1
|
Chou CY, Chiang PC, Li CC, Chang JW, Lu PH, Hsu WF, Chang LC, Hsu JL, Wu MS, Wo AM. Improving the Purity of Extracellular Vesicles by Removal of Lipoproteins from Size Exclusion Chromatography- and Ultracentrifugation-Processed Samples Using Glycosaminoglycan-Functionalized Magnetic Beads. ACS APPLIED MATERIALS & INTERFACES 2024; 16:44386-44398. [PMID: 39149774 PMCID: PMC11367580 DOI: 10.1021/acsami.4c03869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 07/16/2024] [Accepted: 07/18/2024] [Indexed: 08/17/2024]
Abstract
Extracellular vesicles (EVs) are present in blood at much lower concentrations (5-6 orders of magnitude) compared to lipoprotein particles (LP). Because LP and EV overlap in size and density, isolating high-purity EVs is a significant challenge. While the current two-step sequential EV isolation process using size-expression chromatography (SEC) followed by a density gradient (DG) achieves high purity, the time-consuming ultracentrifugation (UC) step in DG hinders workflow efficiency. This paper introduces an optimized magnetic bead reagent, LipoMin, functionalized with glycosaminoglycans (GAGs), as a rapid alternative for LP removal during the second-step process in about 10 minutes. We evaluated LipoMin's efficacy on two sample types: (a) EV fractions isolated by size exclusion chromatography (SEC + LipoMin) and (b) the pellet obtained from ultracentrifugation (UC + LipoMin). The workflow is remarkably simple, involving a 10 min incubation with LipoMin followed by magnetic separation of the LP-depleted EV-containing supernatant. Results from enzyme-linked immunosorbent assay (ELISA) revealed that LipoMin removes 98.2% ApoB from SEC EV fractions, comparable to the LP removal ability of DG in the SEC + DG two-step process. Importantly, the EV yield (CD81 ELISA) remained at 93.0% and Western blot analysis confirmed that key EV markers, flotillin and CD81, were not compromised. Recombinant EV (rEV), an EV reference standard, was spiked into SEC EV fractions and recovered 89% of CD81 protein. For UC + LipoMin, ApoA1 decreased by 76.5% while retaining 90.7% of CD81. Notably, both colorectal cancer (CRC) and Alzheimer's disease (AD) samples processed by SEC + LipoMin and UC + LipoMin displayed clear expression of relevant EV and clinical markers. With a 10 min workflow (resulting in a 96% time saving compared to the traditional method), the LipoMin reagent offers a rapid and efficient alternative to DG for LP depletion, paving the way for a streamlined SEC + LipoMin two-step EV isolation process.
Collapse
Affiliation(s)
- Cheng-Yu Chou
- Institute
of Applied Mechanics, National Taiwan University, 1 Roosevelt Road, Sec. 4, Taipei 106319, Taiwan
| | | | - Chih-Chi Li
- Graduate
Institute of Biomedical Electronics and Bioinformatics, National Taiwan University, Taipei 106319, Taiwan
| | - Jheng-Wun Chang
- Institute
of Applied Mechanics, National Taiwan University, 1 Roosevelt Road, Sec. 4, Taipei 106319, Taiwan
| | - Po-Han Lu
- Institute
of Applied Mechanics, National Taiwan University, 1 Roosevelt Road, Sec. 4, Taipei 106319, Taiwan
| | - Wei-Fan Hsu
- Institute
of Applied Mechanics, National Taiwan University, 1 Roosevelt Road, Sec. 4, Taipei 106319, Taiwan
- Reliance
Biosciences, Inc., New Taipei City 231023, Taiwan
| | - Li-Chun Chang
- Department
of Internal Medicine, National Taiwan University
Hospital, Taipei 100225, Taiwan
- Health
Management Center, National Taiwan University
Hospital, Taipei 100225, Taiwan
| | - Jung-Lung Hsu
- Department
of Neurology, New Taipei Municipal TuCheng
Hospital, New Taipei City 236017, Taiwan
- Department
of Neurology, Chang Gung Memorial Hospital Linkou Medical Center and
College of Medicine, Neuroscience Research Center, Chang-Gung University, Linkou, Taoyuan 33302, Taiwan
- Graduate
Institute of Mind, Brain, & Consciousness, Taipei Medical University, Taipei 110301, Taiwan
| | - Ming-Shiang Wu
- Department
of Internal Medicine, National Taiwan University
Hospital, Taipei 100225, Taiwan
| | - Andrew M. Wo
- Institute
of Applied Mechanics, National Taiwan University, 1 Roosevelt Road, Sec. 4, Taipei 106319, Taiwan
- Reliance
Biosciences, Inc., New Taipei City 231023, Taiwan
| |
Collapse
|
2
|
Angayarkanni N, Anand Babu K. Oxidized Low-Density Lipoprotein: Preparation, Validation, and Use in Cell Models. Methods Mol Biol 2024; 2816:223-239. [PMID: 38977602 DOI: 10.1007/978-1-0716-3902-3_20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/10/2024]
Abstract
