1
|
Ulger O, Eş I, Proctor CM, Algin O. Stroke studies in large animals: Prospects of mitochondrial transplantation and enhancing efficiency using hydrogels and nanoparticle-assisted delivery. Ageing Res Rev 2024; 100:102469. [PMID: 39191353 DOI: 10.1016/j.arr.2024.102469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 08/08/2024] [Accepted: 08/21/2024] [Indexed: 08/29/2024]
Abstract
One of the most frequent reasons for mortality and disability today is acute ischemic stroke, which occurs by an abrupt disruption of cerebral circulation. The intricate damage mechanism involves several factors, such as inflammatory response, disturbance of ion balance, loss of energy production, excessive reactive oxygen species and glutamate release, and finally, neuronal death. Stroke research is now carried out using several experimental models and potential therapeutics. Furthermore, studies are being conducted to address the shortcomings of clinical care. A great deal of research is being done on novel pharmacological drugs, mitochondria targeting compounds, and different approaches including brain cooling and new technologies. Still, there are many unanswered questions about disease modeling and treatment strategies. Before these new approaches may be used in therapeutic settings, they must first be tested on large animals, as most of them have been done on rodents. However, there are several limitations to large animal stroke models used for research. In this review, the damage mechanisms in acute ischemic stroke and experimental acute ischemic stroke models are addressed. The current treatment approaches and promising experimental methods such as mitochondrial transplantation, hydrogel-based interventions, and strategies like mitochondria encapsulation and chemical modification, are also examined in this work.
Collapse
Affiliation(s)
- Oner Ulger
- Department of Mitochondria and Cellular Research, Gulhane Health Sciences Institute, University of Health Sciences, Ankara 06010, Turkiye; Gulhane Training and Research Hospital, University of Health Sciences, Ankara 06010, Turkiye.
| | - Ismail Eş
- Department of Engineering Science, Institute of Biomedical Engineering (IBME), University of Oxford, Oxford OX3 7DQ, UK
| | - Christopher M Proctor
- Department of Engineering Science, Institute of Biomedical Engineering (IBME), University of Oxford, Oxford OX3 7DQ, UK
| | - Oktay Algin
- Interventional MR Clinical R&D Institute, Ankara University, Ankara 06100, Turkiye; Department of Radiology, Medical Faculty, Ankara University, Ankara 06100, Turkiye; National MR Research Center (UMRAM), Bilkent University, Ankara 06800, Turkiye
| |
Collapse
|
2
|
Jakubowska K, Hogendorf AS, Gołda S, Jantas D. Neuroprotective and Neurite Outgrowth Stimulating Effects of New Low-Basicity 5-HT 7 Receptor Agonists: In Vitro Study in Human Neuroblastoma SH-SY5Y Cells. Neurochem Res 2024; 49:2179-2196. [PMID: 38834845 PMCID: PMC11233329 DOI: 10.1007/s11064-024-04159-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Revised: 03/16/2024] [Accepted: 05/20/2024] [Indexed: 06/06/2024]
Abstract
There is some evidence that the serotonin receptor subtype 7 (5-HT7) could be new therapeutic target for neuroprotection. The aim of this study was to compare the neuroprotective and neurite outgrowth potential of new 5-HT7 receptor agonists (AH-494, AGH-238, AGH-194) with 5-CT (5-carboxyamidotryptamine) in human neuroblastoma SH-SY5Y cells. The results revealed that 5-HT7 mRNA expression was significantly higher in retinoic acid (RA)-differentiated cells when compared to undifferentiated ones and it was higher in cell cultured in neuroblastoma experimental medium (DMEM) compared to those placed in neuronal (NB) medium. Furthermore, the safety profile of compounds was favorable for all tested compounds at concentration used for neuroprotection evaluation (up to 1 μM), whereas at higher concentrations (above 10 μM) the one of the tested compounds, AGH-194 appeared to be cytotoxic. While we observed relatively modest protective effects of 5-CT and AH-494 in UN-SH-SY5Y cells cultured in DMEM, in UN-SH-SY5Y cells cultured in NB medium we found a significant reduction of H2O2-evoked cell damage by all tested 5-HT7 agonists. However, 5-HT7-mediated neuroprotection was not associated with inhibition of caspase-3 activity and was not observed in RA-SH-SY5Y cells exposed to H2O2. Furthermore, none of the tested 5-HT7 agonists altered the damage induced by 6-hydroxydopamine (6-OHDA), 1-methyl-4-phenylpyridinium ion (MPP +) and doxorubicin (Dox) in UN- and RA-SH-SY5Y cells cultured in NB. Finally we showed a stimulating effect of AH-494 and AGH-194 on neurite outgrowth. The obtained results provide insight into neuroprotective and neurite outgrowth potential of new 5-HT7 agonists.
