1
|
Meumann EM, Limmathurotsakul D, Dunachie SJ, Wiersinga WJ, Currie BJ. Burkholderia pseudomallei and melioidosis. Nat Rev Microbiol 2024; 22:155-169. [PMID: 37794173 DOI: 10.1038/s41579-023-00972-5] [Citation(s) in RCA: 39] [Impact Index Per Article: 39.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/04/2023] [Indexed: 10/06/2023]
Abstract
Burkholderia pseudomallei, the causative agent of melioidosis, is found in soil and water of tropical and subtropical regions globally. Modelled estimates of the global burden predict that melioidosis remains vastly under-reported, and a call has been made for it to be recognized as a neglected tropical disease by the World Health Organization. Severe weather events and environmental disturbance are associated with increased case numbers, and it is anticipated that, in some regions, cases will increase in association with climate change. Genomic epidemiological investigations have confirmed B. pseudomallei endemicity in newly recognized regions, including the southern United States. Melioidosis follows environmental exposure to B. pseudomallei and is associated with comorbidities that affect the immune response, such as diabetes, and with socioeconomic disadvantage. Several vaccine candidates are ready for phase I clinical trials. In this Review, we explore the global burden, epidemiology and pathophysiology of B. pseudomallei as well as current diagnostics, treatment recommendations and preventive measures, highlighting research needs and priorities.
Collapse
Affiliation(s)
- Ella M Meumann
- Global and Tropical Health Division, Menzies School of Health Research, Charles Darwin University, Darwin, Northern Territory, Australia.
- Department of Infectious Diseases, Division of Medicine, Royal Darwin Hospital, Darwin, Northern Territory, Australia.
| | - Direk Limmathurotsakul
- Mahidol-Oxford Tropical Medicine Research Unit, Mahidol University, Bangkok, Thailand
- Department of Tropical Hygiene, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
- NDM Centre for Global Health Research, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, UK
| | - Susanna J Dunachie
- Mahidol-Oxford Tropical Medicine Research Unit, Mahidol University, Bangkok, Thailand
- NDM Centre for Global Health Research, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, UK
| | - Willem J Wiersinga
- Division of Infectious Diseases, Center for Experimental Molecular Medicine, Amsterdam University Medical Centers, Academic Medical Center, University of Amsterdam, Amsterdam, Netherlands
| | - Bart J Currie
- Global and Tropical Health Division, Menzies School of Health Research, Charles Darwin University, Darwin, Northern Territory, Australia
- Department of Infectious Diseases, Division of Medicine, Royal Darwin Hospital, Darwin, Northern Territory, Australia
| |
Collapse
|
2
|
Wu P, Rao C, Liu W, Zhang Z, Nan D, Chen J, Wang M, Wen Y, Yan J, Yue J, Mao X, Li Q. Anti-Hcp1 Monoclonal Antibody Is Protective against Burkholderia pseudomallei Infection via Recognizing Amino Acids at Asp95-Leu114. Pathogens 2023; 13:43. [PMID: 38251350 PMCID: PMC10818278 DOI: 10.3390/pathogens13010043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 12/21/2023] [Accepted: 12/27/2023] [Indexed: 01/23/2024] Open
Abstract
Melioidosis, a severe tropical illness caused by Burkholderia pseudomallei, poses significant treatment challenges due to limited therapeutic options and the absence of effective vaccines. The pathogen's intrinsic resistance to numerous antibiotics and propensity to induce sepsis during acute infections further complicate management strategies. Thus, exploring alternative methods for prevention and treatment is crucial. Monoclonal antibodies (mAbs) have emerged as a promising strategy for the prevention and treatment of infectious diseases. This study focused on generating three mAbs (13F1, 14G11, and 15D9) targeting hemolysin-coregulated protein 1 (Hcp1), a protein involved in the type VI secretion system cluster 1 (T6SS1) of B. pseudomallei. Notably, pretreatment with 13F1 mAb significantly reduced the intracellular survival of B. pseudomallei and inhibited the formation of macrophage-derived multinucleated giant cells (MNGCs). This protective effect was also observed in vivo. We identified a sequence of amino acids (Asp95-Leu114) within Hcp1 as the likely binding site for 13F1 mAb. In summary, our findings reveal that 13F1 mAb counteracts infection by targeting Hcp1, offering potential new targets and insights for melioidosis prevention.
Collapse
Affiliation(s)
- Pan Wu
- Department of Clinical Microbiology and Immunology, College of Pharmacy and Laboratory Medicine, Army Medical University (Third Military Medical University), Chongqing 400000, China; (P.W.); (W.L.); (J.C.); (M.W.); (Y.W.); (J.Y.)
| | - Chenglong Rao
- Department of Clinical Microbiology and Immunology, College of Pharmacy and Laboratory Medicine, Army Medical University (Third Military Medical University), Chongqing 400000, China; (P.W.); (W.L.); (J.C.); (M.W.); (Y.W.); (J.Y.)
| | - Wenzheng Liu
- Department of Clinical Microbiology and Immunology, College of Pharmacy and Laboratory Medicine, Army Medical University (Third Military Medical University), Chongqing 400000, China; (P.W.); (W.L.); (J.C.); (M.W.); (Y.W.); (J.Y.)
| | - Ziyuan Zhang
- Department of Clinical Microbiology and Immunology, College of Pharmacy and Laboratory Medicine, Army Medical University (Third Military Medical University), Chongqing 400000, China; (P.W.); (W.L.); (J.C.); (M.W.); (Y.W.); (J.Y.)
