1
|
Fan WM, Yang YQ, Zhang LW, Mei XH, Sun K, Wu DQ, Yang Y, Duan CF, Ye J, Chen RJ. The therapeutic potential of PX-478 in a murine model of pelvic organ prolapse. J OBSTET GYNAECOL 2024; 44:2415669. [PMID: 39494634 DOI: 10.1080/01443615.2024.2415669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Accepted: 10/07/2024] [Indexed: 11/05/2024]
Abstract
BACKGROUND Pelvic organ prolapse (POP), characterised by the downward displacement of pelvic organs, is a prevalent disorder that affects adult women. This study explored the therapeutic potential of PX-478, a selective hypoxia-inducible factor-1α (HIF-1α) inhibitor, in a murine POP model. METHODS A murine POP model was established through ovariectomy, mimicking oestrogen deprivation. Fifteen C57BL/6J mice were randomly assigned to control, POP, and PX-478 groups. PX-478, targeting HIF-1α, was administered intravaginally. The analysis of fibroblasts, macrophage and inflammation was performed through Masson staining, immunofluorescence, and ELISA. Collagen distribution was assessed using Sirius Red staining. Expression levels of matrix metalloproteinases (MMPs) and tissue inhibitors of metalloproteinases (TIMP-1) were determined through immunohistochemistry and western blot. Fibroblast proliferation and apoptosis were evaluated by CCK-8 assay and flow cytometry. RESULTS PX-478 treatment significantly reduced vaginal length, indicating a therapeutic effect on POP severity. Masson staining revealed reduced fibrotic changes and collagen disruption in PX-478-treated mice. Immunofluorescence showed increased fibroblast markers (Vimentin, α-SMA) and collagen fibres by PX-478. Sirius Red staining indicated PX-478 mitigated damage to Type I and Type III collagen fibres. PX-478 significantly reduced MMP-2 and MMP-9 expression while increased TIMP-1. In macrophages, PX-478 decreased M1 and M2 markers (CD80, CD206) and IL-18 secretion. Fibroblasts exhibited increased proliferation, reduced apoptosis, and altered MMP/TIMP expression under PX-478 influence. CONCLUSION PX-478 demonstrates a therapeutic potential in the mice POP model. It reduces vaginal length, attenuates fibrosis, and modulates collagen synthesis. Its immunomodulation is evident through reduced M1 and M2 macrophages and suppressed IL-18 secretion.
Collapse
Affiliation(s)
- Wei-Min Fan
- Department of Gynecology, Shanghai Fifth People's Hospital, Fudan University, Shanghai, China
| | - Yu-Qi Yang
- Department of Gynecology, Shanghai Fifth People's Hospital, Fudan University, Shanghai, China
| | - Li-Wen Zhang
- Department of Gynecology, Shanghai Fifth People's Hospital, Fudan University, Shanghai, China
| | - Xiao-Hui Mei
- Department of Gynecology, Shanghai Fifth People's Hospital, Fudan University, Shanghai, China
| | - Ke Sun
- Department of Gynecology, Shanghai Fifth People's Hospital, Fudan University, Shanghai, China
| | - Duan-Qing Wu
- Department of Gynecology, Shanghai Fifth People's Hospital, Fudan University, Shanghai, China
| | - Ying Yang
- Department of Gynecology, Shanghai Fifth People's Hospital, Fudan University, Shanghai, China
| | - Chun-Fang Duan
- Department of Gynecology, Longling People's Hospital, YunNan, LongLing County, China
| | - Jun Ye
- Department of Gynecology, Shanghai Fifth People's Hospital, Fudan University, Shanghai, China
| | - Ru-Jun Chen
- Department of Gynecology, Shanghai Fifth People's Hospital, Fudan University, Shanghai, China
| |
Collapse
|
2
|
Zhu J, Xu HN, Lin T, Xia ZJ. Silencing of cysteine and serine rich nuclear protein 1 inhibits apoptosis, senescence and collagen degradation in human-derived vaginal fibroblasts in response to oxidative stress or DNA damage. Exp Cell Res 2024; 440:114139. [PMID: 38908423 DOI: 10.1016/j.yexcr.2024.114139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 05/24/2024] [Accepted: 06/19/2024] [Indexed: 06/24/2024]
Abstract
