences Graduate Program, The Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA, USA
- Department of Entomology, Center for Infectious Disease Dynamics, Center for Pollinator Research, Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA, USA
| | - Sheldon L. Davis
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA, USA
| | - Jason L. Rasgon
- Molecular, Cellular, and Integrative Biosciences Graduate Program, The Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA, USA
- Department of Entomology, Center for Infectious Disease Dynamics, Center for Pollinator Research, Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA, USA
| | - Christina M. Grozinger
- Molecular, Cellular, and Integrative Biosciences Graduate Program, The Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA, USA
- Department of Entomology, Center for Infectious Disease Dynamics, Center for Pollinator Research, Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA, USA
| |
Collapse
|
40
|
Genetic variations and relationships between deformed wing virus strains infesting honey bees based on structural proteins. Biologia (Bratisl) 2021. [DOI: 10.1007/s11756-021-00908-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
41
|
Vilarem C, Piou V, Vogelweith F, Vétillard A. Varroa destructor from the Laboratory to the Field: Control, Biocontrol and IPM Perspectives-A Review. INSECTS 2021; 12:800. [PMID: 34564240 PMCID: PMC8465918 DOI: 10.3390/insects12090800] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 08/30/2021] [Accepted: 09/02/2021] [Indexed: 12/13/2022]
Abstract
Varroa destructor is a real challenger for beekeepers and scientists: fragile out of the hive, tenacious inside a bee colony. From all the research done on the topic, we have learned that a better understanding of this organism in its relationship with the bee but also for itself is necessary. Its biology relies mostly on semiochemicals for reproduction, nutrition, or orientation. Many treatments have been developed over the years based on hard or soft acaricides or even on biocontrol techniques. To date, no real sustainable solution exists to reduce the pressure of the mite without creating resistances or harming honeybees. Consequently, the development of alternative disruptive tools against the parasitic life cycle remains open. It requires the combination of both laboratory and field results through a holistic approach based on health biomarkers. Here, we advocate for a more integrative vision of V. destructor research, where in vitro and field studies are more systematically compared and compiled. Therefore, after a brief state-of-the-art about the mite's life cycle, we discuss what has been done and what can be done from the laboratory to the field against V. destructor through an integrative approach.
Collapse
Affiliation(s)
- Caroline Vilarem
- Laboratoire Evolution et Diversité Biologique, UMR5174, CNRS-Université de Toulouse III-IRD, INU Jean-François Champollion, Université Paul Sabatier, 31077 Toulouse, France; (C.V.); (V.P.)
- M2i Biocontrol–Entreprise SAS, 46140 Parnac, France;
| | - Vincent Piou
- Laboratoire Evolution et Diversité Biologique, UMR5174, CNRS-Université de Toulouse III-IRD, INU Jean-François Champollion, Université Paul Sabatier, 31077 Toulouse, France; (C.V.); (V.P.)
| | | | - Angélique Vétillard
- Laboratoire Evolution et Diversité Biologique, UMR5174, CNRS-Université de Toulouse III-IRD, INU Jean-François Champollion, Université Paul Sabatier, 31077 Toulouse, France; (C.V.); (V.P.)