Collapse
Affiliation(s)
- Klaudia Jakubowska
- Department of Experimental Neuroendocrinology, Maj Institute of Pharmacology of the Polish Academy of Sciences, Krakow, Poland
| | - Adam S Hogendorf
- Department of Medicinal Chemistry, Maj Institute of Pharmacology of the Polish Academy of Sciences, Krakow, Poland
| | - Sławomir Gołda
- Department of Molecular Neuropharmacology, Maj Institute of Pharmacology of the Polish Academy of Sciences, Krakow, Poland
| | - Danuta Jantas
- Department of Experimental Neuroendocrinology, Maj Institute of Pharmacology of the Polish Academy of Sciences, Krakow, Poland.
| |
Collapse
|
3
|
Shuvaev A, Belozor O, Shuvaev A. Information Load from Neuromediator Diffusion to Extrasynaptic Space: The Interplay between the Injection Frequency and Clearance. BIOLOGY 2024; 13:566. [PMID: 39194504 DOI: 10.3390/biology13080566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 07/15/2024] [Accepted: 07/23/2024] [Indexed: 08/29/2024]
Abstract
In our study, we simulate the release of glutamate, a neurotransmitter, from the presynaptic cell by modeling the diffusion of glutamate into both synaptic and extrasynaptic space around the synapse. We have also incorporated a new factor into our model: convection. This factor represents the process by which the body clears glutamate from the synapse. Due to this process, the physiological mechanisms that typically prevent glutamate from spreading beyond the synapse are altered. This results in a different distribution of glutamate concentrations, with higher levels outside the synapse than inside it. The variety of biological effects that occur in response to this extrasynaptic glutamate highlights the importance of preventing neurotransmitters from spreading beyond the synapse. We aim to explain the physical reasons behind these biological effects, which are observed as excitotoxicity. Our results show that preventing the spread of glutamate outside the synapse increases the amount of information exchanged within the synapse and its surroundings for frequencies of glutamate release up to 30-50 Hz, followed by a decrease. Additionally, we find that the rate at which glutamate is cleared from the synapse is effective at relatively low levels (≤0.5 nm/μs in our calculation grid) and remains constant at higher levels.
Collapse
Affiliation(s)
- Andrey Shuvaev
- Institute of Fundamental Biology and Biotechnology, Siberian Federal University, 660041 Krasnoyarsk, Russia
| | - Olga Belozor
- Research Institute of Molecular Medicine and Pathobiochemistry, Krasnoyarsk State Medical University, 660022 Krasnoyarsk, Russia
| | - Anton Shuvaev
- Institute of Fundamental Biology and Biotechnology, Siberian Federal University, 660041 Krasnoyarsk, Russia
- Research Institute of Molecular Medicine and Pathobiochemistry, Krasnoyarsk State Medical University, 660022 Krasnoyarsk, Russia
| |
Collapse
|
4
|
Boccaccini A, Cavaterra D, Carnevale C, Tanga L, Marini S, Bocedi A, Lacal PM, Manni G, Graziani G, Sbardella D, Tundo GR. Novel frontiers in neuroprotective therapies in glaucoma: Molecular and clinical aspects. Mol Aspects Med 2023; 94:101225. [PMID: 38000334 DOI: 10.1016/j.mam.2023.101225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 10/24/2023] [Accepted: 10/27/2023] [Indexed: 11/26/2023]
Abstract
In the last years, neuroprotective therapies have attracted the researcher interests as modern and challenging approach for the treatment of neurodegenerative diseases, aimed at protecting the nervous system from injuries. Glaucoma is a neurodegenerative disease characterized by progressive excavation of the optic nerve head, retinal axonal injury and corresponding vision loss that affects millions of people on a global scale. The molecular basis of the pathology is largely uncharacterized yet, and the therapeutic approaches available do not change the natural course of the disease. Therefore, in accordance with the therapeutic regimens proposed for other neurodegenerative diseases, a modern strategy to treat glaucoma includes prescription of drugs with neuroprotective activities. With respect to this, several preclinical and clinical investigations on a plethora of different drugs are currently ongoing. In this review, first, the conceptualization of the rationale for the adoption of neuroprotective strategies for retina is summarized. Second, the molecular aspects highlighting glaucoma as a neurodegenerative disease are reported. In conclusion, the molecular and pharmacological properties of most promising direct neuroprotective drugs used to delay glaucoma progression are examined, including: neurotrophic factors, NMDA receptor antagonists, the α2-adrenergic agonist, brimonidine, calcium channel blockers, antioxidant agents, nicotinamide and statins.
