1
|
Kopiasz RJ, Kulbacka N, Drężek K, Podgórski R, Łojszczyk I, Mierzejewska J, Ciach T, Augustynowicz-Kopeć E, Głogowska A, Iwańska A, Tomaszewski W, Jańczewski D. Influence of PEG Subunit on the Biological Activity of Ionenes: Synthesis of Novel Polycations, Antimicrobial and Toxicity Studies. Macromol Biosci 2022; 22:e2200094. [PMID: 35524947 DOI: 10.1002/mabi.202200094] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 04/20/2022] [Indexed: 11/11/2022]
Abstract
An alarming increase of antibiotic resistance among pathogens creates an urgent need to develop new antimicrobial agents. Many reported polycations show high antimicrobial activity along with low hemolytic activity. Unfortunately, most of those molecules remain highly cytotoxic against various mammalian cells. In this work, we present a systematic study on the impact of triethylene glycol monomethyl ether side groups (short PEG analog) on antimicrobial, hemolytic, and cytotoxic properties of novel amphiphilic ionenes. A detailed description of synthesis, leading to well-defined alternating polymers, which differ in structural elements responsible for hydrophilicity (PEG) and hydrophobicity (alkyl chain), is presented. Obtained results show that the PEG moiety and fine-tuned hydrophilic-lipophilic balance of ionenes synergistically lead to low-cytotoxic, low-hemolytic molecules with high activity against S. aureus, including methicillin-resistant strains (MRSA). Additionally, the results of mechanistic studies on bacterial cells and fluorescently labeled liposomes are also discussed. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Rafał J Kopiasz
- Faculty of Chemistry, Warsaw University of Technology, Noakowskiego 3, Warsaw, 00-664, Poland
| | - Natalia Kulbacka
- Faculty of Chemistry, Warsaw University of Technology, Noakowskiego 3, Warsaw, 00-664, Poland
| | - Karolina Drężek
- Faculty of Chemistry, Warsaw University of Technology, Noakowskiego 3, Warsaw, 00-664, Poland
| | - Rafał Podgórski
- Faculty of Chemical and Process Engineering, Warsaw University of Technology, Waryńskiego 1, Warsaw, 00-645, Poland
| | - Ilona Łojszczyk
- Faculty of Chemical and Process Engineering, Warsaw University of Technology, Waryńskiego 1, Warsaw, 00-645, Poland
| | - Jolanta Mierzejewska
- Faculty of Chemistry, Warsaw University of Technology, Noakowskiego 3, Warsaw, 00-664, Poland
| | - Tomasz Ciach
- Faculty of Chemical and Process Engineering, Warsaw University of Technology, Waryńskiego 1, Warsaw, 00-645, Poland
| | - Ewa Augustynowicz-Kopeć
- Department of Microbiology, National Tuberculosis and Lung Diseases Research Institute, Płocka 26, Warsaw, 01-138, Poland
| | - Agnieszka Głogowska
- Department of Microbiology, National Tuberculosis and Lung Diseases Research Institute, Płocka 26, Warsaw, 01-138, Poland
| | - Agnieszka Iwańska
- Department of Microbiology, National Tuberculosis and Lung Diseases Research Institute, Płocka 26, Warsaw, 01-138, Poland
| | - Waldemar Tomaszewski
- Faculty of Chemistry, Warsaw University of Technology, Noakowskiego 3, Warsaw, 00-664, Poland
| | - Dominik Jańczewski
- Faculty of Chemistry, Warsaw University of Technology, Noakowskiego 3, Warsaw, 00-664, Poland
| |
Collapse
|
2
|
Ferreira A, Fernandes MM, Souza ALR, Correa MA, Lanceros-Mendez S, Vaz F. Flexible TiCu x Thin Films with Dual Antimicrobial and Piezoresistive Characteristics. ACS APPLIED BIO MATERIALS 2022; 5:1267-1272. [PMID: 35168328 DOI: 10.1021/acsabm.1c01273] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
The eradication of microorganisms from high traffic surfaces to prevent either viral or bacterial infections represents an urgent need, mainly in the scope of the present pandemic scenario. In this context, this work explores the dual functionality of titanium-copper thin films as pressure elements with antimicrobial properties, aiming for the implementation of touch and sensing capabilities in high traffic surfaces. Copper was employed as the antibacterial agent within a titanium matrix. The film's geometry and deposition parameters were varied in order to optimize antimicrobial and piezoresistive response. A considerable antimicrobial response has been obtained, increasing the copper amount (from 23 to 63 at. %) in the titanium matrix, leading to an outstanding 8 log10 CFU bacterial reduction in the case of Escherichia coli. Moreover, for the same amount of copper, the piezoresistive sensibility of the thin films increases up to a maximum gauge factor of 5.18 ± 0.09, which indicates an adequate electromechanical behavior for sensing applications. Our findings demonstrate the best combined antimicrobial and piezoresistive characteristics for the films with a Cu content of 63 at. %, indicating a potential use of these films for electromechanical sensor applications.