| | - Dongqi Nan
- Department of Clinical Microbiology and Immunology, College of Pharmacy and Laboratory Medicine, Army Medical University (Third Military Medical University), Chongqing 400000, China; (P.W.); (W.L.); (J.C.); (M.W.); (Y.W.); (J.Y.)
| | - Jiangao Chen
- Department of Clinical Microbiology and Immunology, College of Pharmacy and Laboratory Medicine, Army Medical University (Third Military Medical University), Chongqing 400000, China; (P.W.); (W.L.); (J.C.); (M.W.); (Y.W.); (J.Y.)
| | - Minyang Wang
- Department of Clinical Microbiology and Immunology, College of Pharmacy and Laboratory Medicine, Army Medical University (Third Military Medical University), Chongqing 400000, China; (P.W.); (W.L.); (J.C.); (M.W.); (Y.W.); (J.Y.)
| | - Yuan Wen
- Department of Clinical Microbiology and Immunology, College of Pharmacy and Laboratory Medicine, Army Medical University (Third Military Medical University), Chongqing 400000, China; (P.W.); (W.L.); (J.C.); (M.W.); (Y.W.); (J.Y.)
| | - Jingmin Yan
- Department of Clinical Microbiology and Immunology, College of Pharmacy and Laboratory Medicine, Army Medical University (Third Military Medical University), Chongqing 400000, China; (P.W.); (W.L.); (J.C.); (M.W.); (Y.W.); (J.Y.)
| | - Juanjuan Yue
- Department of Clinical Microbiology and Immunology, College of Pharmacy and Laboratory Medicine, Army Medical University (Third Military Medical University), Chongqing 400000, China; (P.W.); (W.L.); (J.C.); (M.W.); (Y.W.); (J.Y.)
| | - Xuhu Mao
- Department of Clinical Microbiology and Immunology, College of Pharmacy and Laboratory Medicine, Army Medical University (Third Military Medical University), Chongqing 400000, China; (P.W.); (W.L.); (J.C.); (M.W.); (Y.W.); (J.Y.)
- State Key Laboratory of Trauma and Chemical Poisoning, Army Medical University (Third Military Medical University), Chongqing 400000, China
| | - Qian Li
- Department of Clinical Microbiology and Immunology, College of Pharmacy and Laboratory Medicine, Army Medical University (Third Military Medical University), Chongqing 400000, China; (P.W.); (W.L.); (J.C.); (M.W.); (Y.W.); (J.Y.)
- State Key Laboratory of Trauma and Chemical Poisoning, Army Medical University (Third Military Medical University), Chongqing 400000, China
| |
Collapse
|
3
|
Noparatvarakorn C, Jakkul W, Seng R, Tandhavanant S, Ottiwet O, Janon R, Saikong W, Chantratita N. Optimization and prospective evaluation of sensitive real-time PCR assays with an internal control for the diagnosis of melioidosis in Thailand. Microbiol Spectr 2023; 11:e0103923. [PMID: 37819125 PMCID: PMC10715024 DOI: 10.1128/spectrum.01039-23] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Accepted: 08/18/2023] [Indexed: 10/13/2023] Open
Abstract
IMPORTANCE Melioidosis is a serious infectious disease caused by Burkholderia pseudomallei, an environmental Gram-negative bacterium. Early detection of B. pseudomallei infection is crucial for successful antibiotic treatment and reducing mortality rates associated with melioidosis. Bacteria culture is currently used to identify B. pseudomallei in clinical samples, but the method is slow. Therefore, there is a need for more accurate and sensitive molecular-based diagnostic methods that can detect B. pseudomallei in all sample types, including samples from blood. We developed an optimal DNA extraction method for B. pseudomallei from plasma samples and used an internal control for real-time PCR. We evaluated six PCR target genes and identified the most effective target for the early detection of B. pseudomallei infection in patients. To prevent delays in the treatment of melioidosis that can lead to fatal outcomes, we recommend implementing this new approach for routine early detection of B. pseudomallei in clinical settings.
