1
|
Wang Y, Yuan T, Lyu T, Zhang L, Wang M, He Z, Wang Y, Li Z. Mechanism of inflammatory response and therapeutic effects of stem cells in ischemic stroke: current evidence and future perspectives. Neural Regen Res 2025; 20:67-81. [PMID: 38767477 PMCID: PMC11246135 DOI: 10.4103/1673-5374.393104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 10/13/2023] [Accepted: 11/21/2023] [Indexed: 05/22/2024] Open
Abstract
Ischemic stroke is a leading cause of death and disability worldwide, with an increasing trend and tendency for onset at a younger age. China, in particular, bears a high burden of stroke cases. In recent years, the inflammatory response after stroke has become a research hotspot: understanding the role of inflammatory response in tissue damage and repair following ischemic stroke is an important direction for its treatment. This review summarizes several major cells involved in the inflammatory response following ischemic stroke, including microglia, neutrophils, monocytes, lymphocytes, and astrocytes. Additionally, we have also highlighted the recent progress in various treatments for ischemic stroke, particularly in the field of stem cell therapy. Overall, understanding the complex interactions between inflammation and ischemic stroke can provide valuable insights for developing treatment strategies and improving patient outcomes. Stem cell therapy may potentially become an important component of ischemic stroke treatment.
Collapse
Affiliation(s)
- Yubo Wang
- Vascular Neurology, Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Tingli Yuan
- Shanghai Engineering Research Center of Stem Cells Translational Medicine, Shanghai, China
| | - Tianjie Lyu
- Vascular Neurology, Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Ling Zhang
- Vascular Neurology, Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Meng Wang
- China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- National Center for Healthcare Quality Management in Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Zhiying He
- Shanghai Engineering Research Center of Stem Cells Translational Medicine, Shanghai, China
- Institute for Regenerative Medicine, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Yongjun Wang
- Vascular Neurology, Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- National Center for Healthcare Quality Management in Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- Chinese Institute for Brain Research, Beijing, China
- Research Unit of Artificial Intelligence in Cerebrovascular Disease, Chinese Academy of Medical Sciences, Beijing, China
- Beijing Engineering Research Center of Digital Healthcare for Neurological Diseases, Beijing, China
| | - Zixiao Li
- Vascular Neurology, Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- National Center for Healthcare Quality Management in Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- Chinese Institute for Brain Research, Beijing, China
- Research Unit of Artificial Intelligence in Cerebrovascular Disease, Chinese Academy of Medical Sciences, Beijing, China
- Beijing Engineering Research Center of Digital Healthcare for Neurological Diseases, Beijing, China
| |
Collapse
|
2
|
Huang Y, Zhang Z, Xu Y, Peng Y, Xu R, Luan Y, Bie X, Jia J, Zhang C, Han T, Zhou B, Li Z, Zheng H, Yang D, He Y. ARMC10 regulates mitochondrial dynamics and affects mitochondrial function via the Wnt/β-catenin signalling pathway involved in ischaemic stroke. J Cell Mol Med 2024; 28:e18449. [PMID: 38924214 PMCID: PMC11196997 DOI: 10.1111/jcmm.18449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 04/25/2024] [Accepted: 05/13/2024] [Indexed: 06/28/2024] Open
Abstract
Mitochondrial dynamics has emerged as an important target for neuronal protection after cerebral ischaemia/reperfusion. Therefore, the aim of this study was to investigate the mechanism by which ARMC10 regulation of mitochondrial dynamics affects mitochondrial function involved in ischaemic stroke (IS). Mitochondrial morphology was detected by laser scanning confocal microscopy (LSCM), and mitochondrial ultrastructural alterations were detected by electron microscopy. The expression of mitochondrial dynamics-related genes Drp1, Mfn1, Mfn2, Fis1, OPA1 and ARMC10 and downstream target genes c-Myc, CyclinD1 and AXIN2 was detected by RT-qPCR. Western blot was used to detect the protein expression of β-catenin, GSK-3β, p-GSK-3β, Bcl-2 and Bax. DCFH-DA fluorescent probe was to detect the effect of ARMC10 on mitochondrial ROS level, Annexin V-FITC fluorescent probe was to detect the effect of ARMC10 on apoptosis, and ATP assay kit was to detect the effect of ARMC10 on ATP production. Mitochondrial dynamics was dysregulated in clinical IS samples and in the OGD/R cell model, and the relative expression of ARMC10 gene was significantly decreased in IS group (p < 0.05). Knockdown and overexpression of ARMC10 could affect mitochondrial dynamics, mitochondrial function and neuronal apoptosis. Agonist and inhibitor affected mitochondrial function and neuronal apoptosis by targeting Wnt/β-Catenin signal pathway. In the OGD/R model, ARMC10 affected mitochondrial function and neuronal apoptosis through the mechanism that regulates Wnt/β-catenin signalling pathway. ARMC10 regulates mitochondrial dynamics and protects mitochondrial function by activating Wnt/β-catenin signalling pathway, to exert neuroprotective effects.