Collapse
Affiliation(s)
| | - Dario Cavaterra
- Dipartimento di Scienze e Tecnologie Chimiche, Università di Tor Vergata, Via Della Ricerca Scientifica 1, 00133, Rome, Italy
| | | | | | - Stefano Marini
- Dipartimento di Scienze Cliniche e Medicina Traslazionale, Università di Roma Tor Vergata, Via Montpellier n. 1, 00133, Roma, Italy
| | - Alessio Bocedi
- Dipartimento di Scienze e Tecnologie Chimiche, Università di Tor Vergata, Via Della Ricerca Scientifica 1, 00133, Rome, Italy
| | - Pedro M Lacal
- Laboratory of Molecular Oncology, IDI-IRCCS, Via Monti di Creta 104, 00167, Rome, Italy
| | - Gianluca Manni
- IRCCS - Fondazione Bietti, Rome, Italy; Dipartimento di Scienze Cliniche e Medicina Traslazionale, Università di Roma Tor Vergata, Via Montpellier n. 1, 00133, Roma, Italy
| | - Grazia Graziani
- Department of Systems Medicine, University of Rome Tor Vergata, Via Montpellier, 1, 00133, Rome, Italy
| | | | - Grazia Raffaella Tundo
- Dipartimento di Scienze Cliniche e Medicina Traslazionale, Università di Roma Tor Vergata, Via Montpellier n. 1, 00133, Roma, Italy.
| |
Collapse
|
5
|
Cools R, Kerkhofs K, Leitao RCF, Bormans G. Preclinical Evaluation of Novel PET Probes for Dementia. Semin Nucl Med 2023; 53:599-629. [PMID: 37149435 DOI: 10.1053/j.semnuclmed.2023.03.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 03/24/2023] [Indexed: 05/08/2023]
Abstract
The development of novel PET imaging agents that selectively bind specific dementia-related targets can contribute significantly to accurate, differential and early diagnosis of dementia causing diseases and support the development of therapeutic agents. Consequently, in recent years there has been a growing body of literature describing the development and evaluation of potential new promising PET tracers for dementia. This review article provides a comprehensive overview of novel dementia PET probes under development, classified by their target, and pinpoints their preclinical evaluation pathway, typically involving in silico, in vitro and ex/in vivo evaluation. Specific target-associated challenges and pitfalls, requiring extensive and well-designed preclinical experimental evaluation assays to enable successful clinical translation and avoid shortcomings observed for previously developed 'well-established' dementia PET tracers are highlighted in this review.
Collapse
Affiliation(s)
- Romy Cools
- Laboratory for Radiopharmaceutical Research, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, Leuven, Belgium
| | - Kobe Kerkhofs
- Laboratory for Radiopharmaceutical Research, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, Leuven, Belgium; NURA, Belgian Nuclear Research Centre (SCK CEN), Mol, Belgium
| | - Renan C F Leitao
- Laboratory for Radiopharmaceutical Research, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, Leuven, Belgium
| | - Guy Bormans
- Laboratory for Radiopharmaceutical Research, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, Leuven, Belgium.