Collapse
Affiliation(s)
- Chawitar Noparatvarakorn
- Department of Microbiology and Immunology, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Wallop Jakkul
- Department of Microbiology and Immunology, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Rathanin Seng
- Department of Microbiology and Immunology, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Sarunporn Tandhavanant
- Department of Microbiology and Immunology, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Orawan Ottiwet
- Department of Medical Technology and Clinical Pathology, Mukdahan Hospital, Mukdahan, Thailand
| | - Rachan Janon
- Department of Medicine, Mukdahan Hospital, Mukdahan, Thailand
| | | | - Narisara Chantratita
- Department of Microbiology and Immunology, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| |
Collapse
|
4
|
Noparatvarakorn C, Sengyee S, Yarasai A, Phunpang R, Dulsuk A, Ottiwet O, Janon R, Morakot C, Burtnick MN, Brett PJ, West TE, Chantratita N. Prospective Analysis of Antibody Diagnostic Tests and TTS1 Real-Time PCR for Diagnosis of Melioidosis in Areas Where It Is Endemic. J Clin Microbiol 2023; 61:e0160522. [PMID: 36877019 PMCID: PMC10035309 DOI: 10.1128/jcm.01605-22] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Accepted: 02/02/2023] [Indexed: 03/07/2023] Open
Abstract
Melioidosis is a tropical infectious disease caused by Burkholderia pseudomallei. Melioidosis is associated with diverse clinical manifestations and high mortality. Early diagnosis is needed for appropriate treatment, but it takes several days to obtain bacterial culture results. We previously developed a rapid immunochromatography test (ICT) based on hemolysin coregulated protein 1 (Hcp1) and two enzyme-linked immunosorbent assays (ELISAs) based on Hcp1 (Hcp1-ELISA) and O-polysaccharide (OPS-ELISA) for serodiagnosis of melioidosis. This study prospectively validated the diagnostic accuracy of the Hcp1-ICT in suspected melioidosis cases and determined its potential use for identifying occult melioidosis cases. Patients were enrolled and grouped by culture results, including 55 melioidosis cases, 49 other infection patients, and 69 patients with no pathogen detected. The results of the Hcp1-ICT were compared with culture, a real-time PCR test based on type 3 secretion system 1 genes (TTS1-PCR), and ELISAs. Patients in the no-pathogen-detected group were followed for subsequent culture results. Using bacterial culture as a gold standard, the sensitivity and specificity of Hcp1-ICT were 74.5% and 89.8%, respectively. The sensitivity and specificity of TTS1-PCR were 78.2% and 100%, respectively. The diagnostic accuracy was markedly improved if the Hcp1-ICT results were combined with TTS1-PCR results (sensitivity and specificity were 98.2% and 89.8%, respectively). Among patients with initially negative cultures, Hcp1-ICT was positive in 16/73 (21.9%). Five of the 16 patients (31.3%) were subsequently confirmed to have melioidosis by repeat culture. The combined Hcp1-ICT and TTS1-PCR test results are useful for diagnosis, and Hcp1-ICT may help identify occult cases of melioidosis.
Collapse
Affiliation(s)
- Chawitar Noparatvarakorn
- Department of Microbiology and Immunology, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Sineenart Sengyee
- Department of Microbiology and Immunology, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Atchara Yarasai
- Department of Microbiology and Immunology, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Rungnapa Phunpang
- Department of Microbiology and Immunology, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Adul Dulsuk
- Department of Microbiology and Immunology, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Orawan Ottiwet
- Department of Medical Technology and Clinical Pathology, Mukdahan Hospital, Mukdahan, Thailand
| | - Rachan Janon
- Department of Medicine, Mukdahan Hospital, Mukdahan, Thailand
| | - Chumpol Morakot
- Department of Medicine, Mukdahan Hospital, Mukdahan, Thailand
| | - Mary N. Burtnick
- Department of Microbiology and Immunology, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
- Department of Microbiology and Immunology, University of Nevada, Reno School of Medicine, Reno, Nevada, USA
| | - Paul J. Brett
- Department of Microbiology and Immunology, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
- Department of Microbiology and Immunology, University of Nevada, Reno School of Medicine, Reno, Nevada, USA
| | - T. Eoin West
- Department of Microbiology and Immunology, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
- Division of Pulmonary, Critical Care & Sleep Medicine, Harborview Medical Center, University of Washington, Seattle, Washington, USA
| | - Narisara Chantratita
- Department of Microbiology and Immunology, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| |
Collapse
|
5
|
Settles EW, Sonderegger D, Shannon AB, Celona KR, Lederer R, Yi J, Seavey C, Headley K, Mbegbu M, Harvey M, Keener M, Allender C, Hornstra H, Monroy FP, Woerle C, Theobald V, Mayo M, Currie BJ, Keim P. Development and evaluation of a multiplex serodiagnostic bead assay (BurkPx) for accurate melioidosis diagnosis. PLoS Negl Trop Dis 2023; 17:e0011072. [PMID: 36753506 PMCID: PMC9907819 DOI: 10.1371/journal.pntd.0011072] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 01/06/2023] [Indexed: 02/09/2023] Open
Abstract
Burkholderia pseudomallei, the causative agent of melioidosis, is a gram-negative soil bacterium well recognized in Southeast Asia and northern Australia. However, wider and expanding global distribution of B. pseudomallei has been elucidated. Early diagnosis is critical for commencing the specific therapy required to optimize outcome. Serological testing using the indirect hemagglutination (IHA) antibody assay has long been used to augment diagnosis of melioidosis and to monitor progress. However, cross reactivity and prior exposure may complicate the diagnosis of current clinical disease (melioidosis). The goal of our study was to develop and initially evaluate a serology assay (BurkPx) that capitalized upon host response to multiple antigens. Antigens were selected from previous studies for expression/purification and conjugation to microspheres for multiantigen analysis. Selected serum samples from non-melioidosis controls and serial samples from culture-confirmed melioidosis patients were used to characterize the diagnostic power of individual and combined antigens at two times post admission. Multiple variable models were developed to evaluate multivariate antigen reactivity, identify important antigens, and determine sensitivity and specificity for the diagnosis of melioidosis. The final multiplex assay had a diagnostic sensitivity of 90% and specificity of 93%, which was superior to any single antigen in side-by-side comparisons. The sensitivity of the assay started at >85% for the initial serum sample after admission and increased to 94% 21 days later. Weighting antigen contribution to each model indicated that certain antigen contributed to diagnosis more than others, which suggests that the number of antigens in the assay can be decreased. In summation, the BurkPx assay can facilitate the diagnosis of melioidosis and potentially improve on currently available serology assays. Further evaluation is now required in both melioidosis-endemic and non-endemic settings.