Collapse
Affiliation(s)
- Yanyang Huang
- Department of Medical Genetics and Cell Biology, School of Basic Medical SciencesZhengzhou UniversityZhengzhouChina
| | - Zhaojing Zhang
- Department of Medical Genetics and Cell Biology, School of Basic Medical SciencesZhengzhou UniversityZhengzhouChina
| | - Yatian Xu
- Department of Medical Genetics and Cell Biology, School of Basic Medical SciencesZhengzhou UniversityZhengzhouChina
| | - Yue Peng
- Department of Medical Genetics and Cell Biology, School of Basic Medical SciencesZhengzhou UniversityZhengzhouChina
| | - Ruochen Xu
- Department of Medical Genetics and Cell Biology, School of Basic Medical SciencesZhengzhou UniversityZhengzhouChina
| | - Yingying Luan
- Reproduction CenterThe Third Affiliated Hospital of ZhengZhou UniversityZhengzhouChina
| | - Xiaoshuai Bie
- Clinical Laboratory CenterQingyuan Maternal and Child Health HospitalQingyuanChina
| | - Jing Jia
- Department of Medical Genetics and Cell Biology, School of Basic Medical SciencesZhengzhou UniversityZhengzhouChina
| | - Chi Zhang
- Department of Medical Genetics and Cell Biology, School of Basic Medical SciencesZhengzhou UniversityZhengzhouChina
| | - Tianyi Han
- Department of Medical Genetics and Cell Biology, School of Basic Medical SciencesZhengzhou UniversityZhengzhouChina
| | - Baixue Zhou
- Department of Medical Genetics and Cell Biology, School of Basic Medical SciencesZhengzhou UniversityZhengzhouChina
| | - Zhihao Li
- Department of Medical Genetics and Cell Biology, School of Basic Medical SciencesZhengzhou UniversityZhengzhouChina
| | - Hong Zheng
- Department of Medical Genetics and Cell Biology, School of Basic Medical SciencesZhengzhou UniversityZhengzhouChina
| | - Dongzhi Yang
- School of Life SciencesZhengzhou UniversityZhengzhouChina
| | - Ying He
- Department of Medical Genetics and Cell Biology, School of Basic Medical SciencesZhengzhou UniversityZhengzhouChina
| |
Collapse
|
3
|
Tsuji S, Otani C, Horie T, Watanabe S, Baba O, Sowa N, Ide Y, Kashiwa A, Makiyama T, Imai H, Nakashima Y, Yamasaki T, Xu S, Matsushita K, Suzuki K, Zou F, Kume E, Hasegawa K, Kimura T, Kakizuka A, Ono K. KUS121, a VCP modulator, has an ameliorating effect on acute and chronic heart failure without calcium loading via maintenance of intracellular ATP levels. Biomed Pharmacother 2024; 170:115850. [PMID: 38091636 DOI: 10.1016/j.biopha.2023.115850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 10/26/2023] [Accepted: 11/05/2023] [Indexed: 01/10/2024] Open
Abstract
AIMS As heart failure (HF) progresses, ATP levels in myocardial cells decrease, and myocardial contractility also decreases. Inotropic drugs improve myocardial contractility but increase ATP consumption, leading to poor prognosis. Kyoto University Substance 121 (KUS121) is known to selectively inhibit the ATPase activity of valosin-containing protein, maintain cellular ATP levels, and manifest cytoprotective effects in several pathological conditions. The aim of this study is to determine the therapeutic effect of KUS121 on HF models. METHODS AND RESULTS Cultured cell, mouse, and canine models of HF were used to examine the therapeutic effects of KUS121. The mechanism of action of KUS121 was also examined. Administration of KUS121 to a transverse aortic constriction (TAC)-induced mouse model of HF rapidly improved the left ventricular ejection fraction and improved the creatine phosphate/ATP ratio. In a canine model of high frequency-paced HF, administration of KUS121 also improved left ventricular