Lipoproteins in plasma are constituted by the least dense chylomicron, very-low-density lipoprotein (VLDL), low-density lipoprotein (LDL), and high-density lipoprotein (HDL) that can be separated using commercially available medium such as iodixanol. Iodixanol constitutes the self-generated density gradient to fractionate lipoproteins by rapid ultracentrifugation method, replacing time-consuming protocols. Filling the centrifuge tubes is technically easier and faster than layering salt gradients and is reproducible. The separated lipoproteins by this method are closest to the native state with 80 to 100% recovery possible. Low-density lipoprotein is the major carrier of cholesterol in systemic circulation. The plasma isolated LDL is purified to be used as native LDL and for the preparation of oxidized LDL (oxLDL). The oxLDL is characterized for its oxidation, by various methods based on assay of the lipid and protein oxidation products such as TBARS, conjugated diene formation, and by other methods such as agarose gel electrophoresis. Rapid isolation of LDL particles from human plasma is useful for lipid peroxidation studies, characterization of subclass for functional studies and clinical correlation especially in cardiovascular diseases apart from lipidomic, and proteomic studies. OxLDL preparations are done in vitro chiefly based on copper-induced oxidation; glucose and other prooxidants. Which are used for various studies using animal model and in vitro cell models especially to understand macrophage-mediated atheroma formation, vascular endothelial cell dysfunction, cell signaling studies has scope for extensive research in metabolic dysfunction of various cells. This chapter deals with one of the applications in the in vitro cell models using macrophage (THP-1 cell line) and human retinal pigment epithelial cell (ARPE-19 cell line) to study the oxLDL uptake using fluorescently labeled oxidized LDL (DiI-oxLDL).
Collapse
Affiliation(s)
- Narayanasamy Angayarkanni
- Department of Biochemistry, Medical Research Foundation, Sankara Nethralaya, Chennai, India.
- R.S. Mehta Jain Department of Biochemistry and Cell Biology, KNBIRVO, Vision Research Foundation, Chennai, India.
| | - Kannadasan Anand Babu
- R.S. Mehta Jain Department of Biochemistry and Cell Biology, KNBIRVO, Vision Research Foundation, Chennai, India
- Anderson Clinical Genetics, Anderson Diagnostic Services Private Limited, Chennai, India
| |
Collapse
|
3
|
Liang N, Harsch BA, Zhou S, Borkowska A, Shearer GC, Kaddurah-Daouk R, Newman JW, Borkowski K. Oxylipin transport by lipoprotein particles and its functional implications for cardiometabolic and neurological disorders. Prog Lipid Res 2024; 93:101265. [PMID: 37979798 DOI: 10.1016/j.plipres.2023.101265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Revised: 10/17/2023] [Accepted: 11/13/2023] [Indexed: 11/20/2023]
Abstract
Lipoprotein metabolism is critical to inflammation. While the periphery and central nervous system (CNS) have separate yet connected lipoprotein systems, impaired lipoprotein metabolism is implicated in both cardiometabolic and neurological disorders. Despite the substantial investigation into the composition, structure and function of lipoproteins, the lipoprotein oxylipin profiles, their influence on lipoprotein functions, and their potential biological implications are unclear. Lipoproteins carry most of the circulating oxylipins. Importantly, lipoprotein-mediated oxylipin transport allows for endocrine signaling by these lipid mediators, long considered to have only autocrine and paracrine functions. Alterations in plasma lipoprotein oxylipin composition can directly impact inflammatory responses of lipoprotein metabolizing cells. Similar investigations of CNS lipoprotein oxylipins are non-existent to date. However, as APOE4 is associated with Alzheimer's disease-related microglia dysfunction and oxylipin dysregulation, ApoE4-dependent lipoprotein oxylipin modulation in neurological pathologies is suggested. Such investigations are crucial to bridge knowledge gaps linking oxylipin- and lipoprotein-related disorders in both periphery and CNS. Here, after providing a summary of existent literatures on lipoprotein oxylipin analysis methods, we emphasize the importance of lipoproteins in oxylipin transport and argue that understanding the compartmentalization and distribution of lipoprotein oxylipins may fundamentally alter our consideration of the roles of lipoprotein in cardiometabolic and neurological disorders.
