1
|
Mahadevan C, Mikkilineni R, Vyas N, Karabasanavar N. Assessment of Knowledge and Biosecurity Practices Related to Avian Influenza Among Poultry Workers in a District of South India. JOURNAL OF PUBLIC HEALTH MANAGEMENT AND PRACTICE 2024; 30:674-680. [PMID: 38489542 DOI: 10.1097/phh.0000000000001914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/17/2024]
Abstract
CONTEXT Avian influenza, commonly known as bird flu, is a contagious disease that affects both animals and humans, posing a significant threat to public health, animal welfare, and the economy. This study aims to evaluate the knowledge of avian influenza among poultry farmworkers and evaluate the biosecurity practices implemented on their farms. OBJECTIVE The study's primary objective was to assess the knowledge regarding avian influenza among poultry farmworkers and the biosecurity practices they follow at the farm. DESIGN Cross-sectional study. SETTING The study was conducted in a district of South India. PARTICIPANTS This study included 105 poultry farmworkers across 70 poultry farms in the district. MAIN OUTCOME MEASURES Assessment of the participants' knowledge related to avian influenza, and the association between knowledge levels, demographic, and farm-related factors such as working experience in the poultry farm, type of poultry farm, type of poultry reared, and biosecurity practices. RESULTS In the study, 90% of participants were aware of avian influenza, with 36% correctly identifying the virus as its cause, whereas 5% wrongly cited it to be a bacteria. Although 90% knew avian influenza was infectious, only 18% recognized its potential transmission to humans; however, 82% understood prevention methods. Participants with an education level beyond high school displayed significantly higher awareness ( P < .05), emphasizing importance of the education. CONCLUSIONS The study showed diverse awareness levels among poultry farmworkers regarding avian influenza, emphasizing gaps in the knowledge, particularly about its transmission to humans. This underscores the need for targeted awareness campaigns focusing on zoonotic risks to improve the level of understanding and implement effective preventive measures against avian influenza.
Collapse
Affiliation(s)
- Chandan Mahadevan
- Department of Health Policy, Prasanna School of Public Health, Manipal Academy of Higher Education, Manipal, Karnataka, India (Dr Mahadevan, Dr Mikkilineni, and Dr Vyas); and Department of Veterinary Public Health and Epidemiology, Veterinary College, Vidyanagar, Hassan, Karnataka, India (Dr Karabasanavar)
| | | | | | | |
Collapse
|
2
|
Lee CY. Exploring Potential Intermediates in the Cross-Species Transmission of Influenza A Virus to Humans. Viruses 2024; 16:1129. [PMID: 39066291 PMCID: PMC11281536 DOI: 10.3390/v16071129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 07/08/2024] [Accepted: 07/12/2024] [Indexed: 07/28/2024] Open
Abstract
The influenza A virus (IAV) has been a major cause of several pandemics, underscoring the importance of elucidating its transmission dynamics. This review investigates potential intermediate hosts in the cross-species transmission of IAV to humans, focusing on the factors that facilitate zoonotic events. We evaluate the roles of various animal hosts, including pigs, galliformes, companion animals, minks, marine mammals, and other animals, in the spread of IAV to humans.
Collapse
Affiliation(s)
- Chung-Young Lee
- Department of Microbiology, School of Medicine, Kyungpook National University, Daegu 41944, Republic of Korea;
- Untreatable Infectious Disease Institute, Kyungpook National University, Daegu 41944, Republic of Korea
| |
Collapse
|
3
|
Gartrell BD, Jolly MJ, Hunter SA. The risks and consequences of a high pathogenicity avian influenza outbreak in Aotearoa New Zealand. N Z Vet J 2024; 72:63-65. [PMID: 38228153 DOI: 10.1080/00480169.2023.2294915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2024]
Affiliation(s)
- B D Gartrell
- Wildbase, Tāwharau Ora - School of Veterinary Science, Massey University, Palmerston North, New Zealand
| | - M J Jolly
- Wildbase, Tāwharau Ora - School of Veterinary Science, Massey University, Palmerston North, New Zealand
| | - S A Hunter
- Wildbase, Tāwharau Ora - School of Veterinary Science, Massey University, Palmerston North, New Zealand
| |
Collapse
|
4
|
Carnegie L, Raghwani J, Fournié G, Hill SC. Phylodynamic approaches to studying avian influenza virus. Avian Pathol 2023; 52:289-308. [PMID: 37565466 DOI: 10.1080/03079457.2023.2236568] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 06/23/2023] [Accepted: 07/07/2023] [Indexed: 08/12/2023]
Abstract
Avian influenza viruses can cause severe disease in domestic and wild birds and are a pandemic threat. Phylodynamics is the study of how epidemiological, evolutionary, and immunological processes can interact to shape viral phylogenies. This review summarizes how phylodynamic methods have and could contribute to the study of avian influenza viruses. Specifically, we assess how phylodynamics can be used to examine viral spread within and between wild or domestic bird populations at various geographical scales, identify factors associated with virus dispersal, and determine the order and timing of virus lineage movement between geographic regions or poultry production systems. We discuss factors that can complicate the interpretation of phylodynamic results and identify how future methodological developments could contribute to improved control of the virus.