contractility and decreased left ventricular end-diastolic pressure without increasing the heart rate. Long-term administration of KUS121 to a TAC-induced mouse model of HF suppressed cardiac hypertrophy and fibrosis. In H9C2 cells, KUS121 reduced ER stress. Finally, in experiments using primary cultured cardiomyocytes, KUS121 improved contractility and diastolic capacity without changing peak Ca2+ levels or contraction time. These effects were not accompanied by an increase in cyclic adenosine monophosphate or phosphorylation of phospholamban and ryanodine receptors. CONCLUSIONS KUS121 ameliorated HF by a mechanism totally different from that of conventional catecholamines. We propose that KUS121 is a promising new option for the treatment of HF.
Collapse
Affiliation(s)
- Shuhei Tsuji
- Department of Cardiovascular Medicine, Kyoto University Graduate School of Medicine, Kyoto 606-8507, Japan
| | - Chiharu Otani
- Department of Cardiovascular Medicine, Kyoto University Graduate School of Medicine, Kyoto 606-8507, Japan
| | - Takahiro Horie
- Department of Cardiovascular Medicine, Kyoto University Graduate School of Medicine, Kyoto 606-8507, Japan
| | - Shin Watanabe
- Department of Cardiovascular Medicine, Kyoto University Graduate School of Medicine, Kyoto 606-8507, Japan
| | - Osamu Baba
- Department of Cardiovascular Medicine, Kyoto University Graduate School of Medicine, Kyoto 606-8507, Japan; Preemptive Medicine and Lifestyle Disease Research Center, Kyoto University Hospital Kyoto, 606-8507, Japan
| | - Naoya Sowa
- Division of Translational Research, National Hospital Organization, Kyoto Medical Center, 1-1 Fukakusa Mukaihata-cho, Fushimi-ku, Kyoto 612-8555, Japan
| | - Yuya Ide
- Department of Cardiovascular Medicine, Kyoto University Graduate School of Medicine, Kyoto 606-8507, Japan
| | - Asami Kashiwa
- Department of Cardiovascular Medicine, Kyoto University Graduate School of Medicine, Kyoto 606-8507, Japan
| | - Takeru Makiyama
- Department of Cardiovascular Medicine, Kyoto University Graduate School of Medicine, Kyoto 606-8507, Japan
| | - Hirohiko Imai
- Department of Systems Science, Graduate School of Informatics, Kyoto University, Kyoto 606-8501, Japan
| | - Yasuhiro Nakashima
- Department of Cardiovascular Medicine, Kyoto University Graduate School of Medicine, Kyoto 606-8507, Japan
| | - Tomohiro Yamasaki
- Department of Cardiovascular Medicine, Kyoto University Graduate School of Medicine, Kyoto 606-8507, Japan
| | - Sijia Xu
- Department of Cardiovascular Medicine, Kyoto University Graduate School of Medicine, Kyoto 606-8507, Japan
| | - Kazuki Matsushita
- Department of Cardiovascular Medicine, Kyoto University Graduate School of Medicine, Kyoto 606-8507, Japan
| | - Keita Suzuki
- Department of Neurosurgery, Kyoto University Graduate School of Medicine, Kyoto 606-8507, Japan
| | - Fuquan Zou
- Department of Cardiovascular Medicine, Kyoto University Graduate School of Medicine, Kyoto 606-8507, Japan
| | - Eitaro Kume
- Department of Pediatrics, Kyoto University Graduate School of Medicine, Kyoto 606-8507, Japan
| | - Koji Hasegawa
- Preemptive Medicine and Lifestyle Disease Research Center, Kyoto University Hospital Kyoto, 606-8507, Japan
| | - Takeshi Kimura
- Department of Cardiovascular Medicine, Kyoto University Graduate School of Medicine, Kyoto 606-8507, Japan
| | - Akira Kakizuka
- Laboratory of Functional Biology, Kyoto University Graduate School of Biostudies and Solution Oriented Research for Science and Technology, Kyoto 606-8501, Japan.