Collapse
Affiliation(s)
- Nuanyi Liang
- West Coast Metabolomics Center, Genome Center, University of California Davis, Davis, CA 95616, USA
| | - Brian A Harsch
- Department of Nutritional Sciences, The Pennsylvania State University, University Park, PA 16802, USA
| | - Sitong Zhou
- Department of Pathology and Laboratory Medicine, University of California Davis, Davis, CA 95616, USA
| | - Alison Borkowska
- Department of Nutritional Sciences, The Pennsylvania State University, University Park, PA 16802, USA
| | - Gregory C Shearer
- Department of Nutritional Sciences, The Pennsylvania State University, University Park, PA 16802, USA
| | - Rima Kaddurah-Daouk
- Department of Psychiatry and Behavioral Sciences, Duke Institute for Brain Sciences and Department of Medicine, Duke University, Durham, NC, 27708, USA; Duke Institute of Brain Sciences, Duke University, Durham, NC, USA; Department of Medicine, Duke University, Durham, NC, USA
| | - John W Newman
- West Coast Metabolomics Center, Genome Center, University of California Davis, Davis, CA 95616, USA; Department of Nutrition, University of California - Davis, Davis, CA 95616, USA; Western Human Nutrition Research Center, United States Department of Agriculture - Agriculture Research Service, Davis, CA 95616, USA
| | - Kamil Borkowski
- West Coast Metabolomics Center, Genome Center, University of California Davis, Davis, CA 95616, USA.
| |
Collapse
|
4
|
The Impact of Processing and Extraction Methods on the Allergenicity of Targeted Protein Quantification as Well as Bioactive Peptides Derived from Egg. Molecules 2023; 28:molecules28062658. [PMID: 36985630 PMCID: PMC10053729 DOI: 10.3390/molecules28062658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 03/13/2023] [Accepted: 03/13/2023] [Indexed: 03/17/2023] Open
Abstract
This review article discusses advanced extraction methods to enhance the functionality of egg-derived peptides while reducing their allergenicity. While eggs are considered a nutrient-dense food, some proteins can cause allergic reactions in susceptible individuals. Therefore, various methods have been developed to reduce the allergenicity of egg-derived proteins, such as enzymatic hydrolysis, heat treatment, and glycosylation. In addition to reducing allergenicity, advanced extraction methods can enhance the functionality of egg-derived peptides. Techniques such as membrane separation, chromatography, and electrodialysis can isolate and purify specific egg-derived peptides with desired functional properties, improving their bioactivity. Further, enzymatic hydrolysis can also break down polypeptide sequences and produce bioactive peptides with various health benefits. While liquid chromatography is the most commonly used method to obtain individual proteins for developing novel food products, several challenges are associated with optimizing extraction conditions to maximize functionality and allergenicity reduction. The article also highlights the challenges and future perspectives, including optimizing extraction conditions to maximize functionality and allergenicity reduction. The review concludes by highlighting the potential for future research in this area to improve the safety and efficacy of egg-derived peptides more broadly.