| |
Collapse
|
42
|
Burnham PA, Alger SA, Case B, Boncristiani H, Hébert‐Dufresne L, Brody AK. Flowers as dirty doorknobs: Deformed wing virus transmitted between
Apis mellifera
and
Bombus impatiens
through shared flowers. J Appl Ecol 2021. [DOI: 10.1111/1365-2664.13962] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Phillip Alexander Burnham
- Department of Biology University of Vermont Burlington VT USA
- Vermont Complex Systems Center University of Vermont Burlington VT USA
| | - Samantha A. Alger
- Plant and Soil Science University of Vermont Burlington VT USA
- Vanasse Hangen Brustlin, Inc South Burlington VT USA
| | - Brendan Case
- Vermont Complex Systems Center University of Vermont Burlington VT USA
- Computer Science Department University of Vermont Burlington VT USA
| | - Humberto Boncristiani
- Honeybee Research and Extension Laboratory Entomology and Nematology Department University of Florida Gainesville FL USA
| | - Laurent Hébert‐Dufresne
- Vermont Complex Systems Center University of Vermont Burlington VT USA
- Computer Science Department University of Vermont Burlington VT USA
| | - Alison K. Brody
- Department of Biology University of Vermont Burlington VT USA
| |
Collapse
|
43
|
McMenamin AJ, Parekh F, Lawrence V, Flenniken ML. Investigating Virus-Host Interactions in Cultured Primary Honey Bee Cells. INSECTS 2021; 12:653. [PMID: 34357313 PMCID: PMC8329929 DOI: 10.3390/insects12070653] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 07/10/2021] [Accepted: 07/13/2021] [Indexed: 12/23/2022]
Abstract
Honey bee (Apis mellifera) health is impacted by viral infections at the colony, individual bee, and cellular levels. To investigate honey bee antiviral defense mechanisms at the cellular level we further developed the use of cultured primary cells, derived from either larvae or pupae, and demonstrated that these cells could be infected with a panel of viruses, including common honey bee infecting viruses (i.e., sacbrood virus (SBV) and deformed wing virus (DWV)) and an insect model virus, Flock House virus (FHV). Virus abundances were quantified over the course of infection. The production of infectious virions in cultured honey bee pupal cells was demonstrated by determining that naïve cells became infected after the transfer of deformed wing virus or Flock House virus from infected cell cultures. Initial characterization of the honey bee antiviral immune responses at the cellular level indicated that there were virus-specific responses, which included increased expression of bee antiviral protein-1 (GenBank: MF116383) in SBV-infected pupal cells and increased expression of argonaute-2 and dicer-like in FHV-infected hemocytes and pupal cells. Additional studies are required to further elucidate virus-specific honey bee antiviral defense mechanisms. The continued use of cultured primary honey bee cells for studies that involve multiple viruses will address this knowledge gap.
Collapse
Affiliation(s)
- Alexander J. McMenamin
- Department of Plant Sciences and Plant Pathology, Montana State University, Bozeman, MT 59717, USA; (A.J.M.); (F.P.); (V.L.)
- Department of Microbiology and Cell Biology, Montana State University, Bozeman, MT 59717, USA
- Pollinator Health Center, Montana State University, Bozeman, MT 59717, USA
| | - Fenali Parekh
- Department of Plant Sciences and Plant Pathology, Montana State University, Bozeman, MT 59717, USA; (A.J.M.); (F.P.); (V.L.)
- Department of Microbiology and Cell Biology, Montana State University, Bozeman, MT 59717, USA
- Pollinator Health Center, Montana State University, Bozeman, MT 59717, USA
| | - Verena Lawrence
- Department of Plant Sciences and Plant Pathology, Montana State University, Bozeman, MT 59717, USA; (A.J.M.); (F.P.); (V.L.)
- Pollinator Health Center, Montana State University, Bozeman, MT 59717, USA
| | - Michelle L. Flenniken
- Department of Plant Sciences and Plant Pathology, Montana State University, Bozeman, MT 59717, USA; (A.J.M.); (F.P.); (V.L.)
- Department of Microbiology and Cell Biology, Montana State University, Bozeman, MT 59717, USA
- Pollinator Health Center, Montana State University, Bozeman, MT 59717, USA
| |
Collapse
|
44
|
Grindrod I, Kevill JL, Villalobos EM, Schroeder DC, Martin SJ. Ten Years of Deformed Wing Virus (DWV) in Hawaiian Honey Bees ( Apis mellifera), the Dominant DWV-A Variant Is Potentially Being Replaced by Variants with a DWV-B Coding Sequence. Viruses 2021; 13:969. [PMID: 34073733 PMCID: PMC8225128 DOI: 10.3390/v13060969] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 05/20/2021] [Accepted: 05/21/2021] [Indexed: 11/17/2022] Open
Abstract
The combination of Deformed wing virus (DWV) and Varroa destructor is arguably one of the greatest threats currently facing western honey bees, Apis mellifera. Varroa's association with DWV has decreased viral diversity and increased loads of DWV within honey bee populations. Nowhere has this been better studied than in Hawaii, where the arrival of Varroa progressively led to the dominance of the single master variant (DWV-A) on both mite-infested Hawaiian Islands of Oahu and Big Island. Now, exactly 10 years following the original study, we find that the DWV population has changed once again, with variants containing the RdRp coding sequence pertaining to the master variant B beginning to co-dominate alongside variants with the DWV-A RdRp sequence on the mite-infested islands of Oahu and Big Island. In speculation, based on other studies, it appears this could represent a stage in the journey towards the complete dominance of DWV-B, a variant that appears better adapted to be transmitted within honey bee colonies.