| | - Koh Ono
- Department of Cardiovascular Medicine, Kyoto University Graduate School of Medicine, Kyoto 606-8507, Japan.
| |
Collapse
|
4
|
Morse PT, Wan J, Bell J, Lee I, Goebel DJ, Malek MH, Sanderson TH, Hüttemann M. Sometimes less is more: inhibitory infrared light during early reperfusion calms hyperactive mitochondria and suppresses reperfusion injury. Biochem Soc Trans 2022; 50:1377-1388. [PMID: 36066188 PMCID: PMC10121102 DOI: 10.1042/bst20220446] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 08/20/2022] [Accepted: 08/22/2022] [Indexed: 11/17/2022]
Abstract
Ischemic stroke affects over 77 million people annually around the globe. Due to the blockage of a blood vessel caused by a stroke, brain tissue becomes ischemic. While prompt restoration of blood flow is necessary to save brain tissue, it also causes reperfusion injury. Mitochondria play a crucial role in early ischemia-reperfusion injury due to the generation of reactive oxygen species (ROS). During ischemia, mitochondria sense energy depletion and futilely attempt to up-regulate energy production. When reperfusion occurs, mitochondria become hyperactive and produce large amounts of ROS which damages neuronal tissue. This ROS burst damages mitochondria and the cell, which results in an eventual decrease in mitochondrial activity and pushes the fate of the cell toward death. This review covers the relationship between the mitochondrial membrane potential (ΔΨm) and ROS production. We also discuss physiological mechanisms that couple mitochondrial energy production to cellular energy demand, focusing on serine 47 dephosphorylation of cytochrome c (Cytc) in the brain during ischemia, which contributes to ischemia-reperfusion injury. Finally, we discuss the use of near infrared light (IRL) to treat stroke. IRL can both stimulate or inhibit mitochondrial activity depending on the wavelength. We emphasize that the use of the correct wavelength is crucial for outcome: inhibitory IRL, applied early during reperfusion, can prevent the ROS burst from occurring, thus preserving neurological tissue.