| |
Collapse
|
6
|
Role of amyloid beta (25-35) neurotoxicity in the ferroptosis and necroptosis as modalities of regulated cell death in Alzheimer's disease. Neurotoxicology 2023; 94:71-86. [PMID: 36347329 DOI: 10.1016/j.neuro.2022.11.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 10/26/2022] [Accepted: 11/03/2022] [Indexed: 11/06/2022]
Abstract
Neuronal cell death as a prominent pathological feature contributes to cognitive decline and memory loss in Alzheimer's disease. We investigated the role of two forms of cell death pathways, ferroptosis and necroptosis, and their interactions following entorhinal cortex (EC) amyloidopathy. The Aβ25-35 was bilaterally injected into the rat's EC, and Morris Water Maze was applied to determine spatial performance one week after Aβ injection. For evaluation of ferroptosis and necroptosis involvement in Aβ induced pathology, ferroptosis inhibitor, Ferrostatin (Fer-1), and necroptosis inhibitor, Necrostatin (Nec-1), were injected into the EC during training days of behavioral test. Our behavioral and histological assessment showed spatial learning and memory impairment, along with neuropathology changes such as cell survival and intracellular Aβ deposits in response to EC amyloidopathy, which were ameliorated by treatment with Fer-1 or Nec-1. The expression of ferroptosis key factors GPX4 and SLC7A11 were decreased and the level of TfR was increased following Aβ toxicity. Also, Necroptosis pathway related factors RIP1, RIP3, and MLKL were modulated by Aβ neurotoxicity. However, application of Fer-1 or Nec-1 could inhibit the hippocampal ferroptosis and necroptosis pathways due to EC amyloidopathy. Our data also demonstrated that Aβ-induced necroptosis suppressed by Fer-1, although Nec-1 had no effect on ferroptosis, indicating that ferroptosis pathway is upstream of necroptosis process in the Aβ neurotoxicity. Moreover, Aβ induced hippocampal mGLUR5 overexpression and reduced level of STIM1/2 recovered by Fer-1 or Nec-1. According to our findings ferroptosis and necroptosis pathways are involved in Aβ neurotoxicity through modulation of mGLUR5 and STIM1/2 signaling.
Collapse
|
7
|
Dubey Tiwari K, Sharma G, Prakash M, Parihar M, Dawane V. Effects of high glutamate concentrations on mitochondria of human neuroblastoma SH-SY5Y cells. ANNALES PHARMACEUTIQUES FRANÇAISES 2022; 81:457-465. [PMID: 36252868 DOI: 10.1016/j.pharma.2022.10.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Revised: 09/17/2022] [Accepted: 10/10/2022] [Indexed: 11/05/2022]
Abstract
BACKGROUND The excess amount of glutamate in neurons is associated with the excitotoxicity and neurodegenerative diseases. Glutamate induces neurotoxicity primarily by immense influx of Ca2+ arising from overstimulation of the NMDA subtype of glutamate receptors. The neuronal death induced by the overstimulation of glutamate receptors depends critically on a sustained increase in mitochondrial Ca2+ influx and impairment in mitochondrial functions. The mitochondrial impairment is an important contributor to the glutamate-induced neuronal toxicity and thus provides an important target for the intervention. The present study investigates the effects of high glutamate concentrations on mitochondrial functions. RESULTS Here, we have shown that the higher concentration of glutamate treatment caused a significant elevation in the N-methyl-D-aspartate (NMDA) receptors expression and elevated the intra-mitochondrial calcium accumulation in SHSY5Y neuronal cells. As a result of an accumulation of intra-mitochondrial calcium, there is a concentration-dependent elevation in ROS in the mitochondria. Tyrosine nitration of several mitochondrial proteins was increased while the mitochondrial membrane potential was dissipated. Furthermore, glutamate treatments also resulted in mitochondrial membrane permeability transition. CONCLUSIONS These findings suggest that treatment of high glutamate concentration causes impairment of mitochondrial functions by an increase in intra-mitochondrial calcium, ROS production, dissipation of mitochondrial membrane potential and mitochondrial permeability transition pore opening in human neuroblastoma SHSY5Y cells.