Collapse
|
5
|
Papadea P, Skipitari M, Kalaitzopoulou E, Varemmenou A, Spiliopoulou M, Papasotiriou M, Papachristou E, Goumenos D, Onoufriou A, Rosmaraki E, Margiolaki I, Georgiou CD. Methods on LDL particle isolation, characterization, and component fractionation for the development of novel specific oxidized LDL status markers for atherosclerotic disease risk assessment. Front Med (Lausanne) 2023; 9:1078492. [PMID: 36687450 PMCID: PMC9851470 DOI: 10.3389/fmed.2022.1078492] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Accepted: 12/05/2022] [Indexed: 01/06/2023] Open
Abstract
The present study uses simple, innovative methods to isolate, characterize and fractionate LDL in its main components for the study of specific oxidations on them that characterize oxidized low-density lipoprotein (oxLDL) status, as it causatively relates to atherosclerosis-associated cardiovascular disease (CVD) risk assessment. These methods are: (a) A simple, relatively time-short, low cost protocol for LDL isolation, to avoid shortcomings of the currently employed ultracentrifugation and affinity chromatography methodologies. (b) LDL purity verification by apoB100 SDS-PAGE analysis and by LDL particle size determination; the latter and its serum concentration are determined in the present study by a simple method more clinically feasible as marker of CVD risk assessment than nuclear magnetic resonance. (c) A protocol for LDL fractionation, for the first time, into its main protein/lipid components (apoB100, phospholipids, triglycerides, free cholesterol, and cholesteryl esters), as well as into LDL carotenoid/tocopherol content. (d) Protocols for the measurement, for the first time, of indicative specific LDL component oxidative modifications (cholesteryl ester-OOH, triglyceride-OOH, free cholesterol-OOH, phospholipid-OOH, apoB100-MDA, and apoB100-DiTyr) out of the many (known/unknown/under development) that collectively define oxLDL status, which contrasts with the current non-specific oxLDL status evaluation methods. The indicative oxLDL status markers, selected in the present study on the basis of expressing early oxidative stress-induced oxidative effects on LDL, are studied for the first time on patients with end stage kidney disease on maintenance hemodialysis, selected as an indicative model for atherosclerosis associated diseases. Isolating LDL and fractionating its protein and main lipid components, as well as its antioxidant arsenal comprised of carotenoids and tocopherols, paves the way for future studies to investigate all possible oxidative modifications responsible for turning LDL to oxLDL in association to their possible escaping from LDL's internal antioxidant defense. This can lead to studies to identify those oxidative modifications of oxLDL (after their artificial generation on LDL), which are recognized by macrophages and convert them to foam cells, known to be responsible for the formation of atherosclerotic plaques that lead to the various CVDs.
Collapse
Affiliation(s)
| | | | | | | | | | - Marios Papasotiriou
- Department of Nephrology, General University Hospital of Patras, Patras, Greece,Marios Papasotiriou,
| | | | - Dimitrios Goumenos
- Department of Nephrology, General University Hospital of Patras, Patras, Greece
| | - Anny Onoufriou
- Department of Microbiology, General University Hospital of Patras, University of Patras Medical School, Patras, Greece
| | | | | | - Christos D. Georgiou
- Department of Biology, University of Patras, Patras, Greece,*Correspondence: Christos D. Georgiou,
| |
Collapse
|
6
|
Raman spectroscopy combined with comprehensive gas chromatography for label-free characterization of plasma-derived extracellular vesicle subpopulations. Anal Biochem 2022; 647:114672. [PMID: 35395223 DOI: 10.1016/j.ab.2022.114672] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2021] [Revised: 03/12/2022] [Accepted: 03/22/2022] [Indexed: 11/22/2022]
Abstract
Raman spectroscopy together with comprehensive two-dimensional gas chromatography-time-of-flight mass spectrometry (GCxGC-TOFMS) was employed to characterize exomere- (<50 nm) and exosome-sized (50-80 nm) EVs isolated from human plasma by the novel on-line immunoaffinity chromatography - asymmetric flow field-flow fractionation method. CD9+, CD63+, and CD81+ EVs were selected to represent general EV subpopulations secreted into plasma, while CD61+EVs represented the specific EV subset derived from platelets. Raman spectroscopy could distinguish EVs from non-EV particles, including apolipoprotein B-100-containing lipoproteins, signifying its potential in EV purity assessment. Moreover, platelet-derived (CD61+) EVs of both exomere and exosome sizes were discriminated from other EV subpopulations due to different biochemical compositions. Further investigations demonstrated composition differences between exomere- and exosome-sized EVs, confirming the applicability of Raman spectroscopy in distinguishing EVs, not only from different origins but also sizes. In addition, fatty acids that act as building blocks for lipids and membranes in EVs were studied by GCxGC-TOF-MS. The results achieved highlighted differences in EV fatty acid compositions in both esterified (membrane lipids) and non-esterified (free fatty acids) fractions, indicating possible differences in membrane structures, biological functions, and roles in cell-to-cell communications of EV subpopulations.