Collapse
Affiliation(s)
- Erik W. Settles
- The Pathogen and Microbiome Institute, Northern Arizona University, Flagstaff, Arizona, United States of America
- Department of Biological Sciences, Northern Arizona University, Flagstaff, Arizona, United States of America
| | - Derek Sonderegger
- Department of Mathematics and Statistics, Northern Arizona University, Flagstaff, Arizona, United States of America
| | - Austin B. Shannon
- The Pathogen and Microbiome Institute, Northern Arizona University, Flagstaff, Arizona, United States of America
| | - Kimberly R. Celona
- The Pathogen and Microbiome Institute, Northern Arizona University, Flagstaff, Arizona, United States of America
| | - Rachel Lederer
- The Pathogen and Microbiome Institute, Northern Arizona University, Flagstaff, Arizona, United States of America
| | - Jinhee Yi
- The Pathogen and Microbiome Institute, Northern Arizona University, Flagstaff, Arizona, United States of America
| | - Courtney Seavey
- The Pathogen and Microbiome Institute, Northern Arizona University, Flagstaff, Arizona, United States of America
| | - Kyle Headley
- The Pathogen and Microbiome Institute, Northern Arizona University, Flagstaff, Arizona, United States of America
| | - Mimi Mbegbu
- The Pathogen and Microbiome Institute, Northern Arizona University, Flagstaff, Arizona, United States of America
| | - Maxx Harvey
- The Pathogen and Microbiome Institute, Northern Arizona University, Flagstaff, Arizona, United States of America
| | - Mitch Keener
- The Pathogen and Microbiome Institute, Northern Arizona University, Flagstaff, Arizona, United States of America
| | - Chris Allender
- The Pathogen and Microbiome Institute, Northern Arizona University, Flagstaff, Arizona, United States of America
| | - Heidie Hornstra
- The Pathogen and Microbiome Institute, Northern Arizona University, Flagstaff, Arizona, United States of America
| | - Fernando P. Monroy
- Department of Biological Sciences, Northern Arizona University, Flagstaff, Arizona, United States of America
| | - Celeste Woerle
- Global and Tropical Health Division, Menzies School of Health Research, Charles Darwin University, Darwin, Northern Territory, Australia
| | - Vanessa Theobald
- Global and Tropical Health Division, Menzies School of Health Research, Charles Darwin University, Darwin, Northern Territory, Australia
| | - Mark Mayo
- Global and Tropical Health Division, Menzies School of Health Research, Charles Darwin University, Darwin, Northern Territory, Australia
| | - Bart J. Currie
- Global and Tropical Health Division, Menzies School of Health Research, Charles Darwin University, Darwin, Northern Territory, Australia
- Infectious Diseases Department and Northern Territory Medical Program, Royal Darwin Hospital, Darwin, Northern Territory, Australia
| | - Paul Keim
- The Pathogen and Microbiome Institute, Northern Arizona University, Flagstaff, Arizona, United States of America
- Department of Biological Sciences, Northern Arizona University, Flagstaff, Arizona, United States of America
| |
Collapse
|
6
|
Functional Activities of O-Polysaccharide and Hemolysin Coregulated Protein 1 Specific Antibodies Isolated from Melioidosis Patients. Infect Immun 2022; 90:e0021422. [PMID: 36226942 PMCID: PMC9670879 DOI: 10.1128/iai.00214-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Melioidosis is a fatal tropical disease caused by the environmental Gram-negative bacterium, Burkholderia pseudomallei. This bacterium is intrinsically resistant to several antibiotics and treatment of melioidosis requires prolonged antibiotic administration. To date, there are no vaccines available for melioidosis. Previous studies have shown that humoral immunity is critical for surviving melioidosis and that O-polysaccharide (OPS) and hemolysin coregulated protein 1 (Hcp1) are important protective antigens in animal models of melioidosis. Our previous studies revealed that melioidosis patients had high levels of OPS- and Hcp1-specific antibodies and that IgG against OPS (IgG-OPS) and Hcp1 (IgG-Hcp1) were associated with patient survival. In this study, we characterized the potential function(s) of IgG-OPS and IgG-Hcp1 from melioidosis patients. IgG-OPS and IgG-Hcp1 were purified from pooled serum obtained from melioidosis patients using immuno-affinity chromatography. Antibody-dependent cellular phagocytosis assays were performed with pooled serum from melioidosis patients and compared with serum obtained from healthy controls. Serum from melioidosis patients significantly enhanced B. pseudomallei uptake into the human monocytic cell line THP-1 compared with pooled serum from healthy donors. Enhanced opsonization was observed with IgG-OPS and IgG-Hcp1 in a dose-dependent manner. Antibody-dependent complement deposition assays were performed with IgG-OPS and IgG-Hcp1 using flow cytometry and showed that there was enhanced C3b deposition on the surface of B. pseudomallei treated with IgG-OPS but to a lesser degree with IgG-Hcp1. This study provides insight into the function of IgG-OPS and IgG-Hcp1 in human melioidosis and supports that OPS and Hcp1 are potential vaccine antigens for immunization against melioidosis.