Collapse
Affiliation(s)
- L Carnegie
- Department of Pathobiology and Population Sciences, Royal Veterinary College (RVC), Hatfield, UK
| | - J Raghwani
- Department of Pathobiology and Population Sciences, Royal Veterinary College (RVC), Hatfield, UK
| | - G Fournié
- Department of Pathobiology and Population Sciences, Royal Veterinary College (RVC), Hatfield, UK
- Université de Lyon, INRAE, VetAgro Sup, UMR EPIA, Marcy l'Etoile, France
- Université Clermont Auvergne, INRAE, VetAgro Sup, UMR EPIA, Saint Genes Champanelle, France
| | - S C Hill
- Department of Pathobiology and Population Sciences, Royal Veterinary College (RVC), Hatfield, UK
| |
Collapse
|
5
|
Mok CKP, Qin K. Mink infection with influenza A viruses: an ignored intermediate host? ONE HEALTH ADVANCES 2023; 1:5. [PMID: 37521532 PMCID: PMC10060132 DOI: 10.1186/s44280-023-00004-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 02/08/2023] [Accepted: 02/10/2023] [Indexed: 08/01/2023]
Abstract
Continuously emergence of human infection with avian influenza A virus poses persistent threat to public health, as illustrated in zoonotic H5N1/6 and H7N9 infections. The recent surge of infection to farmed mink by multiple subtypes of avian influenza A viruses in China highlights the role of mink in the ecology of influenza in this region. Serologic studies suggested that farmed mink in China are frequently infected with prevailing human (H3N2 and H1N1/pdm) and avian (H7N9, H5N6, and H9N2) influenza A viruses. Moreover, genetic analysis from the sequences of influenza viruses from mink showed that several strains acquired mammalian adaptive mutations compared to their avian counterparts. The transmission of SARS-CoV-2 from mink to human alerts us that mink may serve as an intermediate host or reservoir of some emerging pathogens. Considering the high susceptibility to different influenza A viruses, it is possible that mink in endemic regions may play a role as an "mixing vessel" for generating novel pandemic strain. Thus, enhanced surveillance of influenza viruses in mink should be urgently implemented for early warning of potential pandemic.