Collapse
Affiliation(s)
- Paul T. Morse
- Center for Molecular Medicine and Genetics, Wayne State University, Detroit, MI 48201, USA
| | - Junmei Wan
- Center for Molecular Medicine and Genetics, Wayne State University, Detroit, MI 48201, USA
| | - Jamie Bell
- Center for Molecular Medicine and Genetics, Wayne State University, Detroit, MI 48201, USA
- Division of Pediatric Critical Care, Children’s Hospital of Michigan, Central Michigan University, Detroit, MI 48201, USA
| | - Icksoo Lee
- College of Medicine, Dankook University, Cheonan-si, Chungcheongnam-do 31116, Republic of Korea
| | - Dennis J. Goebel
- Department of Ophthalmology, Visual and Anatomical Sciences, Wayne State University, Detroit, MI 48201, USA
| | - Moh H. Malek
- Department of Health Care Sciences, Eugene Applebaum College of Pharmacy & Health Sciences, Wayne State University, Detroit, MI 48201, USA
| | - Thomas H. Sanderson
- Department of Emergency Medicine, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Maik Hüttemann
- Center for Molecular Medicine and Genetics, Wayne State University, Detroit, MI 48201, USA
- Department of Biochemistry, Microbiology, and Immunology, Wayne State University, Detroit, MI 48201, USA
| |
Collapse
|
5
|
Yan X, Yang K, Xiao Q, Hou R, Pan X, Zhu X. Central role of microglia in sepsis-associated encephalopathy: From mechanism to therapy. Front Immunol 2022; 13:929316. [PMID: 35958583 PMCID: PMC9361477 DOI: 10.3389/fimmu.2022.929316] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 06/22/2022] [Indexed: 11/20/2022] Open
Abstract
Sepsis-associated encephalopathy (SAE) is a cognitive impairment associated with sepsis that occurs in the absence of direct infection in the central nervous system or structural brain damage. Microglia are thought to be macrophages of the central nervous system, devouring bits of neuronal cells and dead cells in the brain. They are activated in various ways, and microglia-mediated neuroinflammation is characteristic of central nervous system diseases, including SAE. Here, we systematically described the pathogenesis of SAE and demonstrated that microglia are closely related to the occurrence and development of SAE. Furthermore, we comprehensively discussed the function and phenotype of microglia and summarized their activation mechanism and role in SAE pathogenesis. Finally, this review summarizes recent studies on treating cognitive impairment in SAE by blocking microglial activation and toxic factors produced after activation. We suggest that targeting microglial activation may be a putative treatment for SAE.
Collapse
Affiliation(s)
- Xiaoqian Yan
- Department of Critical Care Medicine, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Kaiying Yang
- Department of Neurology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Qi Xiao
- Department of Neurology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Rongyao Hou
- Department of Neurology, The Affiliated Hiser Hospital of Qingdao University, Qingdao, China
- *Correspondence: Rongyao Hou, ; Xudong Pan, ; Xiaoyan Zhu,
| | - Xudong Pan
- Department of Neurology, The Affiliated Hospital of Qingdao University, Qingdao, China
- *Correspondence: Rongyao Hou, ; Xudong Pan, ; Xiaoyan Zhu,
| | - Xiaoyan Zhu
- Department of Critical Care Medicine, The Affiliated Hospital of Qingdao University, Qingdao, China
- *Correspondence: Rongyao Hou, ; Xudong Pan, ; Xiaoyan Zhu,
| |
Collapse
|
6
|
Hata Y, Date R, Fujimoto D, Ikeda HO, Umemoto S, Kanki T, Nishiguchi Y, Mizumoto T, Hayata M, Kakizoe Y, Izumi Y, Kakizuka A, Mukoyama M, Kuwabara T. A Novel VCP modulator KUS121 exerts renoprotective effects in ischemia-reperfusion injury with retaining ATP and restoring ERAD-processing capacity. Am J Physiol Renal Physiol 2022; 322:F577-F586. [PMID: 35343850 DOI: 10.1152/ajprenal.00392.2021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
INTRODUCTION Acute kidney injury (AKI) is a life-threatening condition and often progresses to chronic kidney disease or may develop other organ dysfunction even after recovery. Despite the increased recognition and high prevalence of AKI worldwide, there has been no established treatment so far. The aim of this study is to investigate the renoprotective effect of KUS121, a novel valosin-containing protein (VCP) modulator, on AKI. METHODS In in vitro experiment, we evaluated cell viability and ATP levels of proximal tubular cells (PTs) with or without KUS121 under ER-stress condition. In in vivo experiment, the effects of KUS121 were examined in mice with AKI caused by ischemia-reperfusion (I/R) injury. ER-associated degradation (ERAD)-processing capacity was evaluated by quantification of ERAD substrate CD3delta-YFP. RESULTS KUS121 protected PTs from cell death under ER stress. Apoptotic response was mitigated as indicated by the suppression of CHOP expression and caspase-3 cleavage, with maintained intracellular ATP levels by KUS121 administration. KUS121 treatment suppressed the elevation of serum creatinine and NGAL levels and attenuated renal tubular damages after I/R. The expression of inflammatory cytokines in the kidney was also suppressed in the KUS121-treated group. VCP expression levels were not altered by KUS121 both in vitro and in vivo. KUS121 treatment restored ERAD-processing capacity associated with potentiation of its upstream pathway, phosphorylated IRE1a and spliced XBP1. CONCLUSIONS These findings indicate that KUS 121 can protect renal tubular cells from ER stress-induced injury, suggesting that KUS121 could be a novel and promising therapeutic compound for ischemia-associated AKI.