Pelvic organ prolapse (POP) is a group of diseases caused by extracellular matrix (ECM) degradation in pelvic supportive tissues. Cysteine and serine rich nuclear protein 1 (CSRNP1) is involved in cell proliferation and survival regulation, and reportedly facilitates collagen breakdown in human chondrocytes. The present study aimed to probe the effect of CSRNP1 on collagen metabolism in human-derived vaginal fibroblasts. High expression of CSRNP1 was found in POP patient-derived vaginal fibroblasts in comparison to normal-derived vaginal fibroblasts. Following functional experiments revealed that CSRNP1 overexpression led to proliferation inhibition, apoptosis and collagen degradation in normal vaginal fibroblasts. In line with this, silencing of CSRNP1 inhibited hydrogen peroxide (H2O2)-triggered apoptosis, ROS generation and collagen loss in normal vaginal fibroblasts. Silencing of CSRNP1 also reduced the expression of cell senescence markers p21 and γ-H2Ax (the histone H2Ax phosphorylated at Ser139), as well as curbed collagen breakdown in normal vaginal fibroblasts caused by a DNA damage agent etoposide. Transcriptomic analysis of vaginal fibroblasts showed that differentially expressed genes affected by CSRNP1 overexpression were mainly enriched in the Wnt signaling pathway. Treatment with a Wnt pathway inhibitor DKK1 blocked CSRNP1 knockdown-caused collagen deposition. Mechanistically, CSRNP1 was identified to be a target of Snail family transcriptional repressor 2 (SNAI2). Forced expression of CSRNP1 reversed the anti-apoptotic, anti-senescent and anti-collagen loss effects of SNAI2 in normal vaginal fibroblasts exposed to H2O2 or etoposide. Our study indicates that the SNAI2/CSRNP1 axis may be a key driver in POP progression, which provides a potential therapeutic strategy for POP.
Collapse
Affiliation(s)
- Jing Zhu
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, Liaoning, People's Republic of China; Department of Obstetrics and Gynecology, Maternity & Child care Center of Qinhuangdao, Qinhuangdao, Hebei, People's Republic of China
| | - Hai-Nan Xu
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, Liaoning, People's Republic of China
| | - Te Lin
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, Liaoning, People's Republic of China
| | - Zhi-Jun Xia
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, Liaoning, People's Republic of China.
| |
Collapse
|
3
|
Fang F, Zhao Z, Xiao J, Wen J, Wu J, Miao Y. Current practice in animal models for pelvic floor dysfunction. Int Urogynecol J 2023; 34:797-808. [PMID: 36287229 DOI: 10.1007/s00192-022-05387-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Accepted: 08/31/2022] [Indexed: 11/29/2022]
Abstract
INTRODUCTION AND HYPOTHESIS The objective was to explore the current practice of using animal models for female pelvic floor dysfunction (PFD). METHODS By applying PFD and animal models as the keywords, we made a computerized search using PubMed, Ovid-Medline and Ovid-Embase from 2000 to 2022. The publications on the construction and application of animal models for PFD were included, and the results are presented in narrative text. RESULTS Studies on PFD primarily use rodents, large quadrupeds, and nonhuman primates (NHPs). NHPs are closest to humans in anatomy and biomechanics of the pelvic floor, followed by large quadrupeds and rodents. Rodents are more suitable for studying molecular mechanism, histopathology of PFD, and mesh immune rejection. Large quadrupeds are adaptable to the study of pelvic floor biomechanics and the development of new surgical instruments for PFD. NHPs are suitable for studying the occurrence and pathogenesis of pelvic organ prolapse. Among modeling methods, violent destruction of pelvic floor muscles, regulation of hormone levels, and denervation were used to simulate the occurrence of PFD. Gene knockout can be used to study both the pathogenesis of PFD and the efficacy of treatments. Other methods such as abdominal wall defect, vaginal defect, and in vitro organ bath system are more frequently used to observe wound healing after surgery and to verify the efficacy of treatments. CONCLUSIONS The rat is currently the most applicable animal type for numerous modeling methods. Vaginal dilation is the most widely used modeling method for research on the pathogenesis, pathological changes, and treatment of PFD.