Collapse
Affiliation(s)
- Armando Ferreira
- Center of Physics, University of Minho, 4710-057 Braga, Portugal
| | - Margarida M Fernandes
- Center of Physics, University of Minho, 4710-057 Braga, Portugal.,Center of Biological Engineering, University of Minho, Campus de Gualtar, Braga 4710-057, Portugal
| | - Arthur L R Souza
- Physics Department, Federal University of Rio Grande do Norte, 59078-900 Natal, RN, Brazil
| | - Marcio A Correa
- Center of Physics, University of Minho, 4710-057 Braga, Portugal.,Physics Department, Federal University of Rio Grande do Norte, 59078-900 Natal, RN, Brazil
| | - Senentxu Lanceros-Mendez
- BCMaterials, Basque Center for Materials, Applications and Nanostructures, UPV/EHU Science Park, 48940 Leioa, Spain.,Ikerbasque, Basque Foundation for Science, E-48009 Bilbao, Spain
| | - Filipe Vaz
- Center of Physics, University of Minho, 4710-057 Braga, Portugal
| |
Collapse
|
3
|
Kopiasz RJ, Zabost A, Myszka M, Kuźmińska A, Drężek K, Mierzejewska J, Tomaszewski W, Iwańska A, Augustynowicz-Kopeć E, Ciach T, Jańczewski D. Main-chain flexibility and hydrophobicity of ionenes strongly impact their antimicrobial activity: an extended study on drug resistance strains and Mycobacterium. RSC Adv 2022; 12:26220-26232. [PMID: 36275090 PMCID: PMC9477016 DOI: 10.1039/d2ra04121a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Accepted: 08/30/2022] [Indexed: 11/22/2022] Open
Abstract
The spread of antibiotic-resistant pathogens and the resurgence of tuberculosis disease are major motivations to search for novel antimicrobial agents. Some promising candidates in this respect are cationic polymers, also known as synthetic mimics of antimicrobial peptides (SMAMPs), which act through the membrane-lytic mechanism. Development of resistance toward SMAMPs is less likely than toward currently employed antibiotics; however, further studies are needed to better understand their structure–activity relationship. The main objective of this work is to understand the cross-influence of hydrophobicity, main-chain flexibility, and the topology of ionenes (polycations containing a cationic moiety within the main-chain) on activity. To fulfill this goal, a library of ionenes was developed and compared with previously investigated molecules. The obtained compounds display promising activity against the model microorganisms and drug-resistance clinical isolates, including Mycobacterium tuberculosis. The killing efficiency was also investigated, and results confirm a strong effect of hydrophobicity, revealing higher activity for molecules possessing the flexible linker within the polymer main-chain. A high significance of the main chain flexibility and an unexpected effect of hydrophobicity on the biological activity in series of ionenes was observed. The most potent among the tested polycations showed high activity toward clinical bacterial isolates.![]()
Collapse
Affiliation(s)
- Rafał Jerzy Kopiasz
- Faculty of Chemistry, Warsaw University of Technology, Noakowskiego 3, Warsaw 00-664, Poland
| | - Anna Zabost
- Department of Microbiology, National Tuberculosis and Lung Diseases Research Institute, Płocka 26, Warsaw 01-138, Poland
| | - Magdalena Myszka
- Faculty of Chemistry, Warsaw University of Technology, Noakowskiego 3, Warsaw 00-664, Poland
| | - Aleksandra Kuźmińska
- Faculty of Chemical and Process Engineering, Warsaw University of Technology, Waryńskiego 1, Warsaw 00-645, Poland
| | - Karolina Drężek
- Faculty of Chemistry, Warsaw University of Technology, Noakowskiego 3, Warsaw 00-664, Poland
| | - Jolanta Mierzejewska
- Faculty of Chemistry, Warsaw University of Technology, Noakowskiego 3, Warsaw 00-664, Poland
| | - Waldemar Tomaszewski
- Faculty of Chemistry, Warsaw University of Technology, Noakowskiego 3, Warsaw 00-664, Poland
| | - Agnieszka Iwańska
- Department of Microbiology, National Tuberculosis and Lung Diseases Research Institute, Płocka 26, Warsaw 01-138, Poland
| | - Ewa Augustynowicz-Kopeć
- Department of Microbiology, National Tuberculosis and Lung Diseases Research Institute, Płocka 26, Warsaw 01-138, Poland
| | - Tomasz Ciach
- Faculty of Chemical and Process Engineering, Warsaw University of Technology, Waryńskiego 1, Warsaw 00-645, Poland
| | - Dominik Jańczewski