Collapse
Affiliation(s)
- Yusuke Hata
- Department of Nephrology, Kumamoto University Graduate School of Medical Sciences, Kumamoto, Japan
| | - Ryosuke Date
- Department of Nephrology, Kumamoto University Graduate School of Medical Sciences, Kumamoto, Japan
| | - Daisuke Fujimoto
- Department of Nephrology, Kumamoto University Graduate School of Medical Sciences, Kumamoto, Japan
| | - Hanako Ohashi Ikeda
- Department of Ophthalmology and Visual Sciences, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Shuro Umemoto
- Department of Nephrology, Kumamoto University Graduate School of Medical Sciences, Kumamoto, Japan
| | - Tomoko Kanki
- Department of Nephrology, Kumamoto University Graduate School of Medical Sciences, Kumamoto, Japan
| | - Yoshihiko Nishiguchi
- Department of Nephrology, Kumamoto University Graduate School of Medical Sciences, Kumamoto, Japan
| | - Teruhiko Mizumoto
- Department of Nephrology, Kumamoto University Graduate School of Medical Sciences, Kumamoto, Japan
| | - Manabu Hayata
- Department of Nephrology, Kumamoto University Graduate School of Medical Sciences, Kumamoto, Japan
| | - Yutaka Kakizoe
- Department of Nephrology, Kumamoto University Graduate School of Medical Sciences, Kumamoto, Japan
| | - Yuichiro Izumi
- Department of Nephrology, Kumamoto University Graduate School of Medical Sciences, Kumamoto, Japan
| | - Akira Kakizuka
- Laboratory of Functional Biology, Kyoto University Graduate School of Biostudies, Kyoto, Japan
| | - Masashi Mukoyama
- Department of Nephrology, Kumamoto University Graduate School of Medical Sciences, Kumamoto, Japan
| | - Takashige Kuwabara
- Department of Nephrology, Kumamoto University Graduate School of Medical Sciences, Kumamoto, Japan
| |
Collapse
|
7
|
Hypoxia Tolerant Species: The Wisdom of Nature Translated into Targets for Stroke Therapy. Int J Mol Sci 2021; 22:ijms222011131. [PMID: 34681788 PMCID: PMC8537001 DOI: 10.3390/ijms222011131] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 10/05/2021] [Accepted: 10/12/2021] [Indexed: 12/13/2022] Open
Abstract
Human neurons rapidly die after ischemia and current therapies for stroke management are limited to restoration of blood flow to prevent further brain damage. Thrombolytics and mechanical thrombectomy are the available reperfusion treatments, but most of the patients remain untreated. Neuroprotective therapies focused on treating the pathogenic cascade of the disease have widely failed. However, many animal species demonstrate that neurons can survive the lack of oxygen for extended periods of time. Here, we reviewed the physiological and molecular pathways inherent to tolerant species that have been described to contribute to hypoxia tolerance. Among them, Foxo3 and Eif5A were reported to mediate anoxic survival in Drosophila and Caenorhabditis elegans, respectively, and those results were confirmed in experimental models of stroke. In humans however, the multiple mechanisms involved in brain cell death after a stroke causes translation difficulties to arise making necessary a timely and coordinated control of the pathological changes. We propose here that, if we were able to plagiarize such natural hypoxia tolerance through drugs combined in a pharmacological cocktail it would open new therapeutic opportunities for stroke and likely, for other hypoxic conditions.