Collapse
|
7
|
Tran QTL, Nguyen HV, Pham HT, Mai TV, Nguyen QHM, Le DV, Bui LNH, Hoang LTH, Hoang TQ, Trinh TT. Clinical Utility of Combined Whole-cell Antigen and Recombinant Hemolysis Co-regulated Protein 1-Enzyme-linked Immunosorbent Assays Reveals Underdiagnosed Cases of Melioidosis in Vietnam. Am J Trop Med Hyg 2022; 107:tpmd211143. [PMID: 35895334 PMCID: PMC9490659 DOI: 10.4269/ajtmh.21-1143] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Accepted: 05/16/2022] [Indexed: 11/07/2022] Open
Abstract
Melioidosis is a fatal infectious disease in the tropics and subtropics. Currently, bacterial culture is the gold standard for diagnosis of the disease, but its sensitivity is relatively low. In this study, we evaluated four ELISAs using sera collected from culture-confirmed cases of melioidosis (n = 63), cases with other bacterial infections (n = 62), and healthy donors (n = 60). Antigens used for ELISAs were the whole-cell (WC) antigens and recombinant proteins of hemolysis co-regulated protein 1 (Hcp1), GroEL1, and alkyl hydroperoxide reductase subunit C (AhpC). Using the cutoff values for optical density at 490 nm defined at a specificity of > 95%, the sensitivity of the WC, Hcp1, GroEL1, and AhpC ELISAs was 93.7%, 87.3%, 61.9%, and 57.1%, respectively. The combined WC/Hcp1 ELISA showed the greatest sensitivity and specificity of 98.4% and 95.1%, respectively. Of 511 and 500 sera collected from clinically suspected febrile patients admitted to the General Hospital of Ha Tinh Province and the Hue Central Hospital, respectively, combined WC/Hcp1 ELISAs showed 52 (10.2%) and 41 (8.2%) patients positive for melioidosis, respectively. The assay detected 14 of 14 (100%) and 21 of 23 (91.3%) culture-confirmed cases of melioidosis at Ha Tinh and Hue, respectively. A follow-up study of 38 patients positive for melioidosis by combined WC/Hcp1 ELISAs but negative for Burkholderia pseudomallei by culture method or not assigned to examine for bacterial culture resulted in 2 (5.3%) culture-reconfirmed patients with melioidosis, 9 (23.7%) deaths, 17 (44.7%) unhealthy patients, and 10 (26.3%) healthy persons. Combined WC/Hcp1 ELISA was a reliable serological method to detect underdiagnosed cases of melioidosis. Further investigations are needed to estimate the true sensitivity and specificity of the assay and the true number of cases of melioidosis.
Collapse
Affiliation(s)
- Quyen T. L. Tran
- VNU-Institute of Microbiology and Biotechnology, Vietnam National University, Hanoi, Vietnam
| | - Ha V. Nguyen
- VNU-Institute of Microbiology and Biotechnology, Vietnam National University, Hanoi, Vietnam
| | - Huyen T. Pham
- General Hospital of Ha Tinh Province, Ha Tinh, Vietnam
| | | | - Quyen H. M. Nguyen
- VNU-Institute of Microbiology and Biotechnology, Vietnam National University, Hanoi, Vietnam
| | - Dzung V. Le
- General Hospital of Ha Tinh Province, Ha Tinh, Vietnam
| | - Linh N. H. Bui
- VNU-Institute of Microbiology and Biotechnology, Vietnam National University, Hanoi, Vietnam
| | | | | | - Trung T. Trinh
- VNU-Institute of Microbiology and Biotechnology, Vietnam National University, Hanoi, Vietnam
| |
Collapse
|
8
|
Sengyee S, Yarasai A, Janon R, Morakot C, Ottiwet O, Schmidt LK, West TE, Burtnick MN, Chantratita N, Brett PJ. Melioidosis Patient Survival Correlates With Strong IFN-γ Secreting T Cell Responses Against Hcp1 and TssM. Front Immunol 2021; 12:698303. [PMID: 34394091 PMCID: PMC8363298 DOI: 10.3389/fimmu.2021.698303] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Accepted: 07/19/2021] [Indexed: 11/13/2022] Open
Abstract
Melioidosis, caused by the Gram-negative bacterium Burkholderia pseudomallei, is a serious infectious disease with diverse clinical manifestations. The morbidity and mortality of melioidosis is high in Southeast Asia and no licensed vaccines currently exist. This study was aimed at evaluating human cellular and humoral immune responses in Thai adults against four melioidosis vaccine candidate antigens. Blood samples from 91 melioidosis patients and 100 healthy donors from northeast Thailand were examined for immune responses against B. pseudomallei Hcp1, AhpC, TssM and LolC using a variety of cellular and humoral immune assays including IFN-γ ELISpot assays, flow cytometry and ELISA. PHA and a CPI peptide pool were also used as control stimuli in the ELISpot assays. Hcp1 and TssM stimulated strong IFN-γ secreting T cell responses in acute melioidosis patients which correlated with survival. High IFN-γ secreting CD4+ T cell responses were observed during acute melioidosis. Interestingly, while T cell responses of melioidosis patients against the CPI peptide pool were low at the time of enrollment, the levels increased to the same as in healthy donors by day 28. Although high IgG levels against Hcp1 and AhpC were detected in acute melioidosis patients, no significant differences between survivors and non-survivors were observed. Collectively, these studies help to further our understanding of immunity against disease following natural exposure of humans to B. pseudomallei as well as provide important insights for the selection of candidate antigens for use in the development of safe and effective melioidosis subunit vaccines.