Collapse
Affiliation(s)
- Fei Fang
- Department of Obstetrics and Gynecology, Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, West China Second University Hospital, Sichuan University, West China Campus, Chengdu, 610041, Sichuan Province, China
- West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, 610041, Sichuan Province, China
| | - Zhiwei Zhao
- West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, 610041, Sichuan Province, China
| | - Jingyue Xiao
- West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, 610041, Sichuan Province, China
| | - Jirui Wen
- Deep Underground Space Medical Center, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan Province, China
| | - Jiang Wu
- Deep Underground Space Medical Center, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan Province, China
| | - Yali Miao
- Department of Obstetrics and Gynecology, Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, West China Second University Hospital, Sichuan University, West China Campus, Chengdu, 610041, Sichuan Province, China.
| |
Collapse
|
4
|
Mesenchymal stem cell transplantation improves biomechanical properties of vaginal tissue following full-thickness incision in aged rats. Stem Cell Reports 2022; 17:2565-2578. [DOI: 10.1016/j.stemcr.2022.09.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 09/12/2022] [Accepted: 09/13/2022] [Indexed: 11/06/2022] Open
|
5
|
White SE, Kiley JX, Visniauskas B, Lindsey SH, Miller KS. Biaxial Murine Vaginal Remodeling With Reproductive Aging. J Biomech Eng 2022; 144:061010. [PMID: 35425969 PMCID: PMC10782864 DOI: 10.1115/1.4054362] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 01/27/2022] [Indexed: 01/13/2024]
Abstract
Higher reproductive age is associated with an increased risk of gestational diabetes, pre-eclampsia, and severe vaginal tearing during delivery. Further, menopause is associated with vaginal stiffening. However, the mechanical properties of the vagina during reproductive aging before the onset of menopause are unknown. Therefore, the first objective of this study was to quantify the biaxial mechanical properties of the nulliparous murine vagina with reproductive aging. Menopause is further associated with a decrease in elastic fiber content, which may contribute to vaginal stiffening. Hence, our second objective was to determine the effect of elastic fiber disruption on the biaxial vaginal mechanical properties. To accomplish this, vaginal samples from CD-1 mice aged 2-14 months underwent extension-inflation testing protocols (n = 64 total; n = 16/age group). Then, half of the samples were randomly allocated to undergo elastic fiber fragmentation via elastase digestion (n = 32 total; 8/age group) to evaluate the role of elastic fibers. The material stiffness increased with reproductive age in both the circumferential and axial directions within the control and elastase-treated vaginas. The vagina demonstrated anisotropic mechanical behavior, and anisotropy increased with age. In summary, vaginal remodeling with reproductive age included increased direction-dependent material stiffness, which further increased following elastic fiber disruption. Further work is needed to quantify vaginal remodeling during pregnancy and postpartum with reproductive aging to better understand how age-related vaginal remodeling may contribute to an increased risk of vaginal tearing.
Collapse
Affiliation(s)
- Shelby E. White
- Department of Biomedical Engineering, Tulane University, 6823 St Charles Ave, New Orleans, LA 70118
| | - Jasmine X. Kiley
- Department of Biology, Tulane University, 6823 St Charles Ave, New Orleans, LA 70118
| | - Bruna Visniauskas
- Department of Pharmacology, Tulane University, 1430 Tulane Ave, New Orleans, LA 70118
| | - Sarah H. Lindsey
- Department of Pharmacology, Tulane University, 1430 Tulane Ave, New Orleans, LA 70118
| | - Kristin S. Miller
- Department of Biomedical Engineering, Tulane University, 6823 St Charles Ave, New Orleans, LA 70118
| |
Collapse
|
6
|
Vodegel EV, Kastelein AW, Jansen CHJR, Limpens J, Zwolsman SE, Roovers JPWR, Hooijmans CR, Guler Z. The effects of oestrogen on vaginal wound healing: A systematic review and meta-analysis. Neurourol Urodyn 2021; 41:115-126. [PMID: 34643282 PMCID: PMC9293291 DOI: 10.1002/nau.24819] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 09/16/2021] [Accepted: 10/04/2021] [Indexed: 11/25/2022]
Abstract
Aims To determine the effects of oestrogen or oestrogen deprivation on vaginal wound healing. Impaired wound healing following prolapse surgery may increase the risk of recurrent prolapse in the future. Vaginal oestrogen therapy may improve wound healing, hereby possibly improving surgical outcomes. Methods A systematic search of OVID MEDLINE, OVID Embase, and Web of Science was conducted up to January 28, 2020. We included original studies comparing wound healing‐related outcomes of oestrogen exposed subjects (female animals and women) to hypo‐oestrogenic subjects after vaginal surgery. Data on wound healing‐related outcome measures were extracted. For each individual comparison, the standardised mean difference (Hedges' g; SMD) and 95% confidence interval (CI) were calculated. Results Of the 1474 studies reviewed, 14 studies were included for review, and 11 provided data for meta‐analysis. Oestrogen improves neovascularisation (SMD: 1.13, 95% CI: 0.67–1.60), microscopic wound closure (SMD: 0.98, 95% CI: 0.66–1.29), collagen synthesis (SMD: 1.08, 95% CI: 0.42–1.74), and tissue strength (SMD: 1.26, 95% CI: 0.53–1.99) in animals. Oestrogen increases granulation (SMD: 1.67, 95% CI: 0.54–2.79) and accelerates macroscopic wound closure (SMD: 1.82, 95% CI: 1.22–2.42) in women and animals. Oestrogen decreases the inflammatory response (SMD: −0.58, 95% CI: −1.14 to −0.02) in women and animals and reduces levels of transforming growth factor (TGF)‐β1 (SMD: −1.68, 95% CI: −2.52 to −0.83) in animals. All results were statistically significant. Conclusions Oestrogen therapy has a positive effect on vaginal wound healing. Future studies should determine whether oestrogen therapy has the potential to improve surgical outcomes.
