1
|
Song S, Woo J, Kim H, Lee JW, Lim W, Moon BI, Kwon K. A prospective randomized controlled trial to determine the safety and efficacy of extracorporeal shock waves therapy for primary prevention of subclinical cardiotoxicity in breast cancer patients without a cardiovascular risk treated with doxorubicin. Front Cardiovasc Med 2024; 11:1324203. [PMID: 38385137 PMCID: PMC10879594 DOI: 10.3389/fcvm.2024.1324203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 01/26/2024] [Indexed: 02/23/2024] Open
Abstract
Background Doxorubicin is a highly effective anti-cancer drug that causes left ventricular (LV) dysfunction and induces late-onset cardiomyopathy. However, an effective and clinically applicable preventive treatment is yet to be discovered. Objective Cardiac-Extracorporeal shockwave therapy (C-ESWT) has been suggested to treat inflammatory and ischemic diseases and protect cardiomyocytes from doxorubicin-induced cardiomyopathy. This study aims to assess the safety and efficacy of C-ESWT in the prevention of subclinical cardiotoxicity. Methods We enrolled 64 breast cancer patients. C-ESWT group 33 patients were treated with our C-ESWT (200 shots/spot at 0.09 mJ/mm2 for 20 spots, 3 times every six weeks). The efficacy endpoints were the difference in left ventricular global longitudinal strain (LVGLS) change by 2D speckle tracking echocardiography and chemotherapy-related cardiac dysfunction (CTRCD). Echocardiography was performed on the baseline line and every 4 cycles of chemotherapy, followed by a follow-up 3,6 months after chemotherapy to compare the incidence of cardiomyopathy of subclinical LV dysfunction due to chemotherapy between the two groups. Results Participants averaged 50 ± 9 years in age, 100% female. In the results of follow-up 6 months after the end of chemotherapy, there was a significant difference in delta LVGLS between the C-ESWT group and the control group (LVGLS; -1.1 ± 10.9% vs. -11.5 ± 11.6% p-value; <0.001). A total of 23% (15 patients) of patients developed CTRCD (Control group; 13 vs. C-ESWT group; (2). C-ESWT was performed safely without any serious adverse events. Conclusion In this prospective study, C-ESWT established efficacy in preventing subclinical cardiotoxicity, especially in breast cancer patients using doxorubicin chemotherapy, and the safety of C-ESWT. Clinical Trial Registration ClinicalTrials.gov, identifier (NCT05584163).
Collapse
Affiliation(s)
- Shinjeong Song
- Division of Cardiology, Department of Internal Medicine, Ewha Womans University College of Medicine, Ewha Womans University Mokdong Hospital, Seoul, Republic of Korea
| | - Joohyun Woo
- Department of Surgery, Ewha Womans University College of Medicine, Ewha Womans University Mokdong Hospital, Seoul, Republic of Korea
| | - HyunGoo Kim
- Department of Surgery, Ewha Womans University College of Medicine, Ewha Womans University Mokdong Hospital, Seoul, Republic of Korea
| | - Jun Woo Lee
- Department of Surgery, Ewha Womans University College of Medicine, Ewha Womans University Mokdong Hospital, Seoul, Republic of Korea
| | - Woosung Lim
- Department of Surgery, Ewha Womans University College of Medicine, Ewha Womans University Mokdong Hospital, Seoul, Republic of Korea
| | - Byung-In Moon
- Department of Surgery, Ewha Womans University College of Medicine, Ewha Womans University Mokdong Hospital, Seoul, Republic of Korea
| | - Kihwan Kwon
- Division of Cardiology, Department of Internal Medicine, Ewha Womans University College of Medicine, Ewha Womans University Mokdong Hospital, Seoul, Republic of Korea
| |
Collapse
|
2
|
Yang Y, Liu C, Zhang C, Xu Z, Zhang L, Cui Y, Wang C, Lin Y, Hou X. Acetate Upregulates GPR43 Expression and Function via PI3K-AKT-SP1 Signaling in Mammary Epithelial Cells during Milk Fat Synthesis. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:16003-16015. [PMID: 37870996 DOI: 10.1021/acs.jafc.3c00965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2023]
Abstract