Collapse
|
8
|
Bhardwaj A, Bhardwaj R, Saini A, Dhawan DK, Kaur T. Impact of Calcium Influx on Endoplasmic Reticulum in Excitotoxic Neurons: Role of Chemical Chaperone 4-PBA. Cell Mol Neurobiol 2022; 43:1619-1635. [PMID: 36002608 DOI: 10.1007/s10571-022-01271-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Accepted: 08/06/2022] [Indexed: 11/25/2022]
Abstract
Excessive activation of α-amino-3-hydroxy-5-methyl-4-isoxazole propoinic acid (AMPA) receptors instigates excitotoxicity via enhanced calcium influx in the neurons thus inciting deleterious consequences. Additionally, Endoplasmic Reticulum (ER) is pivotal in maintaining the intracellular calcium balance. Considering this, studying the aftermath of enhanced calcium uptake by neurons and its effect on ER environment can assist in delineating the pathophysiological events incurred by excitotoxicty. The current study was premeditated to decipher the role of ER pertaining to calcium homeostasis in AMPA-induced excitotoxicity. The findings showed, increased intracellular calcium levels (measured by flowcytometry and spectroflourimeter using Fura 2AM) in AMPA excitotoxic animals (male Sprague dawely rats) (intra-hippocampal injection of 10 mM AMPA). Further, ER resident proteins like calnexin, PDI and ERp72 were found to be upregulated, which further modulated the functioning of ER membrane calcium channels viz. IP3R, RyR, and SERCA pump. Altered calcium homeostasis further led to ER stress and deranged the protein folding capacity of ER post AMPA toxicity, which was ascertained by unfolded protein response (UPR) pathway markers such as IRE1α, eIF2α, and ATF6α. Chemical chaperone, 4-phenybutric acid (4-PBA), ameliorated the protein folding capacity and subsequent UPR markers. In addition, modulation of calcium channels and calcium regulating machinery of ER post 4-PBA administration restored the calcium homeostasis. Therefore the study reinforces the significance of ER stress, a debilitating outcome of impaired calcium homeostasis, under AMPA-induced excitotoxicity. Also, employing chaperone-based therapeutic approach to curb ER stress can restore the calcium imbalance in the neuropathological diseases.
Collapse
Affiliation(s)
- Ankita Bhardwaj
- Department of Biophysics, Panjab University, Chandigarh, 160014, India
| | - Rishi Bhardwaj
- Department of Biophysics, Panjab University, Chandigarh, 160014, India
| | - Avneet Saini
- Department of Biophysics, Panjab University, Chandigarh, 160014, India
| | | | - Tanzeer Kaur
- Department of Biophysics, Panjab University, Chandigarh, 160014, India.
| |
Collapse
|
9
|
Uzair M, Abualait T, Arshad M, Yoo WK, Mir A, Bunyan RF, Bashir S. Transcranial magnetic stimulation in animal models of neurodegeneration. Neural Regen Res 2022; 17:251-265. [PMID: 34269184 PMCID: PMC8464007 DOI: 10.4103/1673-5374.317962] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 12/08/2020] [Accepted: 12/24/2020] [Indexed: 11/13/2022] Open
Abstract
Brain stimulation techniques offer powerful means of modulating the physiology of specific neural structures. In recent years, non-invasive brain stimulation techniques, such as transcranial magnetic stimulation (TMS) and transcranial direct current stimulation, have emerged as therapeutic tools for neurology and neuroscience. However, the possible repercussions of these techniques remain unclear, and there are few reports on the incisive recovery mechanisms through brain stimulation. Although several studies have recommended the use of non-invasive brain stimulation in clinical neuroscience, with a special emphasis on TMS, the suggested mechanisms of action have not been confirmed directly at the neural level. Insights into the neural mechanisms of non-invasive brain stimulation would unveil the strategies necessary to enhance the safety and efficacy of this progressive approach. Therefore, animal studies investigating the mechanisms of TMS-induced recovery at the neural level are crucial for the elaboration of non-invasive brain stimulation. Translational research done using animal models has several advantages and is able to investigate knowledge gaps by directly targeting neuronal levels. In this review, we have discussed the role of TMS in different animal models, the impact of animal studies on various disease states, and the findings regarding brain function of animal models after TMS in pharmacology research.