Collapse
|
8
|
Microglia as the Critical Regulators of Neuroprotection and Functional Recovery in Cerebral Ischemia. Cell Mol Neurobiol 2021; 42:2505-2525. [PMID: 34460037 DOI: 10.1007/s10571-021-01145-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Accepted: 08/25/2021] [Indexed: 12/13/2022]
Abstract
Microglial activation is considered as the critical pathogenic event in diverse central nervous system disorders including cerebral ischemia. Proinflammatory responses of activated microglia have been well reported in the ischemic brain and neuroinflammatory responses of activated microglia have been believed to be the potential therapeutic strategy. However, despite having proinflammatory roles, microglia can have significant anti-inflammatory roles and they are associated with the production of growth factors which are responsible for neuroprotection and recovery after ischemic injury. Microglia can directly promote neuroprotection by preventing ischemic infarct expansion and promoting functional outcomes. Indirectly, microglia are involved in promoting anti-inflammatory responses, neurogenesis, and angiogenesis in the ischemic brain which are crucial pathophysiological events for ischemic recovery. In fact, anti-inflammatory cytokines and growth factors produced by microglia can promote neuroprotection and attenuate neurobehavioral deficits. In addition, microglia regulate phagocytosis, axonal regeneration, blood-brain barrier protection, white matter integrity, and synaptic remodeling, which are essential for ischemic recovery. Microglia can also regulate crosstalk with neurons and other cell types to promote neuroprotection and ischemic recovery. This review mainly focuses on the roles of microglia in neuroprotection and recovery following ischemic injury. Furthermore, this review also sheds the light on the therapeutic potential of microglia in stroke patients.
Collapse
|
9
|
Iwai S, Ikeda HO, Mera H, Nishitani K, Saito M, Tsujikawa A, Kakizuka A. KUS121 attenuates the progression of monosodium iodoacetate-induced osteoarthritis in rats. Sci Rep 2021; 11:15651. [PMID: 34341460 PMCID: PMC8329178 DOI: 10.1038/s41598-021-95173-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Accepted: 07/15/2021] [Indexed: 12/01/2022] Open
Abstract
Currently there is no effective treatment available for osteoarthritis (OA). We have recently developed Kyoto University Substances (KUSs), ATPase inhibitors specific for valosin-containing protein (VCP), as a novel class of medicine for cellular protection. KUSs suppressed intracellular ATP depletion, endoplasmic reticulum (ER) stress, and cell death. In this study, we investigated the effects of KUS121 on chondrocyte cell death. In cultured chondrocytes differentiated from ATDC5 cells, KUS121 suppressed the decline in ATP levels and apoptotic cell death under stress conditions induced by TNFα. KUS121 ameliorated TNFα-induced reduction of gene expression in chondrocytes, such as Sox9 and Col2α. KUS121 also suppressed ER stress and cell death in chondrocytes under tunicamycin load. Furthermore, intraperitoneal administration of KUS121 in vivo suppressed chondrocyte loss and proteoglycan reduction in knee joints of a monosodium iodoacetate-induced OA rat model. Moreover, intra-articular administration of KUS121 more prominently reduced the apoptosis of the affected chondrocytes. These results demonstrate that KUS121 protects chondrocytes from stress-induced cell death in vitro and in vivo, and indicate that KUS121 is a promising novel therapeutic agent to prevent the progression of OA.