Collapse
Affiliation(s)
- Isobel Grindrod
- School of Environment and Life Sciences, University of Salford, Manchester M5 4WX, UK;
| | - Jessica L. Kevill
- Veterinary Population Medicine, College of Veterinary Medicine, University of Minnesota, St. Paul, MN 55108, USA;
- School of Natural Sciences, Bangor University, Bangor, Gwynedd LL57 2UW, UK;
| | - Ethel M. Villalobos
- College of Tropical Agriculture and Human Resources, University of Hawaii at Mānoa, 3050 Maile Way, Honolulu, HI 96822, USA;
| | - Declan C. Schroeder
- School of Natural Sciences, Bangor University, Bangor, Gwynedd LL57 2UW, UK;
- Environmental Biology (Virology), School of Biological Sciences, University of Reading, Reading RG6 6AH, UK
| | - Stephen John Martin
- School of Environment and Life Sciences, University of Salford, Manchester M5 4WX, UK;
| |
Collapse
|
45
|
Posada-Florez F, Lamas ZS, Hawthorne DJ, Chen Y, Evans JD, Ryabov EV. Pupal cannibalism by worker honey bees contributes to the spread of deformed wing virus. Sci Rep 2021; 11:8989. [PMID: 33903723 PMCID: PMC8076318 DOI: 10.1038/s41598-021-88649-y] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Accepted: 04/12/2021] [Indexed: 11/30/2022] Open
Abstract
Transmission routes impact pathogen virulence and genetics, therefore comprehensive knowledge of these routes and their contribution to pathogen circulation is essential for understanding host-pathogen interactions and designing control strategies. Deformed wing virus (DWV), a principal viral pathogen of honey bees associated with increased honey bee mortality and colony losses, became highly virulent with the spread of its vector, the ectoparasitic mite Varroa destructor. Reproduction of Varroa mites occurs in capped brood cells and mite-infested pupae from these cells usually have high levels of DWV. The removal of mite-infested pupae by worker bees, Varroa Sensitive Hygiene (VSH), leads to cannibalization of pupae with high DWV loads, thereby offering an alternative route for virus transmission. We used genetically tagged DWV to investigate virus transmission to and between worker bees following pupal cannibalisation under experimental conditions. We demonstrated that cannibalization of DWV-infected pupae resulted in high levels of this virus in worker bees and that the acquired virus was then transmitted between bees via trophallaxis, allowing circulation of Varroa-vectored DWV variants without the mites. Despite the known benefits of hygienic behaviour, it is possible that higher levels of VSH activity may result in increased transmission of DWV via cannibalism and trophallaxis.
Collapse
Affiliation(s)
- Francisco Posada-Florez
- USDA, Agricultural Research Service, Bee Research Lab, BARC-East Bldg. 306, 10300 Baltimore Ave., Beltsville, MD, 20705, USA.
| | - Zachary S Lamas
- USDA, Agricultural Research Service, Bee Research Lab, BARC-East Bldg. 306, 10300 Baltimore Ave., Beltsville, MD, 20705, USA
- Department of Entomology, University of Maryland, College Park, MD, USA
| | - David J Hawthorne
- Department of Entomology, University of Maryland, College Park, MD, USA
| | - Yanping Chen
- USDA, Agricultural Research Service, Bee Research Lab, BARC-East Bldg. 306, 10300 Baltimore Ave., Beltsville, MD, 20705, USA
| | - Jay D Evans
- USDA, Agricultural Research Service, Bee Research Lab, BARC-East Bldg. 306, 10300 Baltimore Ave., Beltsville, MD, 20705, USA.