Collapse
|
7
|
Kinetics and interaction studies of anti-tetraspanin antibodies and ICAM-1 with extracellular vesicle subpopulations using continuous flow quartz crystal microbalance biosensor. Biosens Bioelectron 2022; 206:114151. [PMID: 35259607 DOI: 10.1016/j.bios.2022.114151] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2021] [Revised: 02/18/2022] [Accepted: 02/28/2022] [Indexed: 02/08/2023]
Abstract
Continuous flow quartz crystal microbalance (QCM) was utilized to study binding kinetics between EV subpopulations (exomere- and exosome-sized EVs) and four affinity ligands: monoclonal antibodies against tetraspanins (anti-CD9, anti-CD63, and anti-CD81) and recombinant intercellular adhesion molecule-1 (ICAM-1) or CD54 protein). High purity CD9+, CD63+, and CD81+ EV subpopulations of <50 nm exomeres and 50-80 nm exosomes were isolated and fractionated using our recently developed on-line coupled immunoaffinity chromatography - asymmetric flow field-flow fractionation system. Adaptive Interaction Distribution Algorithm (AIDA), specifically designed for the analysis of complex biological interactions, was used with a four-step procedure for reliable estimation of the degree of heterogeneity in rate constant distributions. Interactions between exomere-sized EVs and anti-tetraspanin antibodies demonstrated two interaction sites with comparable binding kinetics and estimated dissociation constants Kd ranging from nM to fM. Exomeres exhibited slightly higher affinity compared to exosomes. The highest affinity with anti-tetraspanin antibodies was achieved with CD63+ EVs. The interaction of EV subpopulations with ICAM-1 involved in cell internalization of EVs was also investigated. EV - ICAM-1 interaction was also of high affinity (nM to pM range) with overall lower affinity compared to the interactions of anti-tetraspanin antibodies and EVs. Our findings proved that QCM is a valuable label-free tool for kinetic studies with limited sample concentration, and that advanced algorithms, such as AIDA, are crucial for proper determination of kinetic heterogeneity. To the best of our knowledge, this is the first kinetic study on the interaction between plasma-derived EV subpopulations and anti-tetraspanin antibodies and ICAM-1.
Collapse
|
8
|
Poddar S, Sharmeen S, Hage DS. Affinity monolith chromatography: A review of general principles and recent developments. Electrophoresis 2021; 42:2577-2598. [PMID: 34293192 PMCID: PMC9536602 DOI: 10.1002/elps.202100163] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 07/07/2021] [Accepted: 07/18/2021] [Indexed: 12/28/2022]
Abstract
Affinity monolith chromatography (AMC) is a liquid chromatographic technique that utilizes a monolithic support with a biological ligand or related binding agent to isolate, enrich, or detect a target analyte in a complex matrix. The target-specific interaction exhibited by the binding agents makes AMC attractive for the separation or detection of a wide range of compounds. This article will review the basic principles of AMC and recent developments in this field. The supports used in AMC will be discussed, including organic, inorganic, hybrid, carbohydrate, and cryogel monoliths. Schemes for attaching binding agents to these monoliths will be examined as well, such as covalent immobilization, biospecific adsorption, entrapment, molecular imprinting, and coordination methods. An overview will then be given of binding agents that have recently been used in AMC, along with their applications. These applications will include bioaffinity chromatography, immunoaffinity chromatography, immobilized metal-ion affinity chromatography, and dye-ligand or biomimetic affinity chromatography. The use of AMC in chiral separations and biointeraction studies will also be discussed.
