1
|
Li M, Wu L, Shi Y, Wu L, Afzal F, Jia Y, Huang Y, Hu B, Chen J, Huang J. Bioinformatics and Functional Analysis of OsASMT1 Gene in Response to Abiotic Stress. Biochem Genet 2024:10.1007/s10528-024-10774-w. [PMID: 38582819 DOI: 10.1007/s10528-024-10774-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 03/05/2024] [Indexed: 04/08/2024]
Abstract
The study aimed to elucidate the functional characteristics of OsASMT1 gene under copper (Cu) or sodium chloride (NaCl) stress. Bioinformatics scrutiny unveiled that OsASMT1 is situated on chromosome 9. Its protein architecture, comprising dimerization and methyltransferase domains, showed significant similarities to OsASMT2 and OsASMT3. High expression in roots and panicles, along with abiotic stress putative cis-regulatory elements in the promoter, indicated potential stress responsiveness. Real-time quantitative PCR confirmed OsASMT1 induction under Cu and NaCl stress in rice. Surprisingly, yeast expressing OsASMT1 did not exhibit enhanced resistance to abiotic stresses. The results of subcellular localization analysis indicated that OsASMT1 plays a role in the cytoplasm. While OsASMT1 responded to Cu and NaCl stress in rice, its heterologous expression in yeast failed to confer abiotic stress resistance, highlighting the need for further investigation of its functional implications.
Collapse
Affiliation(s)
- Mingyu Li
- College of Ecology and Environment, Chengdu University of Technology, Chengdu, 610059, Sichuan, China
| | - Longying Wu
- College of Ecology and Environment, Chengdu University of Technology, Chengdu, 610059, Sichuan, China
| | - Yang Shi
- College of Ecology and Environment, Chengdu University of Technology, Chengdu, 610059, Sichuan, China
| | - Lijuan Wu
- College of Agronomy, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Farhan Afzal
- College of Ecology and Environment, Chengdu University of Technology, Chengdu, 610059, Sichuan, China
| | - Yanru Jia
- College of Ecology and Environment, Chengdu University of Technology, Chengdu, 610059, Sichuan, China
| | - Yanyan Huang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, 61130, Sichuan, China
| | - Binhua Hu
- Institute of Biotechnology and Nuclear Technology, Sichuan Academy of Agricultural Sciences, Chengdu, 610066, Sichuan, China
| | - Ji Chen
- College of Agronomy, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Jin Huang
- College of Ecology and Environment, Chengdu University of Technology, Chengdu, 610059, Sichuan, China.
| |
Collapse
|
2
|
Effects of Cr Stress on Bacterial Community Structure and Composition in Rhizosphere Soil of Iris tectorum under Different Cultivation Modes. MICROBIOLOGY RESEARCH 2023. [DOI: 10.3390/microbiolres14010020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2023] Open
Abstract
With the rapid development of industry, Cr has become one of the major heavy metal pollutants in soil, severely impacting soil microecology, among which rhizosphere microorganisms can improve the soil microenvironment to promote plant growth. However, how rhizosphere bacterial communities respond to Cr stress under different cultivation modes remains to be further studied. Therefore, in this study, a greenhouse pot experiment combined with 16S rRNA high-throughput sequencing technology was used to study the effects of Cr stress at 200 mg kg−1 on the bacterial community structure and diversity in the rhizosphere soil of Iris tectorum under different cultivation modes. The results showed that the rhizosphere bacterial community diversity index (Shannon and Simpson) and abundance index (Ace and Chao) increased significantly with wetland plant diversity under Cr stress. Moreover, the bacterial community changed by 20.1% due to the addition of Cr, further leading to a 15.9% decrease in the common species of the bacterial community, among which Proteobacteria, Actinobacteria, Chloroflexi, and Acidobacteriota accounted for more than 74.8% of the total sequence. However, with the increase in plant diversity, the abundance of rhizosphere-dominant bacteria and plant growth-promoting bacteria communities increased significantly. Meanwhile, the symbiotic network analysis found that under the two cultivation modes, the synergistic effect between the dominant bacteria was significantly enhanced, and the soil microenvironment was improved. In addition, through redundancy analysis, it was found that C, N, and P nutrients in uncontaminated soil were the main driving factors of bacterial community succession in the rhizosphere of I. tectorum, and Cr content in contaminated soil was the main driving factor of bacterial community succession in I. tectorum rhizosphere. In summary, the results of this study will provide a basis for the response of the rhizosphere bacterial community to Cr and the interaction between wetland plants and rhizosphere bacteria in the heavy metal restoration of wetland plants under different cultivation modes.