Collapse
Affiliation(s)
- Mohammad Uzair
- Department of Biological Sciences, Faculty of Basic & Applied Sciences, International Islamic University Islamabad, Pakistan
| | - Turki Abualait
- College of Applied Medical Sciences, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | - Muhammad Arshad
- Department of Biological Sciences, Faculty of Basic & Applied Sciences, International Islamic University Islamabad, Pakistan
| | - Woo-Kyoung Yoo
- Department of Physical Medicine and Rehabilitation, Hallym University College of Medicine, Anyang, South Korea
- Hallym Institute for Translational Genomics & Bioinformatics, Hallym University College of Medicine, Anyang, South Korea
| | - Ali Mir
- Neuroscience Center, King Fahad Specialist Hospital Dammam, Dammam, Saudi Arabia
| | - Reem Fahd Bunyan
- Neuroscience Center, King Fahad Specialist Hospital Dammam, Dammam, Saudi Arabia
| | - Shahid Bashir
- Neuroscience Center, King Fahad Specialist Hospital Dammam, Dammam, Saudi Arabia
| |
Collapse
|
10
|
Jara CP, de Andrade Berti B, Mendes NF, Engel DF, Zanesco AM, Pereira de Souza GF, de Medeiros Bezerra R, de Toledo Bagatin J, Maria-Engler SS, Morari J, Velander WH, Velloso LA, Araújo EP. Glutamic acid promotes hair growth in mice. Sci Rep 2021; 11:15453. [PMID: 34326383 PMCID: PMC8322389 DOI: 10.1038/s41598-021-94816-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2020] [Accepted: 07/14/2021] [Indexed: 02/07/2023] Open
Abstract
Glutamic acid is the main excitatory neurotransmitter acting both in the brain and in peripheral tissues. Abnormal distribution of glutamic acid receptors occurs in skin hyperproliferative conditions such as psoriasis and skin regeneration; however, the biological function of glutamic acid in the skin remains unclear. Using ex vivo, in vivo and in silico approaches, we showed that exogenous glutamic acid promotes hair growth and keratinocyte proliferation. Topical application of glutamic acid decreased the expression of genes related to apoptosis in the skin, whereas glutamic acid increased cell viability and proliferation in human keratinocyte cultures. In addition, we identified the keratinocyte glutamic acid excitotoxic concentration, providing evidence for the existence of a novel skin signalling pathway mediated by a neurotransmitter that controls keratinocyte and hair follicle proliferation. Thus, glutamic acid emerges as a component of the peripheral nervous system that acts to control cell growth in the skin. These results raise the perspective of the pharmacological and nutritional use of glutamic acid to treat skin diseases.
Collapse
Affiliation(s)
- Carlos Poblete Jara
- Faculty of Nursing, University of Campinas, UNICAMP, Tessalia Vieira de Camargo St., 126, Campinas, SP, 13083-887, Brazil.
- Laboratory of Cell Signalling, Obesity and Comorbidities Research Center, University of Campinas, UNICAMP, Campinas, Brazil.
- University of Campinas, Campinas, Brazil.
- Department of Chemical and Biomolecular Engineering, University of Nebraska, Lincoln, NE, USA.