Collapse
Affiliation(s)
- Chris Ka Pun Mok
- The Jockey Club School of Public Health and Primary Care, The Chinese University of Hong Kong, SAR Hong Kong, China
- Li Ka Shing Institute of Health Sciences, Faculty of Medicine, The Chinese University of Hong Kong, SAR Hong Kong, China
| | - Kun Qin
- National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention (China CDC), 100 Yingxin Street, Western District, 100052 Beijing, China
| |
Collapse
|
6
|
Wang Q, Zeng X, Tang S, Lan L, Wang X, Lai Z, Liu Z, Hou X, Gao L, Yun C, Zhang Z, Leng J, Fan X. Pathogenicity and anti-infection immunity of animal H3N2 and H6N6 subtype influenza virus cross-species infection with tree shrews. Virus Res 2023; 324:199027. [PMID: 36543317 DOI: 10.1016/j.virusres.2022.199027] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 12/11/2022] [Accepted: 12/17/2022] [Indexed: 12/23/2022]
Abstract
Animal influenza viruses can spread across species and pose a fatal threat to human health due to the high pathogenicity and mortality. Animal models are crucial for studying cross-species infection and the pathogenesis of influenza viruses. Tupaia belangeri (tree shrew) has been emerging as an animal model for multiple human virus infections recently because of the close genetic relationship and phylogeny with humans. So far, tree shrew has been reported to be susceptible to human influenza virus subtype H1N1, avian influenza viruses subtype H9N2, subtype H5N1, and subtype H7N9. However, the pathogenicity, infection, and immunity of swine and land avian influenza viruses with low pathogenicity and the potential to jump to humans remain largely unexplored in the tree shrew model. Previously, our team has successfully isolated the newly emerging swine influenza virus subtype H3N2 (A/Swine/GX/NS2783/2010, SW2783) and avian influenza virus subtype H6N6 (A/CK/ZZ/346/2014, ZZ346). In this study, we observed the pathogenicity, immune characteristics, and cross-species infection potential ability of SW2783 and ZZ346 strains in tree shrew model with 50% tissue culture infective dose (TCID50), hematoxylin and eosin (HE) staining, immunohistochemistry (IHC), real-time quantitative PCR (qRT-PCR) and other experimental methods. Both animal-borne influenza viruses had a strong ability on tissue infection in the turbinate and the trachea of tree shrews in vitro, in which SW2783 showed stronger replication ability than in ZZ346. SW2783 and ZZ346 both showed pathogenic ability with infected tree shrews model in vivo without prior adaptive culture, which mainly happened in the upper respiratory tract. However, the infection ability was weak, the clinical symptoms were mild, and the histopathological changes in the respiratory tract were relatively light. Furthermore, innate immune responses and adaptive immunity were observed in the tree shrew model after the infection of SW2783 and ZZ346 strains. We observed that the unadapted SW2783 and ZZ346 virus could transmit among tree shrews by direct contact. We also observed that SW2783 virus could transmit from tree shrews to guinea pigs. These results indicated that both animal-borne influenza viruses could induce similar pathogenicity and immune response to those caused by human-common influenza viruses. Tree shrews may be an excellent animal model for studying the interaction between the influenza virus and the host and the cross-species infection mechanism of the animal influenza virus.
Collapse
Affiliation(s)
- Qihui Wang
- Department of Immunology, Guangxi Medical University, Nanning 530021, China; Guangxi Colleges and Universities Key Laboratory of Preclinical Medicine, Guangxi Medical University, Nanning 530021, China
| | - Xia Zeng
- Department of Immunology, Guangxi Medical University, Nanning 530021, China; Guangxi Colleges and Universities Key Laboratory of Preclinical Medicine, Guangxi Medical University, Nanning 530021, China
| | - Shen Tang
- Department of Immunology, Guangxi Medical University, Nanning 530021, China; Guangxi Colleges and Universities Key Laboratory of Preclinical Medicine, Guangxi Medical University, Nanning 530021, China
| | - Li Lan
- Department of Immunology, Guangxi Medical University, Nanning 530021, China
| | - Xinhang Wang
- Department of Immunology, Guangxi Medical University, Nanning 530021, China
| | - Zhenping Lai
- Department of Microbiology, Guangxi Medical University, Nanning 530021, China
| | - Zihe Liu
- Department of Immunology, Guangxi Medical University, Nanning 530021, China
| | - Xiaoqiong Hou
- Department of Immunology, Guangxi Medical University, Nanning 530021, China
| | - Lingxi Gao
- Department of Microbiology, Guangxi Medical University, Nanning 530021, China
| | - Chenxia Yun
- Guangxi Key Laboratory of Translational Medicine for Treating High-Incidence Infectious Diseases with Integrative Medicine, Guangxi University of Chinese Medicine, Nanning 530200, China
| | - Zengfeng Zhang
- Guangxi Colleges and Universities Key Laboratory of Preclinical Medicine, Guangxi Medical University, Nanning 530021, China; Department of Microbiology, Guangxi Medical University, Nanning 530021, China.
| | - Jing Leng
- Department of Immunology, Guangxi Medical University, Nanning 530021, China; Guangxi Key Laboratory of Translational Medicine for Treating High-Incidence Infectious Diseases with Integrative Medicine, Guangxi University of Chinese Medicine, Nanning 530200, China.
