1
|
Wang Y, Jin P, Kumar A, Jan L, Cheng Y, Jan YN, Zhang Y. Nonlinear compliance of NompC gating spring and its implication in mechanotransduction. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.20.599842. [PMID: 38979198 PMCID: PMC11230213 DOI: 10.1101/2024.06.20.599842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/10/2024]
Abstract
Cytoskeleton-tethered mechanosensitive channels (MSCs) utilize compliant proteins or protein domains called gating springs to convert mechanical stimuli into electric signals, enabling sound and touch sensation and proprioception. The mechanical properties of these gating springs, however, remain elusive. Here, we explored the mechanical properties of the homotetrameric NompC complex containing long ankyrin-repeat domains (ARDs). We developed a toehold-mediated strand displacement approach to tether single membrane proteins, allowing us to exert force on them and precisely measure their absolute extension using optical tweezers. Our findings revealed that each ARD has a low stiffness of ~0.7 pN/nm and begins to unfold stepwise at ~7 pN, leading to nonlinear compliance. Our calculations indicate that this nonlinear compliance may help regulate NompC's sensitivity, dynamic range, and kinetics to detect mechanical stimuli. Overall, our research highlights the importance of a compliant and unfolding-refolding gating spring in facilitating a graded response of MSC ion transduction across a wide spectrum of mechanical stimuli.
Collapse
Affiliation(s)
- Yukun Wang
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT, USA
| | - Peng Jin
- Department of Physiology, University of California, San Francisco, CA, USA
| | - Avinash Kumar
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT, USA
| | - Lily Jan
- Department of Physiology, University of California, San Francisco, CA, USA
- Department of Biochemistry and Biophysics, University of California, San Francisco, CA, USA
- Howard Hughes Medical Institute, UCSF, San Francisco, CA, USA
| | - Yifan Cheng
- Department of Biochemistry and Biophysics, University of California, San Francisco, CA, USA
- Howard Hughes Medical Institute, UCSF, San Francisco, CA, USA
| | - Yuh-Nung Jan
- Department of Physiology, University of California, San Francisco, CA, USA
- Department of Biochemistry and Biophysics, University of California, San Francisco, CA, USA
- Howard Hughes Medical Institute, UCSF, San Francisco, CA, USA
| | - Yongli Zhang
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT, USA
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, USA
| |
Collapse
|
2
|
Arora N, Hazra JP, Roy S, Bhati GK, Gupta S, Yogendran KP, Chaudhuri A, Sagar A, Rakshit S. Emergence of slip-ideal-slip behavior in tip-links serve as force filters of sound in hearing. Nat Commun 2024; 15:1595. [PMID: 38383683 PMCID: PMC10881517 DOI: 10.1038/s41467-024-45423-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 01/23/2024] [Indexed: 02/23/2024] Open
Abstract
Tip-links in the inner ear convey force from sound and trigger mechanotransduction. Here, we present evidence that tip-links (collectively as heterotetrameric complexes of cadherins) function as force filters during mechanotransduction. Our force-clamp experiments reveal that the tip-link complexes show slip-ideal-slip bond dynamics. At low forces, the lifetime of the tip-link complex drops monotonically, indicating slip-bond dynamics. The ideal bond, rare in nature, is seen in an intermediate force regime where the survival of the complex remains constant over a wide range. At large forces, tip-links follow a slip bond and dissociate entirely to cut-off force transmission. In contrast, the individual tip-links (heterodimers) display slip-catch-slip bonds to the applied forces. While with a phenotypic mutant, we showed the importance of the slip-catch-slip bonds in uninterrupted hearing, our coarse-grained Langevin dynamics simulations demonstrated that the slip-ideal-slip bonds emerge as a collective feature from the slip-catch-slip bonds of individual tip-links.