This study investigated the mechanism underlying acetate-induced orphan G-protein-coupled receptor 43 (GPR43) expression and milk fat production. The mammary epithelial cells of dairy cows were treated with acetate, and the effects of GPR43 on acetate uptake and the expression of lipogenesis-related genes were determined by gas chromatography and quantitative polymerase chain reaction (qPCR), respectively. RNAi, inhibitor treatment, and luciferase assay were used to determine the effect of phosphoinositide 3-kinase-protein kinase B-specificity protein 1 (PI3K-AKT-SP1) signaling on acetate-induced GPR43 expression and function. The results showed that GPR43 was highly expressed in lactating cow mammary tissues, which was related to milk fat synthesis. 12 mM acetate significantly increased the GPR43 expression in mammary epithelial cells of dairy cows. In acetate-treated cells, GPR43 overexpression significantly increased the cellular uptake of acetate, the intracellular triacylglycerol (TAG) content, and acetate-induced lipogenesis gene expression. Acetate activated PI3K-AKT signaling and promoted SP1 translocation from the cytosol into the nucleus, where SP1 bound to the GPR43 promoter and upregulated GPR43 transcription. Moreover, the activation of PI3K-AKT-SP1 by acetate facilitated the trafficking of GPR43 from the cytosol to the plasma membrane. In conclusion, acetate upregulated GPR43 expression and function via PI3K-AKT-SP1 signaling in mammary epithelial cells, thereby increasing milk fat synthesis. These results provide an experimental strategy for improving milk lipid synthesis, which is important to the dairy industry.
Collapse
Affiliation(s)
- Yang Yang
- Key Laboratory of Animal Cellular and Genetics Engineering of Heilongjiang Province, Northeast Agricultural University, Harbin 150030, China
| | - Chuanping Liu
- Key Laboratory of Animal Cellular and Genetics Engineering of Heilongjiang Province, Northeast Agricultural University, Harbin 150030, China
| | - Caiyan Zhang
- Key Laboratory of Animal Cellular and Genetics Engineering of Heilongjiang Province, Northeast Agricultural University, Harbin 150030, China
| | - Ziru Xu
- Key Laboratory of Animal Cellular and Genetics Engineering of Heilongjiang Province, Northeast Agricultural University, Harbin 150030, China
| | - Li Zhang
- Key Laboratory of Dairy Science of Education Ministry, Northeast Agricultural University, Harbin 150030, China
| | - Yingjun Cui
- Key Laboratory of Dairy Science of Education Ministry, Northeast Agricultural University, Harbin 150030, China
| | - Chunmei Wang
- Key Laboratory of Dairy Science of Education Ministry, Northeast Agricultural University, Harbin 150030, China
| | - Ye Lin
- Key Laboratory of Animal Cellular and Genetics Engineering of Heilongjiang Province, Northeast Agricultural University, Harbin 150030, China
- Key Laboratory of Dairy Science of Education Ministry, Northeast Agricultural University, Harbin 150030, China
| | - Xiaoming Hou
- Key Laboratory of Animal Cellular and Genetics Engineering of Heilongjiang Province, Northeast Agricultural University, Harbin 150030, China
| |
Collapse
|
3
|
Kabir S, Lingappa N, Mayrovitz H. Potential Therapeutic Treatments for Doxorubicin-Induced Cardiomyopathy. Cureus 2022; 14:e21154. [PMID: 35165604 PMCID: PMC8833288 DOI: 10.7759/cureus.21154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Accepted: 01/12/2022] [Indexed: 11/05/2022] Open
|
4
|
Mesenchymal Stem Cell-Derived Small Extracellular Vesicles Protect Cardiomyocytes from Doxorubicin-Induced Cardiomyopathy by Upregulating Survivin Expression via the miR-199a-3p-Akt-Sp1/p53 Signaling Pathway. Int J Mol Sci 2021; 22:ijms22137102. [PMID: 34281156 PMCID: PMC8267634 DOI: 10.3390/ijms22137102] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2021] [Revised: 06/24/2021] [Accepted: 06/25/2021] [Indexed: 12/20/2022] Open
Abstract