Collapse
Affiliation(s)
- Eva V Vodegel
- Department of Obstetrics and Gynaecology, Amsterdam Reproduction & Development Research Institute, Amsterdam UMC-Location AMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Arnoud W Kastelein
- Department of Obstetrics and Gynaecology, Amsterdam Reproduction & Development Research Institute, Amsterdam UMC-Location AMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Charlotte H J R Jansen
- Department of Obstetrics and Gynaecology, Amsterdam Reproduction & Development Research Institute, Amsterdam UMC-Location AMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Jacqueline Limpens
- Department of Research Support, Medical Library, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Sandra E Zwolsman
- Department of Obstetrics and Gynaecology, Amsterdam Reproduction & Development Research Institute, Amsterdam UMC-Location AMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Jan-Paul W R Roovers
- Department of Obstetrics and Gynaecology, Amsterdam Reproduction & Development Research Institute, Amsterdam UMC-Location AMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Carlijn R Hooijmans
- Department of Health Evidence, Systematic Review Centre for Laboratory Animal Experimentation (SYRCLE), Radboud University Medical Center, Nijmegen, The Netherlands
| | - Zeliha Guler
- Department of Obstetrics and Gynaecology, Amsterdam Reproduction & Development Research Institute, Amsterdam UMC-Location AMC, University of Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
7
|
Zhao B, Sun Q, Fan Y, Hu X, Li L, Wang J, Cui S. Transplantation of bone marrow-derived mesenchymal stem cells with silencing of microRNA-138 relieves pelvic organ prolapse through the FBLN5/IL-1β/elastin pathway. Aging (Albany NY) 2021; 13:3045-3059. [PMID: 33460398 PMCID: PMC7880387 DOI: 10.18632/aging.202465] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Accepted: 09/14/2020] [Indexed: 02/06/2023]
Abstract
Nondegradable transvaginal polypropylene meshes for treating pelvic organ prolapse (POP) are now generally unavailable or banned due to serious adverse events. New tissue engineering approaches combine degradable scaffolds with mesenchymal stem/stromal cells from human endometrium (eMSC). In this study, we investigate effect of microRNA-138 (miR-138) regulation on bone marrow-derived mesenchymal stem cells (BMSCs) and the efficacy of BMSC transplantation therapy in a rat POP model. We first identified FBLN5 as a target of miR-138. miR-138, fibulin-5 (FBLN5), interleukin-1β (IL-1β), and elastin expression in uterosacral ligament of POP patients and controls were detected by reverse transcription quantitative polymerase chain reaction (RT-qPCR) and western blot analysis. After isolation and identification, BMSCs were treated to alter their expression of miR-138 or FBLN5. Proliferation of BMSCs was analyzed by CCK-8. After establishing the rat pelvic floor dysfunction (PFD) model, we evaluated efficacy of BMSC injection by applying leak point pressure (LPP) and the conscious cystometry (CMG) tests. miR-138 inhibition resulted in increased viability of BMSCs and elevated their secretion of elastin, while downregulating IL-1β expression. BMSCs with inhibited miR-138 improved LPP and conscious CMG results in vivo. Taken together, miR-138 could be a potential therapeutic target for treating POP in conjunction with tissue engineering.