| | - Xiaohui Fan
- Guangxi Colleges and Universities Key Laboratory of Preclinical Medicine, Guangxi Medical University, Nanning 530021, China; Department of Microbiology, Guangxi Medical University, Nanning 530021, China.
| |
Collapse
|
7
|
Chauhan RP, Gordon ML. An overview of influenza A virus genes, protein functions, and replication cycle highlighting important updates. Virus Genes 2022; 58:255-269. [PMID: 35471490 DOI: 10.1007/s11262-022-01904-w] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Accepted: 04/04/2022] [Indexed: 10/18/2022]
Abstract
The recent research findings on influenza A virus (IAV) genome biology prompted us to present a comprehensive overview of IAV genes, protein functions, and replication cycle. The eight gene segments of the IAV genome encode 17 proteins, each having unique functions contributing to virus fitness in the host. The polymerase genes are essential determinants of IAV pathogenicity and virulence; however, other viral components also play crucial roles in the IAV replication, transmission, and adaptation. Specific adaptive mutations within polymerase (PB2, PB1, and PA) and glycoprotein-hemagglutinin (HA) and neuraminidase (NA) genes, may facilitate interspecies transmission and adaptation of IAV. The HA-NA interplay is essential for establishing the IAV infection; the low pH triggers the inactivation of HA-receptor binding, leading to significantly lower NA activities, indicating that the enzymatic function of NA is dependent on HA binding. While the HA and NA glycoproteins are required to initiate infection, M1, M2, NS1, and NEP proteins are essential for cytoplasmic trafficking of viral ribonucleoproteins (vRNPs) and the assembly of the IAV virions. The mechanisms that enable IAV to exploit the host cell resources to advance the infection are discussed. A comprehensive understanding of IAV genome biology is essential for developing antivirals to combat the IAV disease burden.
Collapse
Affiliation(s)
- Ravendra P Chauhan
- School of Laboratory Medicine and Medical Sciences, Nelson R. Mandela School of Medicine, College of Health Sciences, University of KwaZulu-Natal, 719 Umbilo Road, Durban, 4001, South Africa
| | - Michelle L Gordon
- School of Laboratory Medicine and Medical Sciences, Nelson R. Mandela School of Medicine, College of Health Sciences, University of KwaZulu-Natal, 719 Umbilo Road, Durban, 4001, South Africa.
| |
Collapse
|
8
|
Klivleyeva NG, Glebova TI, Shamenova MG, Saktaganov NT. Influenza A viruses circulating in dogs: A review of the scientific literature. Open Vet J 2022; 12:676-687. [PMID: 36589407 PMCID: PMC9789762 DOI: 10.5455/ovj.2022.v12.i5.12] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 08/12/2022] [Indexed: 01/03/2023] Open
Abstract
Influenza A viruses (IAV) cause persistent epidemics and occasional human pandemics, leading to considerable economic losses. The ecology and epidemiology of IAV are very complex and the emergence of novel zoonotic pathogens is one of the greatest challenges in the healthcare. IAV are characterized by genetic and antigenic variability resulting from a combination of high mutation rates and a segmented genome that provides the ability to rapidly change and adapt to new hosts. In this context, available scientific evidence is of great importance for understanding the epidemiology and evolution of influenza viruses. The present review summarizes original research papers and IAV infections reported in dogs all over the world. Reports of interspecies transmission of equine influenza viruses H3N2 from birds to dogs, as well as double and triple reassortant strains resulting from reassortment of avian, human, and canine strains have amplified the genetic variety of canine influenza viruses. A total of 146 articles were deemed acceptable by PubMed and the Google Scholar database and were therefore included in this review. The largest number of research articles (n = 68) were published in Asia, followed by the Americas (n = 44), Europe (n = 31), Africa (n = 2), and Australia (n = 1). Publications are conventionally divided into three categories. The first category (largest group) included modern articles published from 2011 to the present (n = 93). The second group consisted of publications from 2000 to 2010 (n = 46). Single papers of 1919, 1931, 1963, 1972, 1975, and 1992 were also used, which was necessary to emphasize the history of the study of the ecology and evolution of the IAV circulating among various mammalian species. The largest number of publications occurred in 2010 (n = 18) and 2015 (n = 11), which is associated with IAV outbreaks observed at that time in the dog population in America, Europe, and Asia. In general, these findings raise concerns that dogs may mediate the adaptation of IAVs to zoonotic transmission and therefore serve as alternative hosts for genetic reassortment of these viruses. The global concern and significant threat to public health from the present coronavirus diseases 2019 pandemic confirms the necessity for active surveillance of zoonotic viral diseases with pandemic potential.