Collapse
Affiliation(s)
- Nisha Arora
- Department of Chemical Sciences, Indian Institute of Science Education and Research Mohali, Punjab, India
| | - Jagadish P Hazra
- Department of Chemical Sciences, Indian Institute of Science Education and Research Mohali, Punjab, India
| | - Sandip Roy
- Department of Physical Sciences, Indian Institute of Science Education and Research Mohali, Punjab, India
| | - Gaurav K Bhati
- Department of Chemical Sciences, Indian Institute of Science Education and Research Mohali, Punjab, India
| | - Sarika Gupta
- National Institute of Immunology, New Delhi, India
| | - K P Yogendran
- Department of Physical Sciences, Indian Institute of Science Education and Research Mohali, Punjab, India
| | - Abhishek Chaudhuri
- Department of Physical Sciences, Indian Institute of Science Education and Research Mohali, Punjab, India.
| | - Amin Sagar
- Centre de Biologie Structurale, INSERM, CNRS, Université de Montpellier, Montpellier, France.
| | - Sabyasachi Rakshit
- Department of Chemical Sciences, Indian Institute of Science Education and Research Mohali, Punjab, India.
| |
Collapse
|
3
|
Fernández-Ramírez MDC, Ng KKS, Menéndez M, Laurents DV, Hervás R, Carrión-Vázquez M. Expanded Conformations of Monomeric Tau Initiate Its Amyloidogenesis. Angew Chem Int Ed Engl 2022; 62:e202209252. [PMID: 36542681 DOI: 10.1002/anie.202209252] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Revised: 11/30/2022] [Accepted: 12/19/2022] [Indexed: 12/24/2022]
Abstract
Understanding early amyloidogenesis is key to rationally develop therapeutic strategies. Tau protein forms well-characterized pathological deposits but its aggregation mechanism is still poorly understood. Using single-molecule force spectroscopy based on a mechanical protection strategy, we studied the conformational landscape of the monomeric tau repeat domain (tau-RD244-368 ). We found two sets of conformational states, whose frequency is influenced by mutations and the chemical context. While pathological mutations Δ280K and P301L and a pro-amyloidogenic milieu favored expanded conformations and destabilized local structures, an anti-amyloidogenic environment promoted a compact ensemble, including a conformer whose topology might mask two amyloidogenic segments. Our results reveal that to initiate aggregation, monomeric tau-RD244-368 decreases its polymorphism adopting expanded conformations. This could account for the distinct structures found in vitro and across tauopathies.
Collapse
Affiliation(s)
- María Del Carmen Fernández-Ramírez
- Instituto Cajal, IC-CSIC, Avda. Doctor Arce 37, 28002, Madrid, Spain.,Current address: Center for Alzheimer's and Neurodegenerative Diseases, Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Kevin Kan-Shing Ng
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China.,School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Margarita Menéndez
- Instituto de Química-Física Rocasolano, IQFR-CSIC, Serrano 119, 28006, Madrid, Spain.,Centro de Investigación Biomédica en Red sobre Enfermedades Respiratorias (CIBERES), Spain
| | - Douglas V Laurents
- Instituto de Química-Física Rocasolano, IQFR-CSIC, Serrano 119, 28006, Madrid, Spain
| | - Rubén Hervás
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China.,School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | | |
Collapse
|
4
|
Qiu X, Müller U. Sensing sound: Cellular specializations and molecular force sensors. Neuron 2022; 110:3667-3687. [PMID: 36223766 PMCID: PMC9671866 DOI: 10.1016/j.neuron.2022.09.018] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 08/03/2022] [Accepted: 09/14/2022] [Indexed: 11/08/2022]
Abstract
Organisms of all phyla express mechanosensitive ion channels with a wide range of physiological functions. In recent years, several classes of mechanically gated ion channels have been identified. Some of these ion channels are intrinsically mechanosensitive. Others depend on accessory proteins to regulate their response to mechanical force. The mechanotransduction machinery of cochlear hair cells provides a particularly striking example of a complex force-sensing machine. This molecular ensemble is embedded into a specialized cellular compartment that is crucial for its function. Notably, mechanotransduction channels of cochlear hair cells are not only critical for auditory perception. They also shape their cellular environment and regulate the development of auditory circuitry. Here, we summarize recent discoveries that have shed light on the composition of the mechanotransduction machinery of cochlear hair cells and how this machinery contributes to the development and function of the auditory system.