Collapse
Affiliation(s)
- Sineenart Sengyee
- Department of Microbiology and Immunology, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Atchara Yarasai
- Department of Microbiology and Immunology, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Rachan Janon
- Department of Medicine, Mukdahan Hospital, Mukdahan, Thailand
| | - Chumpol Morakot
- Department of Medicine, Mukdahan Hospital, Mukdahan, Thailand
| | - Orawan Ottiwet
- Department of Medicine, Mukdahan Hospital, Mukdahan, Thailand
| | - Lindsey K. Schmidt
- Department of Microbiology and Immunology, University of Nevada, Reno School of Medicine, Reno, NV, United States
| | - T. Eoin West
- Department of Microbiology and Immunology, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
- Division of Pulmonary, Critical Care & Sleep Medicine, Harborview Medical Center, University of Washington, Seattle, WA, United States
- International Respiratory and Severe Illness Center, University of Washington, Seattle, WA, United States
| | - Mary N. Burtnick
- Department of Microbiology and Immunology, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
- Department of Microbiology and Immunology, University of Nevada, Reno School of Medicine, Reno, NV, United States
| | - Narisara Chantratita
- Department of Microbiology and Immunology, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Paul J. Brett
- Department of Microbiology and Immunology, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
- Department of Microbiology and Immunology, University of Nevada, Reno School of Medicine, Reno, NV, United States
| |
Collapse
|
9
|
Multicomponent Gold-Linked Glycoconjugate Vaccine Elicits Antigen-Specific Humoral and Mixed T H1-T H17 Immunity, Correlated with Increased Protection against Burkholderia pseudomallei. mBio 2021; 12:e0122721. [PMID: 34182777 PMCID: PMC8263005 DOI: 10.1128/mbio.01227-21] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Burkholderia pseudomallei is the causative agent of melioidosis, a fatal disease with a high mortality rate. The intrinsic resistance to commonly used antibiotics combined with the complex bacterial life cycle has hampered the development of preventive and therapeutic interventions and vaccines. Furthermore, the need of humoral and cell-mediated immunity in protection against B. pseudomallei has complicated the development of effective vaccines. Antigen delivery vaccine platforms that promote humoral and cellular responses while maintaining a safe profile are a roadblock to developing subunit vaccines against intracellular pathogens. Gold nanoparticles (AuNPs) were used for the delivery of multicomponent antigens with the goal of inducing vaccine-mediated immunity, promoting protection against melioidosis disease. Different nanoglycoconjugates using predicted immunogenic protein candidates, Hcp1, FlgL, OpcP, OpcP1, OmpW, and hemagglutinin, were covalently coupled to AuNPs, together with the lipopolysaccharide (LPS) from Burkholderia thailandensis, which acted as an additional antigen. Animals immunized with individually coupled (AuNP-protein-LPS) formulations containing OpcP or OpcP1, together with CpG as an adjuvant, showed a significant increase in protection, whereas a nanovaccine combination (AuNP-Combo2-LPS) showed significant and complete protection against a lethal intranasal B. pseudomallei challenge. Animals immunized with AuNP-Combo2-LPS showed robust humoral antigen-specific (IgG and IgA) responses with higher IgG2c titer, indicating a TH1-skewed response and promotion of macrophage uptake. In addition, immunization with the nanovaccine combination resulted in a mixed antigen-specific TH1-TH17 cytokine profile after immunization. This study provides the basis for an elegant and refined multicomponent glycoconjugate vaccine formulation capable of eliciting both humoral and cell-mediated responses against lethal B. pseudomallei challenge.
Collapse
|
10
|
Chaichana P, Jenjaroen K, Chumseng S, Sumonwiriya M, Rongkard P, Kronsteiner B, Teparrukkul P, Limmathurotsakul D, Day NPJ, Chantratita N, Dunachie SJ. Role of Burkholderia pseudomallei-Specific IgG2 in Adults with Acute Melioidosis, Thailand. Emerg Infect Dis 2021; 27:463-470. [PMID: 33496230 PMCID: PMC7853568 DOI: 10.3201/eid2702.200213] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Melioidosis is a life-threatening infectious disease caused by the gram-negative bacillus Burkholderia pseudomallei. An effective vaccine is needed, but data on protective immune responses in human melioidosis are lacking. We used ELISA and an antibody-dependent cellular phagocytosis assay to identify the major features of protective antibodies in patients with acute melioidosis in Thailand. We found that high levels of B. pseudomallei–specific IgG2 are associated with protection against death in a multivariable logistic regression analysis adjusting for age, diabetes, renal disease, and neutrophil count. Serum from melioidosis survivors enhanced bacteria uptake into human monocytes expressing FcγRIIa-H/R131, an intermediate-affinity IgG2-receptor, compared with serum from nonsurvivors. We did not find this enhancement when using monocytes carrying the low IgG2–affinity FcγRIIa-R131 allele. The findings indicate the importance of IgG2 in protection against death in human melioidosis, a crucial finding for antibody-based therapeutics and vaccine development.