Cardiotoxicity is associated with the long-term clinical application of doxorubicin (DOX) in cancer patients. Mesenchymal stem cell-derived small extracellular vesicles (MSC-sEVs) including exosomes have been suggested for the treatment of various diseases, including ischemic diseases. However, the effects and functional mechanism of MSC-sEVs in DOX-induced cardiomyopathy have not been clarified. Here, MSC-sEVs were isolated from murine embryonic mesenchymal progenitor cell (C3H/10T1/2) culture media, using ultrafiltration. H9c2 cardiac myoblast cells were pretreated with MSC-sEVs and then exposed to DOX. For in vivo studies, male C57BL/6 mice were administered MSC-sEVs intravenously, prior to a single dose of DOX (15 mg/kg, intraperitoneal). The mice were sacrificed 14 days after DOX treatment. The results showed that MSC-sEVs protected cardiomyocytes from DOX-induced cell death. H9c2 cells treated with DOX showed downregulation of both phosphorylated Akt and survivin, whereas the treatment of MSC-sEVs recovered expression, indicating their anti-apoptotic effects. Three microRNAs (miRNAs) (miR 199a-3p, miR 424-5p, and miR 21-5p) in MSC-sEVs regulated the Akt-Sp1/p53 signaling pathway in cardiomyocytes. Among them, miR 199a-3p was involved in regulating survivin expression, which correlated with the anti-apoptotic effects of MSC-sEVs. In in vivo studies, the echocardiographic results showed that the group treated with MSC-sEVs recovered from DOX-induced cardiomyopathy, showing improvement of both the left ventricle fraction and ejection fraction. MSC-sEVs treatment also increased both survivin and B-cell lymphoma 2 expression in heart tissue compared to the DOX group. Our results demonstrate that MSC-sEVs have protective effects against DOX-induced cardiomyopathy by upregulating survivin expression, which is mediated by the regulation of Akt activation by miRNAs in MSC-sEVs. Thus, MSC-sEVs may be a novel therapy for the prevention of DOX-induced cardiomyopathy.
Collapse
|
5
|
Guex AG, Di Marzio N, Eglin D, Alini M, Serra T. The waves that make the pattern: a review on acoustic manipulation in biomedical research. Mater Today Bio 2021; 10:100110. [PMID: 33997761 PMCID: PMC8094912 DOI: 10.1016/j.mtbio.2021.100110] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 02/19/2021] [Accepted: 03/13/2021] [Indexed: 02/06/2023] Open
Abstract
Novel approaches, combining technology, biomaterial design, and cutting-edge cell culture, have been increasingly considered to advance the field of tissue engineering and regenerative medicine. Within this context, acoustic manipulation to remotely control spatial cellular organization within a carrier matrix has arisen as a particularly promising method during the last decade. Acoustic or sound-induced manipulation takes advantage of hydrodynamic forces exerted on systems of particles within a liquid medium by standing waves. Inorganic or organic particles, cells, or organoids assemble within the nodes of the standing wave, creating distinct patterns in response to the applied frequency and amplitude. Acoustic manipulation has advanced from micro- or nanoparticle arrangement in 2D to the assembly of multiple cell types or organoids into highly complex in vitro tissues. In this review, we discuss the past research achievements in the field of acoustic manipulation with particular emphasis on biomedical application. We survey microfluidic, open chamber, and high throughput devices for their applicability to arrange non-living and living units in buffer or hydrogels. We also investigate the challenges arising from different methods, and their prospects to gain a deeper understanding of in vitro tissue formation and application in the field of biomedical engineering. Work on sound waves to spatially control particulate systems is reviewed. Classification of surface acoustic waves, bulk acoustic waves, and Faraday waves. Sound can be used to arrange, separate, or filter polymer particles. Sound can pattern cells in 3D to induce morphogenesis. Long-term applied sound induces differentiation and tissue formation.