- Faculty of Chemistry, Warsaw University of Technology, Noakowskiego 3, Warsaw 00-664, Poland
| |
Collapse
|
4
|
Czechowicz P, Neubauer D, Nowicka J, Kamysz W, Gościniak G. Antifungal Activity of Linear and Disulfide-Cyclized Ultrashort Cationic Lipopeptides Alone and in Combination with Fluconazole against Vulvovaginal Candida spp. Pharmaceutics 2021; 13:pharmaceutics13101589. [PMID: 34683882 PMCID: PMC8537571 DOI: 10.3390/pharmaceutics13101589] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 09/26/2021] [Accepted: 09/28/2021] [Indexed: 01/10/2023] Open
Abstract
Vulvovaginal candidiasis (VVC) occurs in over 75% of women at least once during their lifetime and is an infection that significantly affects their health. Candida strains resistant to standard azole antifungal therapy and relapses of VVC are more and more common. Hypothetically, biofilm is one of the main reasons of relapses and failure of the therapy. Ultrashort cationic lipopeptides (USCLs) exhibit high antimicrobial activities. Our previous study on USCLs revealed that disulfide cyclization can result in selective antifungal compounds. Therefore, four USCL were selected and their antifungal activity were studied on 62 clinical strains isolated from VVC. The results confirmed previous premises that cyclic analogs have increased selectivity between fungal cells and keratinocytes and improved anticandidal activity compared to their linear analogs against both planktonic and biofilm cultures. On the other hand, linear lipopeptides in combination with fluconazole showed a synergistic effect. It was found that the minimum inhibitory concentrations of the tested compounds in combination with fluconazole were at least four times lower than when used separately. Our results indicate that combination therapy of VVC with USCLs and fluconazole at low non-toxic concentrations can be beneficial owing to the synergistic effect. However, further in vivo studies are needed to confirm this hypothesis.
Collapse
Affiliation(s)
- Paulina Czechowicz
- Department of Microbiology, Faculty of Medicine, Wrocław Medical University, 51-368 Wrocław, Poland; (J.N.); (G.G.)
- Correspondence: ; Tel.: +48-71-784-13-01
| | - Damian Neubauer
- Department of Inorganic Chemistry, Faculty of Pharmacy, Medical University of Gdańsk, 80-210 Gdańsk, Poland; (D.N.); (W.K.)
| | - Joanna Nowicka
- Department of Microbiology, Faculty of Medicine, Wrocław Medical University, 51-368 Wrocław, Poland; (J.N.); (G.G.)
| | - Wojciech Kamysz
- Department of Inorganic Chemistry, Faculty of Pharmacy, Medical University of Gdańsk, 80-210 Gdańsk, Poland; (D.N.); (W.K.)
| | - Grażyna Gościniak
- Department of Microbiology, Faculty of Medicine, Wrocław Medical University, 51-368 Wrocław, Poland; (J.N.); (G.G.)
| |
Collapse
|
5
|
Sultana A, Luo H, Ramakrishna S. Antimicrobial Peptides and Their Applications in Biomedical Sector. Antibiotics (Basel) 2021; 10:1094. [PMID: 34572676 PMCID: PMC8465024 DOI: 10.3390/antibiotics10091094] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 09/07/2021] [Accepted: 09/07/2021] [Indexed: 01/10/2023] Open
Abstract
In a report by WHO (2014), it was stated that antimicrobial resistance is an arising challenge that needs to be resolved. This resistance is a critical issue in terms of disease or infection treatment and is usually caused due to mutation, gene transfer, long-term usage or inadequate use of antimicrobials, survival of microbes after consumption of antimicrobials, and the presence of antimicrobials in agricultural feeds. One of the solutions to this problem is antimicrobial peptides (AMPs), which are ubiquitously present in the environment. These peptides are of concern due to their special mode of action against a wide spectrum of infections and health-related problems. The biomedical field has the highest need of AMPs as it possesses prominent desirable activity against HIV-1, skin cancer, breast cancer, in Behcet's disease treatment, as well as in reducing the release of inflammatory cells such as TNFα, IL-8, and IL-1β, enhancing the production of anti-inflammatory cytokines such as IL-10 and GM-CSF, and in wound healing properties. This review has highlighted all the major functions and applications of AMPs in the biomedical field and concludes the future potential of AMPs.