| | - Eugene V Ryabov
- USDA, Agricultural Research Service, Bee Research Lab, BARC-East Bldg. 306, 10300 Baltimore Ave., Beltsville, MD, 20705, USA.
| |
Collapse
|
46
|
Norton AM, Remnant EJ, Tom J, Buchmann G, Blacquiere T, Beekman M. Adaptation to vector-based transmission in a honeybee virus. J Anim Ecol 2021; 90:2254-2267. [PMID: 33844844 DOI: 10.1111/1365-2656.13493] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Accepted: 04/06/2021] [Indexed: 11/27/2022]
Abstract
Global pollinator declines as a result of emerging infectious diseases are of major concern. Managed honeybees Apis mellifera are susceptible to numerous parasites and pathogens, many of which appear to be transmissible to sympatric non-Apis taxa. The ectoparasitic mite Varroa destructor is considered to be the most significant threat to honeybees due to its role in vectoring RNA viruses, particularly Deformed wing virus (DWV). Vector transmission of DWV has resulted in the accumulation of high viral loads in honeybees and is often associated with colony death. DWV has two main genotypes, A and B. DWV-A was more prevalent during the initial phase of V. destructor establishment. In recent years, the global prevalence of DWV-B has increased, suggesting that DWV-B is better adapted to vector transmission than DWV-A. We aimed to determine the role vector transmission plays in DWV genotype prevalence at a colony level. We experimentally increased or decreased the number of V. destructor mites in honeybee colonies, and tracked DWV-A and DWV-B loads over a period of 10 months. Our results show that the two DWV genotypes differ in their response to mite numbers. DWV-A accumulation in honeybees was positively correlated with mite numbers yet DWV-A was largely undetected in the absence of the mite. In contrast, colonies had high loads of DWV-B even when mite numbers were low. DWV-B loads persisted in miticide-treated colonies, indicating that this genotype has a competitive advantage over DWV-A irrespective of mite numbers. Our findings suggest that the global increase in DWV-B prevalence is not driven by selective pressure by the vector. Rather, DWV-B is able to persist in colonies at higher viral loads relative to DWV-A in the presence and absence of V. destructor. The interplay between V. destructor and DWV genotypes within honeybee colonies may have broad consequences upon viral diversity in sympatric taxa as a result of spillover.
Collapse
Affiliation(s)
- Amanda M Norton
- Behaviour, Ecology and Evolution (BEE) Laboratory, School of Life and Environmental Sciences, The University of Sydney, Sydney, NSW, Australia
| | - Emily J Remnant
- Behaviour, Ecology and Evolution (BEE) Laboratory, School of Life and Environmental Sciences, The University of Sydney, Sydney, NSW, Australia
| | - Jolanda Tom
- Wageningen University and Research, Wageningen, The Netherlands
| | - Gabriele Buchmann
- Behaviour, Ecology and Evolution (BEE) Laboratory, School of Life and Environmental Sciences, The University of Sydney, Sydney, NSW, Australia
| | | | - Madeleine Beekman
- Behaviour, Ecology and Evolution (BEE) Laboratory, School of Life and Environmental Sciences, The University of Sydney, Sydney, NSW, Australia.,Wissenschaftskolleg zu Berlin, Berlin, Germany
| |
Collapse
|
47
|
Viruses that affect Argentinian honey bees (Apis mellifera). Arch Virol 2021; 166:1533-1545. [PMID: 33683476 DOI: 10.1007/s00705-021-05000-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Accepted: 12/28/2020] [Indexed: 10/22/2022]
Abstract