| | - Beatriz de Andrade Berti
- Faculty of Nursing, University of Campinas, UNICAMP, Tessalia Vieira de Camargo St., 126, Campinas, SP, 13083-887, Brazil
- Laboratory of Cell Signalling, Obesity and Comorbidities Research Center, University of Campinas, UNICAMP, Campinas, Brazil
- University of Campinas, Campinas, Brazil
| | - Natália Ferreira Mendes
- Faculty of Nursing, University of Campinas, UNICAMP, Tessalia Vieira de Camargo St., 126, Campinas, SP, 13083-887, Brazil
- Laboratory of Cell Signalling, Obesity and Comorbidities Research Center, University of Campinas, UNICAMP, Campinas, Brazil
- University of Campinas, Campinas, Brazil
| | - Daiane Fátima Engel
- Faculty of Medical Sciences, University of Campinas, UNICAMP, Campinas, Brazil
- Laboratory of Cell Signalling, Obesity and Comorbidities Research Center, University of Campinas, UNICAMP, Campinas, Brazil
- University of Campinas, Campinas, Brazil
| | - Ariane Maria Zanesco
- Faculty of Medical Sciences, University of Campinas, UNICAMP, Campinas, Brazil
- Laboratory of Cell Signalling, Obesity and Comorbidities Research Center, University of Campinas, UNICAMP, Campinas, Brazil
- University of Campinas, Campinas, Brazil
| | - Gabriela Freitas Pereira de Souza
- Department of Organic Chemistry, Institute of Chemistry, University of Campinas, UNICAMP, Campinas, Brazil
- University of Campinas, Campinas, Brazil
| | - Renan de Medeiros Bezerra
- Faculty of Nursing, University of Campinas, UNICAMP, Tessalia Vieira de Camargo St., 126, Campinas, SP, 13083-887, Brazil
- Laboratory of Cell Signalling, Obesity and Comorbidities Research Center, University of Campinas, UNICAMP, Campinas, Brazil
- University of Campinas, Campinas, Brazil
| | - Julia de Toledo Bagatin
- School of Pharmaceutical Sciences, Clinical Chemistry and Toxicology Department, University of São Paulo, São Paulo, Brazil
| | - Silvya Stuchi Maria-Engler
- School of Pharmaceutical Sciences, Clinical Chemistry and Toxicology Department, University of São Paulo, São Paulo, Brazil
| | - Joseane Morari
- Faculty of Medical Sciences, University of Campinas, UNICAMP, Campinas, Brazil
- Laboratory of Cell Signalling, Obesity and Comorbidities Research Center, University of Campinas, UNICAMP, Campinas, Brazil
- University of Campinas, Campinas, Brazil
| | - William H Velander
- Department of Chemical and Biomolecular Engineering, University of Nebraska, Lincoln, NE, USA
| | - Lício A Velloso
- Faculty of Medical Sciences, University of Campinas, UNICAMP, Campinas, Brazil
- Laboratory of Cell Signalling, Obesity and Comorbidities Research Center, University of Campinas, UNICAMP, Campinas, Brazil
- University of Campinas, Campinas, Brazil
| | - Eliana Pereira Araújo
- Faculty of Nursing, University of Campinas, UNICAMP, Tessalia Vieira de Camargo St., 126, Campinas, SP, 13083-887, Brazil
- Laboratory of Cell Signalling, Obesity and Comorbidities Research Center, University of Campinas, UNICAMP, Campinas, Brazil
- University of Campinas, Campinas, Brazil
| |
Collapse
|
11
|
Holm KN, Herren AW, Taylor SL, Randol JL, Kim K, Espinal G, Martiínez-Cerdeño V, Pessah IN, Hagerman RJ, Hagerman PJ. Human Cerebral Cortex Proteome of Fragile X-Associated Tremor/Ataxia Syndrome. Front Mol Biosci 2021; 7:600840. [PMID: 33585555 PMCID: PMC7879451 DOI: 10.3389/fmolb.2020.600840] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Accepted: 11/27/2020] [Indexed: 01/10/2023] Open
Abstract
Background: Fragile X-associated tremor/ataxia syndrome (FXTAS) is an adult-onset neurodegenerative disorder associated with premutation CGG-repeat expansions (55–200 repeats) in the 5′ non-coding portion of the fragile X mental retardation 1 (FMR1) gene. Core features of FXTAS include progressive tremor/ataxia, cognitive decline, variable brain volume loss, and white matter disease. The principal histopathological feature of FXTAS is the presence of central nervous system (CNS) and non-CNS intranuclear inclusions. Objective: To further elucidate the molecular underpinnings of FXTAS through the proteomic characterization of human FXTAS cortexes. Results: Proteomic analysis of FXTAS brain cortical tissue (n = 8) identified minor differences in protein abundance compared to control brains (n = 6). Significant differences in FXTAS relative to control brain predominantly involved decreased abundance of proteins, with the greatest decreases observed for tenascin-C (TNC), cluster of differentiation 38 (CD38), and phosphoserine aminotransferase 1 (PSAT1); proteins typically increased in other neurodegenerative diseases. Proteins with the greatest increased abundance include potentially novel neurodegeneration-related proteins and small ubiquitin-like modifier 1/2 (SUMO1/2). The FMRpolyG peptide, proposed in models of FXTAS pathogenesis but only identified in trace amounts in the earlier study of FXTAS inclusions, was not identified in any of the FXTAS or control brains in the current study. Discussion: The observed proteomic shifts, while generally relatively modest, do show a bias toward decreased protein abundance with FXTAS. Such shifts in protein abundance also suggest altered RNA binding as well as loss of cell–cell adhesion/structural integrity. Unlike other neurodegenerative diseases, the proteome of end-stage FXTAS does not suggest a strong inflammation-mediated degenerative response.