Collapse
|
3
|
Singh N, Singh V, Rai SN, Vamanu E, Singh MP. Metagenomic Analysis of Garden Soil-Derived Microbial Consortia and Unveiling Their Metabolic Potential in Mitigating Toxic Hexavalent Chromium. LIFE (BASEL, SWITZERLAND) 2022; 12:life12122094. [PMID: 36556458 PMCID: PMC9781466 DOI: 10.3390/life12122094] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 12/07/2022] [Accepted: 12/11/2022] [Indexed: 12/15/2022]
Abstract
Soil microbial communities connect to the functional environment and play an important role in the biogeochemical cycle and waste degradation. The current study evaluated the distribution of the core microbial population of garden soil in the Varanasi region of Uttar Pradesh, India and their metabolic potential for mitigating toxic hexavalent chromium from wastewater. Metagenomes contain 0.2 million reads and 56.5% GC content. The metagenomic analysis provided insight into the relative abundance of soil microbial communities and revealed the domination of around 200 bacterial species belonging to different phyla and four archaeal phyla. The top 10 abundant genera in garden soil were Gemmata, Planctomyces, Steroidobacter, Pirellula, Pedomicrobium, Rhodoplanes, Nitrospira Mycobacterium, Pseudonocardia, and Acinetobacter. In this study, Gemmata was dominating bacterial genera. Euryarchaeota, Parvarchaeota, and Crenarchaeota archaeal species were present with low abundance in soil samples. X-ray photoelectric spectroscopy (XPS) analysis indicates the presence of carbon, nitrogen-oxygen, calcium, phosphorous, and silica in the soil. Soil-derived bacterial consortia showed high hexavalent chromium [Cr (VI)] removal efficiency (99.37%). The bacterial consortia isolated from garden soil had an important role in the hexavalent chromium bioremediation, and thus, this study could be beneficial for the design of a heavy-metal treatment system.
Collapse
Affiliation(s)
- Nidhi Singh
- Centre of Bioinformatics, University of Allahabad, Prayagraj 211002, India
| | - Veer Singh
- School of Biochemical Engineering, Indian Institute of Technology, Banaras Hindu University, Varanasi 221005, India
| | - Sachchida Nand Rai
- Centre of Biotechnology, University of Allahabad, Prayagraj 211002, India
| | - Emanuel Vamanu
- Faculty of Biotechnology, University of Agricultural Sciences and Veterinary Medicine of Bucharest, 011464 Bucharest, Romania
- Correspondence: (E.V.); (M.P.S.)
| | - Mohan P. Singh
- Centre of Biotechnology, University of Allahabad, Prayagraj 211002, India
- Correspondence: (E.V.); (M.P.S.)
| |
Collapse
|
4
|
Jiang K, Zhang J, Deng Z, Barnie S, Chang J, Zou Y, Guan X, Liu F, Chen H. Natural attenuation mechanism of hexavalent chromium in a wetland: Zoning characteristics of abiotic and biotic effects. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 287:117639. [PMID: 34171730 DOI: 10.1016/j.envpol.2021.117639] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Revised: 06/15/2021] [Accepted: 06/20/2021] [Indexed: 06/13/2023]
Abstract
Natural wetland has great retention effect on Cr(VI) migration due to its abiotic and biotic reduction abilities, however, the zoning characteristics of dominating reduction mechanism along Cr(VI) pollution plume in wetland is still unclear. In this study, a Cr(VI) contaminated natural wetland was explored to investigate the distributions of Cr and Fe in groundwater and sediment, and their relationship with microorganisms according to metagenomics, aiming to reveal the natural attenuation mechanism of Cr(VI) from the perspective of zoning characteristics of abiotic and biotic effects. The wetland was divided into contaminated zone, transition zone and uncontaminated zone according to the contamination states of groundwater and sediment. At the upstream of contaminated zone, Cr(VI) concentration in groundwater was as high as 26.7 mg L-1, which has significant inhibition effect on microbial growth, and thus chemical reduction of Cr(VI) by natural organic matters (NOMs) dominated in this area, leading to the increasing of H/C and O/C ratios of NOMs because of the oxidation of aromatic moieties. At the downstream of contaminated zone, Cr(VI) concentration in groundwater decreased to less than 4.46 mg L-1 resulting from dilution and attenuation, but the microbial community was altered substantially, chromate resistant bacteria with ChrA, ChrR, NemA and AzoR genes were enriched, such as Sphingomonas, Mesorhizobium and Comamonadaceae, and thus the direct microbial reduction of Cr(VI) dominated in this area. While at the transition zone, which is located at the front edge of the pollution plume, Cr(VI) could only reached in this area intermittently, and the microbial community remained similar to that of the uncontaminated zone, dominated by Chloroflexi and Acidobateria phylum with dissimilatory ferric iron reduction capacity, and thus Cr(VI) was indirectly reduced by Fe2+ intermediately in this area.