Collapse
Affiliation(s)
- A G Guex
- AO Research Institute Davos, Clavadelerstrasse 8, 7270 Davos, Switzerland
| | - N Di Marzio
- AO Research Institute Davos, Clavadelerstrasse 8, 7270 Davos, Switzerland.,Department of Health Sciences, Università del Piemonte Orientale (UPO), Novara, Italy
| | - D Eglin
- AO Research Institute Davos, Clavadelerstrasse 8, 7270 Davos, Switzerland
| | - M Alini
- AO Research Institute Davos, Clavadelerstrasse 8, 7270 Davos, Switzerland
| | - T Serra
- AO Research Institute Davos, Clavadelerstrasse 8, 7270 Davos, Switzerland
| |
Collapse
|
6
|
Tan B, Li Y, Zhao Q, Fan L, Zhang M. The impact of Harmine hydrochloride on growth, apoptosis and migration, invasion of gastric cancer cells. Pathol Res Pract 2020; 216:152995. [PMID: 32402536 DOI: 10.1016/j.prp.2020.152995] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Revised: 04/03/2020] [Accepted: 04/22/2020] [Indexed: 12/29/2022]
Abstract
It has been reported that Harmine hydrochloride (HH) has an inhibitory effect on tumor cells, but the effect and mechanism of HH on gastric cancer cells remains unclear. The aim of this study was to investigate the effect and mechanism of HH on human gastric cancer cell line. In present study, results showed that HH could inhibit AGS, SGC7901 and HGC-27 cells in a time-dose-dependent manner (P < 0.01). Furthermore, this study demonstrated that more cells were arrested in G0/G1 phase, and apoptosis rate of AGS cells was significantly increased after HH treatment (P < 0.01). In addition, the study results showed that the mRNA and proteins of CyclinE, CyclinD1, PCNA declined dramatically, while p27, p21 increased significantly (P < 0.01). The results in this research also showed that the mRNA and proteins of Survivin and Bcl-2 decreased, while the expression of Bax, caspase-3, Bad increased significantly (P < 0.01). Also, the results of this study showed that invasion and migration of AGS cells decreased significantly after HH treatment (P < 0.01), with the expression of MMP-2, HIF-1 α and PRDX1 decreasing on observation after HH treatment (P < 0.01). In conclusion, HH has the property to inhibit GC cells via regulating GC cells' proliferation, apoptosis, invasion and migration.
Collapse
Affiliation(s)
- Bibo Tan
- Department of General Surgery, The Fourth Hospital of Hebei Medical University, Shijiazhuang, 050011, China
| | - Yong Li
- Department of General Surgery, The Fourth Hospital of Hebei Medical University, Shijiazhuang, 050011, China.
| | - Qun Zhao
- Department of General Surgery, The Fourth Hospital of Hebei Medical University, Shijiazhuang, 050011, China
| | - Liqiao Fan
- Department of General Surgery, The Fourth Hospital of Hebei Medical University, Shijiazhuang, 050011, China
| | - Mingyue Zhang
- Department of General Surgery, The Fourth Hospital of Hebei Medical University, Shijiazhuang, 050011, China
| |
Collapse
|
7
|
Hafez HM, Hassanein H. Montelukast ameliorates doxorubicin-induced cardiotoxicity via modulation of p-glycoprotein and inhibition of ROS-mediated TNF-α/NF-κB pathways. Drug Chem Toxicol 2020; 45:548-559. [DOI: 10.1080/01480545.2020.1730885] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Heba M. Hafez
- Department of Pharmacology, Faculty of Medicine, Minia University, Minia, Egypt
| | - Hanaa Hassanein
- Department of Histology, Faculty of Medicine, Minia University, Minia, Egypt
| |
Collapse
|