Collapse
Affiliation(s)
- Bing Zhao
- Department of Gynaecology and Obstetrics, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan Province, PR China
| | - Qing Sun
- Department of Gynaecology and Obstetrics, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan Province, PR China
| | - Yazhou Fan
- Department of Gynaecology and Obstetrics, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan Province, PR China
| | - Xinming Hu
- Department of Gynaecology and Obstetrics, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan Province, PR China
| | - Linyu Li
- Department of Scientific Research, Xinxiang Medical University Sanquan Medical College, Xinxiang 453003, Henan Province, PR China
| | - Junmin Wang
- Department of Anatomy, College of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450000, Henan Province, PR China
| | - Shihong Cui
- Department of Gynaecology and Obstetrics, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan Province, PR China
| |
Collapse
|
8
|
Lin T, Ji Y, Zhao Y, Xia Z. Expression of COX-2 and Nrf2/GPx3 in the anterior vaginal wall tissues of women with pelvic organ prolapse. Arch Gynecol Obstet 2021; 303:1245-1253. [PMID: 33415437 DOI: 10.1007/s00404-020-05913-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Accepted: 11/18/2020] [Indexed: 11/25/2022]
Abstract
PURPOSE To evaluate COX-2 and Nrf2/GPx3 expressions in the lamina propria of the anterior vaginal wall tissues of women with and without pelvic organ prolapse (POP). METHODS Tissue samples of anterior vaginal wall were examined using HE staining, immuohistochemical staining and Western blot for the expressions of COX-2/PGE2, Nrf2/GPx3, MMP2, TIMP1, collagen I and collagen III (n = 35, per group). RESULTS Compared with control group, collagen fibers of the anterior vaginal wall were disorganized and discontinuous. Expressions of Nrf2, GPx3, TIMP1, collagen I and collagen III were found significantly lower in POP group (P < 0.05); while, expressions of COX-2, PGE2, and MMP2 were found significantly higher in POP group (P < 0.05). Statistically significant correlations of COX-2 and Nrf2/GPx3 were showed (P < 0.01). CONCLUSION We found that the interaction between inflammation and oxidative stress was closely related to the development of POP. This study demonstrates that COX-2 and Nrf2 pathways may be involved in pathogenesis of POP, as promising potential therapeutic targets and agents.
Collapse
Affiliation(s)
- Te Lin
- Department of Obstetrics and Gynecology, Pelvic Floor Disease Diagnosis and Treatment Center, Shengjing Hospital of China Medical University, Shenyang City, Liaoning Province, China
| | - Yuting Ji
- Department of Obstetrics and Gynecology, Pelvic Floor Disease Diagnosis and Treatment Center, Shengjing Hospital of China Medical University, Shenyang City, Liaoning Province, China
| | - Ying Zhao
- Department of Obstetrics and Gynecology, Pelvic Floor Disease Diagnosis and Treatment Center, Shengjing Hospital of China Medical University, Shenyang City, Liaoning Province, China
| | - Zhijun Xia
- Department of Obstetrics and Gynecology, Pelvic Floor Disease Diagnosis and Treatment Center, Shengjing Hospital of China Medical University, Shenyang City, Liaoning Province, China.
| |
Collapse
|
9
|
Protease Inhibition Improves Healing of The Vaginal Wall after Obstetrical Injury: Results from a Preclinical Animal Model. Sci Rep 2020; 10:6358. [PMID: 32286390 PMCID: PMC7156712 DOI: 10.1038/s41598-020-63031-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Accepted: 03/16/2020] [Indexed: 12/12/2022] Open
Abstract
Vaginal delivery with obstetrical trauma is a risk factor for pelvic organ prolapse later in life. Loss of fibulin-5 (FBLN5), an elastogenesis-promoting cellular matrix protein, results in prolapse in mice. Here, we evaluated effects of pregnancy, parturition, and obstetrical injury on FBLN5 content, elastic fibers, biomechanics, and histomorphology of the vaginal wall in rats. Further, we analyzed the effects of actinonin, a protease inhibitor, on obstetrical injury of the vaginal wall. Vaginal FBLN5 decreased significantly in pregnancy, and injury resulted in further downregulation. Stiffness of the vaginal wall decreased 82% in pregnant rats and 74% (p = 0.019) with injury relative to uninjured vaginal delivery controls at 3d. Actinonin ameliorated loss of FBLN5, rescued injury-induced loss of elastic fibers and biomechanical properties after parturition, and reduced the area of injury 10-fold. We conclude that pregnancy and parturition have a profound impact on vaginal FBLN5 and biomechanics of the vaginal wall. Further, obstetrical injury has significant deleterious impact on recovery of the vaginal wall from pregnancy. Actinonin, a non-specific matrix metalloprotease inhibitor, improved recovery of the parturient vaginal wall after obstetrical injury.
Collapse
|