Collapse
Affiliation(s)
- Kaidi Jiang
- Beijing Key Laboratory of Water Resources & Environmental Engineering, China University of Geosciences, Beijing, 100083, China
| | - Jia Zhang
- Beijing Key Laboratory of Water Resources & Environmental Engineering, China University of Geosciences, Beijing, 100083, China.
| | - Zhihui Deng
- Beijing Key Laboratory of Water Resources & Environmental Engineering, China University of Geosciences, Beijing, 100083, China
| | - Samuel Barnie
- Department of Water and Sanitation, University of Cape Coast, Cape Coast, Ghana
| | - Jingjie Chang
- Beijing Key Laboratory of Water Resources & Environmental Engineering, China University of Geosciences, Beijing, 100083, China
| | - Yawen Zou
- Beijing Key Laboratory of Water Resources & Environmental Engineering, China University of Geosciences, Beijing, 100083, China
| | - Xiangyu Guan
- Beijing Key Laboratory of Water Resources & Environmental Engineering, China University of Geosciences, Beijing, 100083, China; School of Ocean Sciences, China University of Geosciences, Beijing, 100083, China
| | - Fei Liu
- Beijing Key Laboratory of Water Resources & Environmental Engineering, China University of Geosciences, Beijing, 100083, China
| | - Honghan Chen
- Beijing Key Laboratory of Water Resources & Environmental Engineering, China University of Geosciences, Beijing, 100083, China
| |
Collapse
|
5
|
Chen J, Tian Y. Hexavalent chromium reducing bacteria: mechanism of reduction and characteristics. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:20981-20997. [PMID: 33689130 DOI: 10.1007/s11356-021-13325-7] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Accepted: 03/03/2021] [Indexed: 06/12/2023]
Abstract
As a common heavy metal, chromium and its compounds are widely used in industrial applications, e.g., leather tanning, electroplating, and in stainless steel, paints and fertilizers. Due to the strong toxicity of Cr(VI), chromium is regarded as a major source of pollution with a serious impact on the environment and biological systems. The disposal of Cr(VI) by biological treatment methods is more favorable than traditional treatment methods because the biological processes are environmentally friendly and cost-efficient. This review describes how bacteria tolerate and reduce Cr(VI) and the effects of some physical and chemical factors on the reduction of Cr(IV). The practical applications for Cr(VI) reduction of bacterial cells are also included in this review.
Collapse
Affiliation(s)
- Jia Chen
- College of Biomass Science and Engineering, Sichuan University, Chengdu, 610065, People's Republic of China
- Key Laboratory of Leather Chemistry and Engineering, (Sichuan University), Ministry of Education, Chengdu, 610065, People's Republic of China
| | - Yongqiang Tian
- College of Biomass Science and Engineering, Sichuan University, Chengdu, 610065, People's Republic of China.