Collapse
|
11
|
Lantong K, Songsri J, Wisessombat S, Mala W, Prommachote W, Senghoi W, Kotepui M, Kaewrakmuk J, Jiranantasak T, Tuanyok A, Klangbud WK. Use of Recombinant Escherichia coli Strains in Immunofluorescence Assays for Melioidosis Diagnosis. Pathogens 2021; 10:pathogens10050559. [PMID: 34066462 PMCID: PMC8148196 DOI: 10.3390/pathogens10050559] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Revised: 05/01/2021] [Accepted: 05/04/2021] [Indexed: 11/16/2022] Open
Abstract
Burkholderia pseudomallei is a Gram-negative bacterium and the causative agent of melioidosis in humans and animals in the tropics. The clinical manifestations of melioidosis are diverse, ranging from localized infections to whole-body sepsis. The effective serological method is crucial for the point-of-care diagnosis of melioidosis. The aim of this study was to develop indirect immunofluorescence assay (IFA)-based methods for detecting immunoglobulin G (IgG) antibodies in melioidosis patients. These methods use whole-cell antigens made from recombinant E. coli strains that express major B. pseudomallei antigens, including TssM, OmpH, AhpC, BimA, and Hcp1. A total of 271 serum samples from culture-confirmed melioidosis patients (n = 81), patients with other known infections (n = 70), and healthy donors (n = 120) were tested. Our study showed that the recombinant TssM strain had the highest performance, with 92.6% sensitivity, 100% specificity, 100% positive predictive value, 96.9% negative predictive value, 97.8% efficiency, 97.0% accuracy, and no cross-reactivity. The method agreement analysis based on k efficiency calculations showed that all five IFA methods perfectly agreed with the standard culturing method, while the traditional indirect hemagglutination (IHA) method moderately agreed with the culture. In summary, our investigations showed that the TssM-IFA method could be used for melioidosis diagnosis.
Collapse
Affiliation(s)
- Kanoknart Lantong
- Biomedical Sciences Program, School of Allied Health Sciences, Walailak University, Nakhon Si Thammarat 80160, Thailand;
- Center of Excellent Research for Melioidosis (CERM), School of Allied Health Sciences, Walailak University, Nakhon Si Thammarat 80160, Thailand; (J.S.); (S.W.); (W.M.); (W.P.); (W.S.)
| | - Jirarat Songsri
- Center of Excellent Research for Melioidosis (CERM), School of Allied Health Sciences, Walailak University, Nakhon Si Thammarat 80160, Thailand; (J.S.); (S.W.); (W.M.); (W.P.); (W.S.)
| | - Sueptrakool Wisessombat
- Center of Excellent Research for Melioidosis (CERM), School of Allied Health Sciences, Walailak University, Nakhon Si Thammarat 80160, Thailand; (J.S.); (S.W.); (W.M.); (W.P.); (W.S.)
| | - Wanida Mala
- Center of Excellent Research for Melioidosis (CERM), School of Allied Health Sciences, Walailak University, Nakhon Si Thammarat 80160, Thailand; (J.S.); (S.W.); (W.M.); (W.P.); (W.S.)
| | - Warinda Prommachote
- Center of Excellent Research for Melioidosis (CERM), School of Allied Health Sciences, Walailak University, Nakhon Si Thammarat 80160, Thailand; (J.S.); (S.W.); (W.M.); (W.P.); (W.S.)
| | - Wilaiwan Senghoi
- Center of Excellent Research for Melioidosis (CERM), School of Allied Health Sciences, Walailak University, Nakhon Si Thammarat 80160, Thailand; (J.S.); (S.W.); (W.M.); (W.P.); (W.S.)
| | - Manas Kotepui
- Medical Technology Program, School of Allied Health Sciences, Walailak University, Nakhon Si Thammarat 80160, Thailand;
| | - Jedsada Kaewrakmuk
- Faculty of Medical Technology, Prince of Songkla University, Hat Yai, Songkhla 90110, Thailand;
| | - Treenate Jiranantasak
- Department of Infectious Diseases and Immunology, College of Veterinary Medicine, University of Florida, Gainesville, FL 32611, USA; (T.J.); (A.T.)
| | - Apichai Tuanyok
- Department of Infectious Diseases and Immunology, College of Veterinary Medicine, University of Florida, Gainesville, FL 32611, USA; (T.J.); (A.T.)
| | - Wiyada Kwanhian Klangbud
- Center of Excellent Research for Melioidosis (CERM), School of Allied Health Sciences, Walailak University, Nakhon Si Thammarat 80160, Thailand; (J.S.); (S.W.); (W.M.); (W.P.); (W.S.)
- Correspondence: ; Tel.: +66-75-67-2618
| |
Collapse
|
12
|
Multicomponent gold nano-glycoconjugate as a highly immunogenic and protective platform against Burkholderia mallei. NPJ Vaccines 2020; 5:82. [PMID: 32963813 PMCID: PMC7483444 DOI: 10.1038/s41541-020-00229-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Accepted: 08/14/2020] [Indexed: 01/20/2023] Open
Abstract
Burkholderia mallei (Bm) is a facultative intracellular pathogen and the etiological agent of glanders, a highly infectious zoonotic disease occurring in equines and humans. The intrinsic resistance to antibiotics, lack of specific therapy, high mortality, and history as a biothreat agent, prompt the need of a safe and effective vaccine. However, the limited knowledge of protective Bm-specific antigens has hampered the development of a vaccine. Further, the use of antigen-delivery systems that enhance antigen immunogenicity and elicit robust antigen-specific immune responses has been limited and could improve vaccines against Bm. Nanovaccines, in particular gold nanoparticles (AuNPs), have been investigated as a strategy to broaden the repertoire of vaccine-mediated immunity and as a tool to produce multivalent vaccines. To synthesize a nano-glycoconjugate vaccine, six predicted highly immunogenic antigens identified by a genome-wide bio- and immuno-informatic analysis were purified and coupled to AuNPs along with lipopolysaccharide (LPS) from B. thailandensis. Mice immunized intranasally with individual AuNP-protein-LPS conjugates, showed variable degrees of protection against intranasal Bm infection, while an optimized combination formulation (containing protein antigens OmpW, OpcP, and Hemagglutinin, along with LPS) showed complete protection against lethality in a mouse model of inhalational glanders. Animals immunized with different nano-glycoconjugates showed robust antigen-specific antibody responses. Moreover, serum from animals immunized with the optimized nano-glycoconjugate formulation showed sustained antibody responses with increased serum-mediated inhibition of adherence and opsonophagocytic activity in vitro. This study provides the basis for the rational design and construction of a multicomponent vaccine platform against Bm.