Collapse
Affiliation(s)
- Saumen Poddar
- Department of Chemistry, University of Nebraska-Lincoln, Lincoln, Nebraska, 68588, USA
| | - Sadia Sharmeen
- Department of Chemistry, University of Nebraska-Lincoln, Lincoln, Nebraska, 68588, USA
| | - David S Hage
- Department of Chemistry, University of Nebraska-Lincoln, Lincoln, Nebraska, 68588, USA
| |
Collapse
|
9
|
Zhang B, Chi L. Chondroitin Sulfate/Dermatan Sulfate-Protein Interactions and Their Biological Functions in Human Diseases: Implications and Analytical Tools. Front Cell Dev Biol 2021; 9:693563. [PMID: 34422817 PMCID: PMC8377502 DOI: 10.3389/fcell.2021.693563] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Accepted: 07/20/2021] [Indexed: 01/12/2023] Open
Abstract
Chondroitin sulfate (CS) and dermatan sulfate (DS) are linear anionic polysaccharides that are widely present on the cell surface and in the cell matrix and connective tissue. CS and DS chains are usually attached to core proteins and are present in the form of proteoglycans (PGs). They not only are important structural substances but also bind to a variety of cytokines, growth factors, cell surface receptors, adhesion molecules, enzymes and fibrillary glycoproteins to execute series of important biological functions. CS and DS exhibit variable sulfation patterns and different sequence arrangements, and their molecular weights also vary within a large range, increasing the structural complexity and diversity of CS/DS. The structure-function relationship of CS/DS PGs directly and indirectly involves them in a variety of physiological and pathological processes. Accumulating evidence suggests that CS/DS serves as an important cofactor for many cell behaviors. Understanding the molecular basis of these interactions helps to elucidate the occurrence and development of various diseases and the development of new therapeutic approaches. The present article reviews the physiological and pathological processes in which CS and DS participate through their interactions with different proteins. Moreover, classic and emerging glycosaminoglycan (GAG)-protein interaction analysis tools and their applications in CS/DS-protein characterization are also discussed.
Collapse
Affiliation(s)
- Bin Zhang
- National Glycoengineering Research Center, Shandong University, Qingdao, China
| | - Lianli Chi
- National Glycoengineering Research Center, Shandong University, Qingdao, China
| |
Collapse
|
10
|
Phillips W, Willms E, Hill AF. Understanding extracellular vesicle and nanoparticle heterogeneity: Novel methods and considerations. Proteomics 2021; 21:e2000118. [PMID: 33857352 PMCID: PMC8365743 DOI: 10.1002/pmic.202000118] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 03/22/2021] [Accepted: 04/12/2021] [Indexed: 12/20/2022]
Abstract
Extracellular vesicles (EVs) are a heterogeneous population of membrane-enclosed nanoparticles released by cells. They play a role in intercellular communication and are involved in numerous physiological and pathological processes. Cells release subpopulations of EVs with distinct composition and inherent biological function which overlap in size. Current size-based isolation methods are, therefore, not optimal to discriminate between functional EV subpopulations. In addition, EVs overlap in size with several other biological nanoparticles, such as lipoproteins and viruses. Proteomic analysis has allowed for more detailed study of EV composition, and EV isolation approaches based on this could provide a promising alternative for purification based on size. Elucidating EV heterogeneity and the characteristics and role of EV subpopulations will advance our understanding of EV biology and the role of EVs in health and disease. Here, we discuss current knowledge of EV composition, EV heterogeneity and advances in affinity based EV isolation tools.