Beekeeping is a widespread activity in Argentina, mainly producing honey that has gained both national and international recognition. There are more than 3,000,000 hives in the country, mainly concentrated in Buenos Aires Province (approximately 1,000,000 hives). In recent decades, worrying rates of hive loss have been observed in many countries around the world. In Latin America, the estimated loss of hives is between 13% (Peru and Ecuador) and 53% (Chile). Argentina had annual losses of 34% for the period of October 1, 2016 to October 1, 2017. The causes of these losses are not clear but probably involve multiple stressors that can act simultaneously. One of the main causes of loss of bee colonies worldwide is infestation by the ectoparasitic mite Varroa destructor in combination with viral infections. To date, 10 viruses have been detected that affect honey bees (Apis mellifera) in Argentina. Of these, deformed wing virus, sacbrood virus, acute bee paralysis virus, chronic bee paralysis virus, and Israeli acute bee paralysis can be transmitted by mites. Deformed wing virus and the AIK complex are the viruses most often associated with loss of hives worldwide. Considering that bee viruses have been detected in Argentina in several hymenopteran and non-hymenopteran insects, these hosts could act as important natural reservoirs for viruses and play an important role in their dispersal in the environment. Further studies to investigate the different mechanisms by which viruses spread in the environment will enable us to develop various strategies for the control of infected colonies and the spread of viruses in the habitat where they are found.
Collapse
|
48
|
Abou-Shaara H, AlAshaal S, Nasser M, Nasif O, Alharbi S. Genetic variability and phylogenetic analysis among strains of deformed wing virus infesting honey bees and other organisms. Saudi J Biol Sci 2021; 28:1548-1556. [PMID: 33732039 PMCID: PMC7938125 DOI: 10.1016/j.sjbs.2020.12.035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 12/09/2020] [Accepted: 12/20/2020] [Indexed: 11/21/2022] Open
Abstract
Various viruses can infect honey bees, but deformed wing virus (DWV) is considered the most dangerous virus to them and has role in the sudden decline of bee colonies. This virus has different strains; however, there are no available studies to compare the characteristics of these strains utilizing bioinformatics. In this study, 27 strains of deformed wing virus were analyzed based on their sequences and their genetic relationships. Also, some primers were designed and tested to identify their ability to separate DWV strains. The percentages range from 28.99% to 29.63%, 22.28% to 22.78%, 15.73% to 16.28%, and 31.71% to 32.86% for nucleotides A, G, C, and T, respectively in all strains. The numbers of polymorphic sites as well as nucleotide diversity were highly similar in all strains. Statistical analyses generally showed the absence of high variations between sequences. Also, the phylogenetic tree classified strains into three groups. The network between strains of each group was established and discussed based on their geographical locations. Two groups contained strains from USA and Europe while one group contained strains from Asia. Rapid variations and mutations in the sequences of DWV were suggested. Notably, genetic studies on DWV are lacking in some geographical regions. The variations between strains detected in honey bees and other organisms were discussed. Four primers were designed and tested beside two reference primers. One of the designed primers showed the best results in binding with all DWV strains except one.