Collapse
Affiliation(s)
- Afreen Sultana
- Center for Nanotechnology & Sustainability, Department of Mechanical Engineering, National University of Singapore, Singapore 117581, Singapore;
| | - Hongrong Luo
- Engineering Research Center in Biomaterials, Sichuan University, Chengdu 610064, China;
| | - Seeram Ramakrishna
- Center for Nanotechnology & Sustainability, Department of Mechanical Engineering, National University of Singapore, Singapore 117581, Singapore;
| |
Collapse
|
6
|
Riduan SN, Armugam A, Zhang Y. Antibiotic resistance mitigation: the development of alternative general strategies. J Mater Chem B 2021; 8:6317-6321. [PMID: 32597439 DOI: 10.1039/d0tb01241f] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Antibiotic resistance has become one of the major, deadly threats to public health worldwide. This paper highlights several recent works, which may initiate the development of comprehensive approaches to mitigate antibiotic resistance. The new strategies demonstrate efficiency and efficacy, with very little probability of inducing drug resistance, paving the way for further breakthroughs in drug discovery for infection control.
Collapse
Affiliation(s)
- Siti Nurhanna Riduan
- Institute of Bioengineering and Nanotechnology, 31 Biopolis Way, The Nanos, #07-01, Singapore 138669, Singapore.
| | - Arunmozhiarasi Armugam
- Institute of Bioengineering and Nanotechnology, 31 Biopolis Way, The Nanos, #07-01, Singapore 138669, Singapore.
| | - Yugen Zhang
- Institute of Bioengineering and Nanotechnology, 31 Biopolis Way, The Nanos, #07-01, Singapore 138669, Singapore.
| |
Collapse
|
7
|
Yuan Y, Shi W, Li R, Lim DSW, Armugam A, Zhang Y. Rational Design of Gram-Specific Antimicrobial Imidazolium Tetramers To Combat MRSA. ACS Biomater Sci Eng 2020; 6:5563-5570. [PMID: 33320560 DOI: 10.1021/acsbiomaterials.0c01248] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Antimicrobial resistance poses an increasingly serious global health threat. Hence, new antimicrobials with low propensity toward inducing resistance in bacteria are being developed to combat this threat. In this work, a series of imidazolium tetramers have been synthesized by modulating the linkers between imidazoliums or the length of the end groups within the structures of oligomers in order to optimize the activity, selectivity, and biocompatibility of the compounds. These new materials possess high biocompatibility, Gram selectivity, and high efficacy against the selected bacterium as well as clinically isolated methicillin-resistant Staphylococcus aureus species without inducing drug resistance. Therefore, we believe that these compounds can potentially be used to mitigate resistance as highly effective disinfectants in healthcare products or as antimicrobial therapies specifically for Gram-positive bacterial infections.
Collapse
Affiliation(s)
- Yuan Yuan
- Institute of Bioengineering and Nanotechnology, 31 Biopolis Way, The Nanos #04-01, Singapore 138669, Singapore
| | - Weiwei Shi
- 2nd Hospital of Dalian Medical University, Dalian 116023, China
| | - Ruihua Li
- 2nd Hospital of Dalian Medical University, Dalian 116023, China
| | - Diane S W Lim
- Institute of Bioengineering and Nanotechnology, 31 Biopolis Way, The Nanos #04-01, Singapore 138669, Singapore
| | - Arunmozhiarasi Armugam
- Institute of Bioengineering and Nanotechnology, 31 Biopolis Way, The Nanos #04-01, Singapore 138669, Singapore
| | - Yugen Zhang
- Institute of Bioengineering and Nanotechnology, 31 Biopolis Way, The Nanos #04-01, Singapore 138669, Singapore
| |
Collapse
|