Collapse
Affiliation(s)
- Nailya G. Klivleyeva
- Corresponding Author: Nailya G. Klivleyeva. The Research and Production Center for Microbiology and Virology, Almaty, Republic of Kazakhstan.
| | | | | | | |
Collapse
|
9
|
Chepur SV, Pluzhnikov NN, Chubar OV, Bakulina LS, Litvinenko IV, Makarov VA, Gogolevsky AS, Myasnikov VA, Myasnikova IA, Al-Shehadat RI. Respiratory RNA Viruses: How to Be Prepared for an Encounter with New Pandemic Virus Strains. BIOLOGY BULLETIN REVIEWS 2021; 11. [PMCID: PMC8078390 DOI: 10.1134/s207908642102002x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The characteristics of the biology of influenza viruses and coronavirus that determine the implementation of the infectious process are presented. With provision for pathogenesis of infection possible effects of serine proteinase inhibitors, heparin, and inhibitors of heparan sulfate receptors in the prevention of cell contamination by viruses are examined. It has been determined that chelators of metals of variable valency and antioxidants should be used for the reduction of replicative activity of viruses and anti-inflammatory therapy. The possibility of a pH-dependent impairment of glycosylation of cellular and viral proteins was traced for chloroquine and its derivatives. The use of low-toxicity drugs as part of adjunct therapy increases the effectiveness of synthetic antiviral drugs and interferons and ensures the safety of baseline therapy.
Collapse
Affiliation(s)
- S. V. Chepur
- State Scientific Research Test Institute of Military Medicine of the Ministry of Defense of the Russian Federation, 195043 St. Petersburg, Russia
| | - N. N. Pluzhnikov
- State Scientific Research Test Institute of Military Medicine of the Ministry of Defense of the Russian Federation, 195043 St. Petersburg, Russia
| | - O. V. Chubar
- State Scientific Research Test Institute of Military Medicine of the Ministry of Defense of the Russian Federation, 195043 St. Petersburg, Russia
| | - L. S. Bakulina
- Burdenko Voronezh State Medical University, 394036 Voronezh, Russia
| | | | - V. A. Makarov
- Fundamentals of Biotechnology Federal Research Center, 119071 Moscow, Russia
| | - A. S. Gogolevsky
- State Scientific Research Test Institute of Military Medicine of the Ministry of Defense of the Russian Federation, 195043 St. Petersburg, Russia
| | - V. A. Myasnikov
- State Scientific Research Test Institute of Military Medicine of the Ministry of Defense of the Russian Federation, 195043 St. Petersburg, Russia
| | - I. A. Myasnikova
- State Scientific Research Test Institute of Military Medicine of the Ministry of Defense of the Russian Federation, 195043 St. Petersburg, Russia
| | - R. I. Al-Shehadat
- State Scientific Research Test Institute of Military Medicine of the Ministry of Defense of the Russian Federation, 195043 St. Petersburg, Russia
| |
Collapse
|
10
|
Root JJ, Shriner SA. Avian Influenza A Virus Associations in Wild, Terrestrial Mammals: A Review of Potential Synanthropic Vectors to Poultry Facilities. Viruses 2020; 12:E1352. [PMID: 33256041 PMCID: PMC7761170 DOI: 10.3390/v12121352] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 11/18/2020] [Accepted: 11/20/2020] [Indexed: 12/24/2022] Open
Abstract
The potential role of wild mammals in the epidemiology of influenza A viruses (IAVs) at the farm-side level has gained increasing consideration over the past two decades. In some instances, select mammals may be more likely to visit riparian areas (both close and distant to farms) as well as poultry farms, as compared to traditional reservoir hosts, such as waterfowl. Of significance, many mammalian species can successfully replicate and shed multiple avian IAVs to high titers without prior virus adaptation and often can shed virus in greater quantities than synanthropic avian species. Within this review, we summarize and discuss the potential risks that synanthropic mammals could pose by trafficking IAVs to poultry operations based on current and historic literature.