Collapse
Affiliation(s)
- Hossam Abou-Shaara
- Department of Plant Protection, Faculty of Agriculture, Damanhour University, Damanhour 22516, Egypt
| | - Sara AlAshaal
- Department of Entomology, Faculty of Science, Ain Shams University, Cairo, Egypt
| | - Mohamed Nasser
- Department of Entomology, Faculty of Science, Ain Shams University, Cairo, Egypt
| | - Omaima Nasif
- Department of Physiology, College of Medicine, King Saud University [Medical City], King Khalid University Hospital, PO Box 2925, Riyadh, 11461, Saudi Arabia
| | - Sulaiman Alharbi
- Department of Botany & Microbiology College of Science King, Saud University P.O Box 2455, Riyadh 11451, Saudi Arabia
| |
Collapse
|
49
|
Direct Evidence for Infection of Varroa destructor Mites with the Bee-Pathogenic Deformed Wing Virus Variant B - but Not Variant A - via Fluorescence- in situ-Hybridization Analysis. J Virol 2021; 95:JVI.01786-20. [PMID: 33298545 PMCID: PMC8092827 DOI: 10.1128/jvi.01786-20] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Deformed wing virus (DWV) is a bee pathogenic, single- and positive-stranded RNA virus that has been involved in severe honey bee colony losses worldwide. DWV, when transmitted horizontally or vertically from bee to bee, causes mainly covert infections not associated with any visible symptoms or damage. Overt infections occur after vectorial transmission of DWV to the developing bee pupae through the ectoparasitic mite Varroa destructor Symptoms of overt infections are pupal death, bees emerging with deformed wings and shortened abdomens, or cognitive impairment due to brain infection. So far, three variants of DWV, DWV-A, DWV-B, and DWV-C, have been described. While it is widely accepted that V. destructor acts as vector of DWV, the question of whether the mite only functions as a mechanical vector or whether DWV can infect the mite thus using it as a biological vector is hotly debated, because in the literature data can be found that support both hypotheses. In order to settle this scientific dispute, we analyzed putatively DWV-infected mites with a newly established protocol for fluorescence-in situ-hybridization of mites and demonstrated DWV-specific signals inside mite cells. We provide compelling and direct evidence that DWV-B infects the intestinal epithelium and the salivary glands of V. destructor In contrast, no evidence for DWV-A infecting mite cells was found. Our data are key to understanding the pathobiology of DWV, the mite's role as a biological DWV vector and the quasispecies dynamics of this RNA virus when switching between insect and arachnid host species.IMPORTANCE Deformed wing virus (DWV) is a bee pathogenic, originally rather benign, single- and positive-stranded RNA virus. Only the vectorial transmission of this virus to honey bees by the ectoparasitic mite Varroa destructor leads to fatal or symptomatic infections of individuals, usually followed by collapse of the entire colony. Studies on whether the mite only acts as a mechanical virus vector or whether DWV can infect the mite and thus use it as a biological vector have led to disparate results. In our study using fluorescence-in situ-hybridization we provide compelling and direct evidence that at least the DWV-B variant infects the gut epithelium and the salivary glands of V. destructor Hence, the host range of DWV includes both, bees (Insecta) and mites (Arachnida). Our data contribute to a better understanding of the triangular relationship between honey bees, V. destructor and DWV and the evolution of virulence in this viral bee pathogen.
Collapse
|
50
|
Woodford L, Evans DJ. Deformed wing virus: using reverse genetics to tackle unanswered questions about the most important viral pathogen of honey bees. FEMS Microbiol Rev 2020; 45:6035241. [PMID: 33320949 DOI: 10.1093/femsre/fuaa070] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Accepted: 12/11/2020] [Indexed: 12/31/2022] Open
Abstract
Deformed wing virus (DWV) is the most important viral pathogen of honey bees. It usually causes asymptomatic infections but, when vectored by the ectoparasitic mite Varroa destructor, it is responsible for the majority of overwintering colony losses globally. Although DWV was discovered four decades ago, research has been hampered by the absence of an in vitro cell culture system or the ability to culture pure stocks of the virus. The recent developments of reverse genetic systems for DWV go some way to addressing these limitations. They will allow the investigation of specific questions about strain variation, host tropism and pathogenesis to be answered, and are already being exploited to study tissue tropism and replication in Varroa and non-Apis pollinators. Three areas neatly illustrate the advances possible with reverse genetic approaches: (i) strain variation and recombination, in which reverse genetics has highlighted similarities rather than differences between virus strains; (ii) analysis of replication kinetics in both honey bees and Varroa, in studies that likely explain the near clonality of virus populations often reported; and (iii) pathogen spillover to non-Apis pollinators, using genetically tagged viruses to accurately monitor replication and infection.
Collapse
Affiliation(s)
- Luke Woodford
- Biomedical Sciences Research Complex, University of St Andrews, St Andrews, KY16 9ST, UK
| | - David J Evans
- Biomedical Sciences Research Complex, University of St Andrews, St Andrews, KY16 9ST, UK
| |
Collapse
|