- Key Laboratory of Leather Chemistry and Engineering, (Sichuan University), Ministry of Education, Chengdu, 610065, People's Republic of China.
| |
Collapse
|
6
|
Lyu Y, Yang T, Liu H, Qi Z, Li P, Shi Z, Xiang Z, Gong D, Li N, Zhang Y. Enrichment and characterization of an effective hexavalent chromium-reducing microbial community YEM001. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:19866-19877. [PMID: 33410044 DOI: 10.1007/s11356-020-11863-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Accepted: 11/27/2020] [Indexed: 06/12/2023]
Abstract
Chromium (Cr) is one of the most widely used heavy metals in industrial processes, resulting in water and soil pollution that seriously threaten environmental safety. In this paper, we have directionally enriched a Cr(VI)-reducing bacterial community YEM001 from no-Cr(VI) polluted pond sedimental sludge by selectively growing it in Cr(VI)-containing media. This community could effectively reduce Cr(VI) in laboratory rich media containing different concentrations of Cr(VI), such as 61% reduction at 435 mg/L Cr(VI), 85% reduction at 355 mg/L Cr(VI), and complete reduction at 269 mg/L Cr(VI) in 93.5 h. It was also able to completely reduce 100 mg/L and 300 mg/L Cr(VI) in landfill leachate and natural sludge in 48 h, respectively. Optimal pH for Cr(VI) reduction of the YEM001 is between 7 and 8 and the best efficiency for Cr(VI) reduction occurs at 30 °C. Metagenomic data demonstrated that the YEM001 community was composed of multiple bacteria, including well-known Cr(VI)-reducing bacteria and non-Cr(VI)-reducing bacteria. Delftia, Comamonas, Alicycliphilus, Acidovorax, Bacillus, and Clostridioides account for 83% of total community abundance. The stability of the composition of the YEM001 community and its Cr(VI)-reducing activity allows for its application in bioremediation of environmental Cr(VI) pollution.
Collapse
Affiliation(s)
- Yucai Lyu
- Hubei Engineering Research Center for Biological Jiaosu, China Three Gorges University, Yichang, 443002, China.
- Hubei Engineering Technology Research Center for Farmland Environmental Monitoring, China Three Gorges University, Yichang, 443002, China.
- Key Laboratory of Functional Yeast, China National Light Industry, China Three Gorges University, Yichang, 443002, China.
| | - Tao Yang
- Hubei Engineering Research Center for Biological Jiaosu, China Three Gorges University, Yichang, 443002, China
| | - Herong Liu
- Hubei Engineering Research Center for Biological Jiaosu, China Three Gorges University, Yichang, 443002, China
| | - Zheng Qi
- Hubei Engineering Research Center for Biological Jiaosu, China Three Gorges University, Yichang, 443002, China
| | - Ping Li
- Hubei Engineering Research Center for Biological Jiaosu, China Three Gorges University, Yichang, 443002, China
| | - Ziyao Shi
- College of Hydraulic and Environmental Engineering, China Three Gorges University, Yichang, 443002, China
| | - Zhen Xiang
- College of Hydraulic and Environmental Engineering, China Three Gorges University, Yichang, 443002, China
| | - Dachun Gong
- Hubei Engineering Research Center for Biological Jiaosu, China Three Gorges University, Yichang, 443002, China
- Hubei Engineering Technology Research Center for Farmland Environmental Monitoring, China Three Gorges University, Yichang, 443002, China
- Key Laboratory of Functional Yeast, China National Light Industry, China Three Gorges University, Yichang, 443002, China
| | - Ning Li
- College of Hydraulic and Environmental Engineering, China Three Gorges University, Yichang, 443002, China
| | - Yaoping Zhang
- Hubei Engineering Research Center for Biological Jiaosu, China Three Gorges University, Yichang, 443002, China.
- DOE-Great Lakes Bioenergy Research Center (GLBRC), University of Wisconsin-Madison, Madison, WI, USA.
| |
Collapse
|
7
|
Draft Genome Sequence of Bacillus cereus TN10, a Chromium-Resistant and -Reducing Strain Isolated from Tannery Effluent. Microbiol Resour Announc 2020; 9:9/27/e00603-20. [PMID: 32616645 PMCID: PMC7330247 DOI: 10.1128/mra.00603-20] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
Here, we present the draft genome sequence of Bacillus cereus strain TN10, which exhibited chromium resistance and chromium-reducing ability. The whole-genome sequence analysis of strain TN10 will help us to understand its genetic factors involved in the bioremediation of Cr6+. Here, we present the draft genome sequence of Bacillus cereus strain TN10, which exhibited chromium resistance and chromium-reducing ability. The whole-genome sequence analysis of strain TN10 will help us to understand its genetic factors involved in the bioremediation of Cr6+.
Collapse
|