Collapse
Affiliation(s)
- William Phillips
- Department of Biochemistry and GeneticsLa Trobe Institute for Molecular ScienceLa Trobe UniversityBundooraVictoriaAustralia
| | - Eduard Willms
- Department of Biochemistry and GeneticsLa Trobe Institute for Molecular ScienceLa Trobe UniversityBundooraVictoriaAustralia
| | - Andrew F. Hill
- Department of Biochemistry and GeneticsLa Trobe Institute for Molecular ScienceLa Trobe UniversityBundooraVictoriaAustralia
| |
Collapse
|
11
|
Van Deun J, Jo A, Li H, Lin HY, Weissleder R, Im H, Lee H. Integrated Dual-Mode Chromatography to Enrich Extracellular Vesicles from Plasma. ADVANCED BIOSYSTEMS 2020; 4:e1900310. [PMID: 32351054 PMCID: PMC7606548 DOI: 10.1002/adbi.201900310] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Revised: 03/26/2020] [Accepted: 04/06/2020] [Indexed: 11/05/2022]
Abstract
Purifying extracellular vesicles (EVs) from complex biological fluids is a critical step in analyzing EVs molecularly. Plasma lipoprotein particles (LPPs) are a significant confounding factor as they outnumber EVs >104 -fold. Given their overlap in size, LPPs cannot be completely removed using standard size-exclusion chromatography. Density-based separation of LPPs can be applied but is impractical for routine use in clinical research and practice. Here a new separation approach, known as dual-mode chromatography (DMC), capable of enriching plasma EVs, and depleting LPPs is reported. DMC conveniently integrates two orthogonal separation steps in a single column device: i) size exclusion to remove high-density lipoproteins (HDLs) that are smaller than EVs; and ii) cation exchange to clear positively charged ApoB100-containing LPPs, mostly (very) low-density lipoproteins (V)LDLs, from negatively charged EVs. The strategy enables DMC to deplete most LPPs (>97% of HDLs and >99% of (V)LDLs) from human plasma, while retaining EVs (>30% of input). Furthermore, the two-in-one operation is fast (15 min per sample) and equipment-free. With abundant LPPs removed, DMC-prepared samples facilitate EV identification in imaging analyses and improve the accuracy for EV protein analysis.
Collapse
Affiliation(s)
- Jan Van Deun
- Center for Systems Biology and Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, 02114, USA
| | - Ala Jo
- Center for Systems Biology and Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, 02114, USA
| | - Huiyan Li
- Center for Systems Biology and Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, 02114, USA
| | - Hsing-Ying Lin
- Center for Systems Biology and Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, 02114, USA
| | - Ralph Weissleder
- Center for Systems Biology and Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, 02114, USA
- Department of Systems Biology, Harvard Medical School, Boston, MA, 02114, USA
| | - Hyungsoon Im
- Center for Systems Biology and Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, 02114, USA
| | - Hakho Lee
- Center for Systems Biology and Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, 02114, USA
- Center for NanoMedicine, Institute for Basic Science (IBS), Seoul, 03722, Republic of Korea
- Yonsei-IBS Institute, Yonsei University, Seoul, 03722, Republic of Korea
| |
Collapse
|
12
|
Multia E, Liangsupree T, Jussila M, Ruiz-Jimenez J, Kemell M, Riekkola ML. Automated On-Line Isolation and Fractionation System for Nanosized Biomacromolecules from Human Plasma. Anal Chem 2020; 92:13058-13065. [PMID: 32893620 PMCID: PMC7586295 DOI: 10.1021/acs.analchem.0c01986] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
![]()
An
automated on-line isolation and fractionation system including
controlling software was developed for selected nanosized biomacromolecules
from human plasma by on-line coupled immunoaffinity chromatography-asymmetric
flow field-flow fractionation (IAC-AsFlFFF). The on-line system was
versatile, only different monoclonal antibodies, anti-apolipoprotein
B-100, anti-CD9, or anti-CD61, were immobilized on monolithic disk
columns for isolation of lipoproteins and extracellular vesicles (EVs).