Collapse
Affiliation(s)
- J. Jeffrey Root
- U.S. Department of Agriculture, Animal and Plant Health Inspection Service, Wildlife Services, National Wildlife Research Center, Fort Collins, CO 80521, USA;
| | | |
Collapse
|
11
|
Makarov V, Riabova O, Ekins S, Pluzhnikov N, Chepur S. The past, present and future of RNA respiratory viruses: influenza and coronaviruses. Pathog Dis 2020; 78:ftaa046. [PMID: 32860686 PMCID: PMC7499567 DOI: 10.1093/femspd/ftaa046] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2020] [Accepted: 08/25/2020] [Indexed: 12/12/2022] Open
Abstract
Influenza virus and coronaviruses continue to cause pandemics across the globe. We now have a greater understanding of their functions. Unfortunately, the number of drugs in our armory to defend us against them is inadequate. This may require us to think about what mechanisms to address. Here, we review the biological properties of these viruses, their genetic evolution and antiviral therapies that can be used or have been attempted. We will describe several classes of drugs such as serine protease inhibitors, heparin, heparan sulfate receptor inhibitors, chelating agents, immunomodulators and many others. We also briefly describe some of the drug repurposing efforts that have taken place in an effort to rapidly identify molecules to treat patients with COVID-19. While we put a heavy emphasis on the past and present efforts, we also provide some thoughts about what we need to do to prepare for respiratory viral threats in the future.
Collapse
Affiliation(s)
- Vadim Makarov
- Federal Research Center Fundamentals of Biotechnology of the Russian Academy of Sciences, 33-2 Leninsky Prospect, Moscow 119071, Russia
| | - Olga Riabova
- Federal Research Center Fundamentals of Biotechnology of the Russian Academy of Sciences, 33-2 Leninsky Prospect, Moscow 119071, Russia
| | - Sean Ekins
- Collaborations Pharmaceuticals, Inc., 840 Main Campus Drive, Lab 3510, Raleigh, NC 27606, USA
| | - Nikolay Pluzhnikov
- State Research Institute of Military Medicine of the Ministry of Defence of the Russian Federation, St Petersburg 195043, Russia
| | - Sergei Chepur
- State Research Institute of Military Medicine of the Ministry of Defence of the Russian Federation, St Petersburg 195043, Russia
| |
Collapse
|
12
|
Development of ssDNA Aptamers for Diagnosis and Inhibition of the Highly Pathogenic Avian Influenza Virus Subtype H5N1. Biomolecules 2020; 10:biom10081116. [PMID: 32731467 PMCID: PMC7465229 DOI: 10.3390/biom10081116] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 07/20/2020] [Accepted: 07/27/2020] [Indexed: 02/07/2023] Open
Abstract
Avian influenza (AI) has severely affected the poultry industry worldwide and has caused the deaths of millions of birds. Highly pathogenic avian influenza virus is characterized by high mortality and the ability to transmit from birds to humans. Early diagnosis is difficult because of the variation in pathogenicity and the genetic diversity between virus subtypes. Therefore, development of a sensitive and accurate diagnostic system is an urgent priority. We developed ssDNA aptamer probes to detect AI viruses. Through seven rounds of SELEX to search for a probe specific to the highly pathogenic AI virus subtype H5N1, we identified 16 binding aptamers and selected two with the highest binding frequency. These two aptamers had strong binding affinities and low detection limits. We found that they could bind more specifically to H5N1, as compared to other subtypes. Furthermore, these aptamers inhibited hemagglutination, which is caused by the virus surface protein hemagglutinin. Our results indicate that our screened aptamers are effective molecular probes for diagnosing H5N1 and can be used as therapeutic agents to inhibit viral surface proteins. Sensitive diagnosis and suppression of avian influenza will help maintain a stable and healthy livestock industry, as well as protect human health.
Collapse
|