Collapse
|
13
|
Chaichana P, Kronsteiner B, Rongkard P, Teparrukkul P, Limmathurotsakul D, Chantratita N, Day NPJ, Fletcher HA, Dunachie SJ. Serum From Melioidosis Survivors Diminished Intracellular Burkholderia pseudomallei Growth in Macrophages: A Brief Research Report. Front Cell Infect Microbiol 2020; 10:442. [PMID: 32984070 PMCID: PMC7479196 DOI: 10.3389/fcimb.2020.00442] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Accepted: 07/20/2020] [Indexed: 11/18/2022] Open
Abstract
Melioidosis is a neglected tropical disease with high mortality rate. It is caused by the Gram-negative, CDC category B select agent Burkholderia pseudomallei (B. ps) that is intrinsically resistant to first-line antibiotics. An antibody-based vaccine is likely to be the most effective control measure. Previous studies have demonstrated significant mechanistic roles of antibodies in protection against death in animal models, but data from human melioidosis is scarce. Herein, we used in-vitro antibody-dependent cellular phagocytosis and growth inhibition assays to assess the mechanism of protective antibodies in patients with acute melioidosis. We found that serum from patients who survived the disease enable more live B. ps to be engulfed by THP-1 derived macrophages (median 1.7 × 103 CFU/ml, IQR 1.1 × 103-2.5 × 103 CFU/ml) than serum from patients who did not survive (median 1.2 × 103 CFU/ml, IQR 0.7 × 103-1.8 × 103, p = 0.02). In addition, the intracellular growth rate of B. ps pre-opsonized with serum from survivors (median 7.89, IQR 5.58–10.85) was diminished when compared with those with serum from non-survivors (median 10.88, IQR 5.42–14.88, p = 0.04). However, the difference of intracellular bacterial growth rate failed to reach statistical significance when using purified IgG antibodies (p = 0.09). These results provide new insights into a mechanistic role of serum in protection against death in human melioidosis for antibody-based vaccine development.
Collapse
Affiliation(s)
- Panjaporn Chaichana
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Barbara Kronsteiner
- Peter Medawar Building for Pathogen Research, University of Oxford, Oxford, United Kingdom.,Center for Tropical Medicine and Global Health, University of Oxford, Oxford, United Kingdom
| | - Patpong Rongkard
- Peter Medawar Building for Pathogen Research, University of Oxford, Oxford, United Kingdom
| | - Prapit Teparrukkul
- Medical Department, Sunpasitthiprasong Hospital, Ubon Ratchathani, Thailand
| | - Direk Limmathurotsakul
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand.,Center for Tropical Medicine and Global Health, University of Oxford, Oxford, United Kingdom.,Department of Tropical Hygiene, Mahidol University, Bangkok, Thailand
| | - Narisara Chantratita
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand.,Department of Microbiology and Immunology, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Nicholas P J Day
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand.,Center for Tropical Medicine and Global Health, University of Oxford, Oxford, United Kingdom
| | - Helen A Fletcher
- Department of Immunology and Infection, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Susanna J Dunachie
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand.,Peter Medawar Building for Pathogen Research, University of Oxford, Oxford, United Kingdom.,Center for Tropical Medicine and Global Health, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
14
|
Khakhum N, Chapartegui-González I, Torres AG. Combating the great mimicker: latest progress in the development of Burkholderia pseudomallei vaccines. Expert Rev Vaccines 2020; 19:653-660. [PMID: 32669008 DOI: 10.1080/14760584.2020.1791089] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Introduction Burkholderia pseudomallei is an environmental intracellular Gram-negative bacterium that causes melioidosis, a severe infectious disease affecting humans and animals. An increase in melioidosis cases worldwide and the high mortality rate of the disease makes it a public health concern. Melioidosis is known as the 'great mimicker' because it presents with a wide range of disease manifestations. B. pseudomallei is naturally resistant to antibiotics and delay in diagnosis leads to ineffective treatment. Furthermore, there is no approved vaccine to prevent melioidosis infection in humans. Therefore, it is a priority to license a vaccine that can be used for both high-risk endemic areas and for biodefense purposes. Areas covered In this review, we have focussed on recent progress in the USA for the development and advancement of lead B. pseudomallei vaccine candidate(s) ready for testing in pre-clinical trials. Those candidates include live-attenuated vaccines, glycoconjugate vaccines, outer-membrane vesicles, and gold nanoparticle vaccines. Expert opinion Side-by-side comparison of the leading B. pseudomallei vaccine candidates will provide important information to further advance studies into pre-clinical trials. The likelihood of any of these current vaccines becoming the selected candidate that will reduce the occurrence of melioidosis worldwide is closer than ever.
Collapse
Affiliation(s)
- Nittaya Khakhum
- Department of Microbiology & Immunology, University of Texas Medical Branch , Galveston, TX, USA
| | | | - Alfredo G Torres
- Department of Microbiology & Immunology, University of Texas Medical Branch , Galveston, TX, USA.,Department of Pathology, University of Texas Medical Branch , Galveston, TX, USA
| |
Collapse
|