The platelet-derived CD61-positive EVs and CD9-positive EVs, isolated
by IAC, were further fractionated by AsFlFFF to their size-based subpopulations
(e.g., exomeres and exosomes) for further analysis. Field-emission
scanning electron microscopy elucidated the morphology of the subpopulations,
and 20 free amino acids and glucose in EV subpopulations were identified
and quantified in the ng/mL range using hydrophilic interaction liquid
chromatography-tandem mass spectrometry (HILIC-MS/MS). The study revealed
that there were significant differences between EV origin and size-based
subpopulations. The on-line coupled IAC-AsFlFFF system was successfully
programmed for reliable execution of 10 sequential isolation and fractionation
cycles (37–80 min per cycle) with minimal operator involvement,
minimal sample losses, and contamination. The relative standard deviations
(RSD) between the cycles for human plasma samples were 0.84–6.6%.
Collapse
Affiliation(s)
- Evgen Multia
- Department of Chemistry, University of Helsinki, P.O. Box 55, FI-00014 Helsinki, Finland
| | - Thanaporn Liangsupree
- Department of Chemistry, University of Helsinki, P.O. Box 55, FI-00014 Helsinki, Finland
| | - Matti Jussila
- Department of Chemistry, University of Helsinki, P.O. Box 55, FI-00014 Helsinki, Finland
| | - Jose Ruiz-Jimenez
- Department of Chemistry, University of Helsinki, P.O. Box 55, FI-00014 Helsinki, Finland
| | - Marianna Kemell
- Department of Chemistry, University of Helsinki, P.O. Box 55, FI-00014 Helsinki, Finland
| | - Marja-Liisa Riekkola
- Department of Chemistry, University of Helsinki, P.O. Box 55, FI-00014 Helsinki, Finland
| |
Collapse
|
13
|
Forssén P, Samuelsson J, Lacki K, Fornstedt T. Advanced Analysis of Biosensor Data for SARS-CoV-2 RBD and ACE2 Interactions. Anal Chem 2020; 92:11520-11524. [PMID: 32786452 PMCID: PMC7440141 DOI: 10.1021/acs.analchem.0c02475] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
![]()
The traditional approach for analyzing
interaction data from biosensors
instruments is based on the simplified assumption that also larger
biomolecules interactions are homogeneous. It was recently reported
that the human receptor angiotensin-converting enzyme 2 (ACE2) plays
a key role for capturing SARS-CoV-2 into the human target body, and
binding studies were performed using biosensors techniques based on
surface plasmon resonance and bio-layer interferometry. The published
affinity constants for the interactions, derived using the traditional
approach, described a single interaction between ACE2 and the SARS-CoV-2
receptor binding domain (RBD). We reanalyzed these data sets using
our advanced four-step approach based on an adaptive interaction distribution
algorithm (AIDA) that accounts for the great complexity of larger
biomolecules and gives a two-dimensional distribution of association
and dissociation rate constants. Our results showed that in both cases
the standard assumption about a single interaction was erroneous,
and in one of the cases, the value of the affinity constant KD differed more than 300% between the reported
value and our calculation. This information can prove very useful
in providing mechanistic information and insights about the mechanism
of interactions between ACE2 and SARS-CoV-2 RBD or similar systems.
Collapse
Affiliation(s)
- Patrik Forssén
- Department of Engineering and Chemical Sciences, Karlstad University, SE-651 88 Karlstad, Sweden
| | - Jörgen Samuelsson
- Department of Engineering and Chemical Sciences, Karlstad University, SE-651 88 Karlstad, Sweden
| | - Karol Lacki
- Department of Engineering and Chemical Sciences, Karlstad University, SE-651 88 Karlstad, Sweden
| | - Torgny Fornstedt
- Department of Engineering and Chemical Sciences, Karlstad University, SE-651 88 Karlstad, Sweden
| |
Collapse
|
14
|
Multia E, Tear CJY, Palviainen M, Siljander P, Riekkola ML. Fast isolation of highly specific population of platelet-derived extracellular vesicles from blood plasma by affinity monolithic column, immobilized with anti-human CD61 antibody. Anal Chim Acta 2019; 1091:160-168. [DOI: 10.1016/j.aca.2019.09.022] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Revised: 09/06/2019] [Accepted: 09/08/2019] [Indexed: 01/08/2023]
|