Collapse
Affiliation(s)
- Katharine Nichole Holm
- Department of Biochemistry and Molecular Medicine, University of California Davis School of Medicine, Davis, CA, United States
| | - Anthony W Herren
- Mass Spectrometry Research Core, University of California Davis, Davis, CA, United States
| | - Sandra L Taylor
- Department of Public Health Sciences, Division of Biostatistics, University of California Davis School of Medicine, Davis, CA, United States
| | - Jamie L Randol
- Department of Biochemistry and Molecular Medicine, University of California Davis School of Medicine, Davis, CA, United States
| | - Kyoungmi Kim
- Department of Public Health Sciences, Division of Biostatistics, University of California Davis School of Medicine, Davis, CA, United States.,Medical Investigation of Neurodevelopmental Disorders Institute, University of California Davis School of Medicine, Davis, CA, United States
| | - Glenda Espinal
- Department of Biochemistry and Molecular Medicine, University of California Davis School of Medicine, Davis, CA, United States
| | - Verónica Martiínez-Cerdeño
- Medical Investigation of Neurodevelopmental Disorders Institute, University of California Davis School of Medicine, Davis, CA, United States.,Department of Pathology and Laboratory Medicine, University of California Davis School of Medicine, Davis, CA, United States
| | - Isaac N Pessah
- Medical Investigation of Neurodevelopmental Disorders Institute, University of California Davis School of Medicine, Davis, CA, United States.,Department of Molecular Biosciences, University of California Davis School of Veterinary Medicine, Davis, CA, United States
| | - Randi J Hagerman
- Medical Investigation of Neurodevelopmental Disorders Institute, University of California Davis School of Medicine, Davis, CA, United States.,Department of Pediatrics, University of California Davis School of Medicine, Davis, CA, United States
| | - Paul J Hagerman
- Department of Biochemistry and Molecular Medicine, University of California Davis School of Medicine, Davis, CA, United States.,Medical Investigation of Neurodevelopmental Disorders Institute, University of California Davis School of Medicine, Davis, CA, United States
| |
Collapse
|
12
|
Novel PET Biomarkers to Disentangle Molecular Pathways across Age-Related Neurodegenerative Diseases. Cells 2020; 9:cells9122581. [PMID: 33276490 PMCID: PMC7761606 DOI: 10.3390/cells9122581] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 11/25/2020] [Accepted: 11/28/2020] [Indexed: 12/11/2022] Open
Abstract
There is a need to disentangle the etiological puzzle of age-related neurodegenerative diseases, whose clinical phenotypes arise from known, and as yet unknown, pathways that can act distinctly or in concert. Enhanced sub-phenotyping and the identification of in vivo biomarker-driven signature profiles could improve the stratification of patients into clinical trials and, potentially, help to drive the treatment landscape towards the precision medicine paradigm. The rapidly growing field of neuroimaging offers valuable tools to investigate disease pathophysiology and molecular pathways in humans, with the potential to capture the whole disease course starting from preclinical stages. Positron emission tomography (PET) combines the advantages of a versatile imaging technique with the ability to quantify, to nanomolar sensitivity, molecular targets in vivo. This review will discuss current research and available imaging biomarkers evaluating dysregulation of the main molecular pathways across age-related neurodegenerative diseases. The molecular pathways focused on in this review involve mitochondrial dysfunction and energy dysregulation; neuroinflammation; protein misfolding; aggregation and the concepts of pathobiology, synaptic dysfunction, neurotransmitter dysregulation and dysfunction of the glymphatic system. The use of PET imaging to dissect these molecular pathways and the potential to aid sub-phenotyping will be discussed, with a focus on novel PET biomarkers.
Collapse
|