Collapse
Affiliation(s)
- Sachiko Iwai
- Department of Ophthalmology and Visual Sciences, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Hanako O Ikeda
- Department of Ophthalmology and Visual Sciences, Graduate School of Medicine, Kyoto University, Kyoto, Japan.
| | - Hisashi Mera
- Uonuma Institute of Community Medicine, Niigata University Medical and Dental Hospital, Niigata, Japan
| | - Kohei Nishitani
- Department of Orthopedic Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Motoo Saito
- Department of Orthopedic Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Akitaka Tsujikawa
- Department of Ophthalmology and Visual Sciences, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Akira Kakizuka
- Laboratory of Functional Biology, Graduate School of Biostudies, Kyoto University, Kyoto, Japan
| |
Collapse
|
10
|
Saito M, Nishitani K, Ikeda HO, Yoshida S, Iwai S, Ji X, Nakahata A, Ito A, Nakamura S, Kuriyama S, Yoshitomi H, Murata K, Aoyama T, Ito H, Kuroki H, Kakizuka A, Matsuda S. A VCP modulator, KUS121, as a promising therapeutic agent for post-traumatic osteoarthritis. Sci Rep 2020; 10:20787. [PMID: 33247195 PMCID: PMC7695735 DOI: 10.1038/s41598-020-77735-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Accepted: 11/13/2020] [Indexed: 12/20/2022] Open
Abstract
Post-traumatic osteoarthritis (PTOA) is a major cause which hinders patients from the recovery after intra-articular injuries or surgeries. Currently, no effective treatment is available. In this study, we showed that inhibition of the acute stage chondrocyte death is a promising strategy to mitigate the development of PTOA. Namely, we examined efficacies of Kyoto University Substance (KUS) 121, a valosin-containing protein modulator, for PTOA as well as its therapeutic mechanisms. In vivo, in a rat PTOA model by cyclic compressive loading, intra-articular treatments of KUS121 significantly improved the modified Mankin scores and reduced damaged-cartilage volumes, as compared to vehicle treatment. Moreover, KUS121 markedly reduced the numbers of TUNEL-, CHOP-, MMP-13-, and ADAMTS-5-positive chondrocytes in the damaged knees. In vitro, KUS121 rescued human articular chondrocytes from tunicamycin-induced cell death, in both monolayer culture and cartilage explants. It also significantly downregulated the protein or gene expression of ER stress markers, proinflammatory cytokines, and extracellular-matrix-degrading enzymes induced by tunicamycin or IL-1β. Collectively, these results demonstrated that KUS121 protected chondrocytes from cell death through the inhibition of excessive ER stress. Therefore, KUS121 would be a new, promising therapeutic agent with a protective effect on the progression of PTOA.
Collapse
Affiliation(s)
- Motoo Saito
- Department of Orthopaedic Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Kohei Nishitani
- Department of Orthopaedic Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan.
| | - Hanako O Ikeda
- Department of Ophthalmology and Visual Sciences, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Shigeo Yoshida
- Department of Orthopaedic Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Sachiko Iwai
- Department of Ophthalmology and Visual Sciences, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Xiang Ji
- Department of Physical Therapy, Human Health Sciences, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Akihiro Nakahata
- Department of Physical Therapy, Human Health Sciences, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Akira Ito
- Department of Physical Therapy, Human Health Sciences, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Shinichiro Nakamura
- Department of Orthopaedic Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Shinichi Kuriyama
- Department of Orthopaedic Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Hiroyuki Yoshitomi
- Department of Immunology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Koichi Murata
- Department of Orthopaedic Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan.,Department of Advanced Medicine of Rheumatic Diseases, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Tomoki Aoyama
- Department of Physical Therapy, Human Health Sciences, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Hiromu Ito
- Department of Orthopaedic Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan.,Department of Advanced Medicine of Rheumatic Diseases, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Hiroshi Kuroki
- Department of Physical Therapy, Human Health Sciences, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Akira Kakizuka
- Laboratory of Functional Biology, Graduate School of Biostudies, Kyoto University, Kyoto, Japan.
| | - Shuichi Matsuda
- Department of Orthopaedic Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| |
Collapse
|