Collapse
Affiliation(s)
- Xufeng Qiu
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Ulrich Müller
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.
| |
Collapse
|
5
|
Ding X, Wang Z, Zheng B, Shi S, Deng Y, Yu H, Zheng P. One-step asparaginyl endopeptidase ( OaAEP1)-based protein immobilization for single-molecule force spectroscopy. RSC Chem Biol 2022; 3:1276-1281. [PMID: 36320890 PMCID: PMC9533667 DOI: 10.1039/d2cb00135g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 08/18/2022] [Indexed: 11/22/2022] Open
Abstract
Enzymatic protein ligation has become the most powerful and widely used method for high-precision atomic force microscopy single-molecule force spectroscopy (AFM-SMFS) study of protein mechanics. However, this methodology typically requires the functionalization of the glass surface with a corresponding peptide sequence/tag for enzymatic recognition and multiple steps are needed. Thus, it is time-consuming and a high level of experience is needed for reliable results. To solve this problem, we simplified the procedure using two strategies both based on asparaginyl endopeptidase (AEP). First, we designed a heterobifunctional peptide-based crosslinker, GL-peptide-propargylglycine, which links to an N 3-functionalized surface via the click reaction. Then, the target protein with a C-terminal NGL sequence can be immobilized via the AEP-mediated ligation. Furthermore, we took advantage of the direct ligation between primary amino in a small molecule and protein with C-terminal NGL by AEP. Thus, the target protein can be immobilized on an amino-functionalized surface via AEP in one step. Both approaches were successfully applied to the AFM-SMFS study of eGFP, showing consistent single-molecule results.
Collapse
Affiliation(s)
- Xuan Ding
- Department of Biomedical Engineering, College of Engineering and Applied Sciences, Nanjing University 163 Xianlin Road Nanjing Jiangsu 210023 P. R. China
- State Key Laboratory of Analytical Chemistry for Life Science, Nanjing University Nanjing Jiangsu 210023 P. R. China
| | - Ziyi Wang
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University Nanjing Jiangsu 210023 P. R. China
| | - Bin Zheng
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University Nanjing Jiangsu 210023 P. R. China
| | - Shengchao Shi
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University Nanjing Jiangsu 210023 P. R. China
| | - Yibing Deng
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University Nanjing Jiangsu 210023 P. R. China
| | - Hanyang Yu
- Department of Biomedical Engineering, College of Engineering and Applied Sciences, Nanjing University 163 Xianlin Road Nanjing Jiangsu 210023 P. R. China
| | - Peng Zheng
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University Nanjing Jiangsu 210023 P. R. China
| |
Collapse
|
6
|
Kaur V, Garg S, Rakshit S. Instantaneous splicing and excision of inteins to synthesize polyproteins on a substrate with tunable linkers. SOFT MATTER 2022; 18:602-608. [PMID: 34928293 DOI: 10.1039/d1sm01469b] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Nature has adapted chimeric polyproteins to achieve superior and multiplexed functionality in a single protein. However, the hurdles in in vitro synthesis have restricted the biomimicry of and subsequent fundamental studies on the structure-function relationship of polyproteins. Recombinant expression of polyproteins and the synthesis of polyproteins via the enzyme-mediated repetitive digestion and ligation of individual protein domains have been widely practiced. However, recombinant expression often suffers from an in vitro refolding process, whereas enzyme-assisted peptide conjugation results in heterogeneous products, primarily due to enzymatic re-digestion, and prolonged and multistep reactions. Moreover, both methods incorporate enzyme-recognition residues of varying lengths as artifacts at interdomain linkers. The linkers, although tiny, regulate the spatiotemporal conformations of the polyproteins differentially and tune the folding dynamics, stability, and functions of the constituent protein. In an attempt to leave no string behind at the interdomain junctions, here, we develop a 'splice and excise' synthetic route for polyproteins on a substrate using two orthogonal split inteins. Inteins self-excise and conjugate the protein units covalently and instantaneously, without any cofactors, and incorporate a single cysteine or serine residue at the interdomain junctions.
Collapse
Affiliation(s)
- Veerpal Kaur
- Department of Chemical Sciences, Indian Institute of Science Education and Research Mohali, 140306, Punjab, India.
| | - Surbhi Garg
- Department of Chemical Sciences, Indian Institute of Science Education and Research Mohali, 140306, Punjab, India.
| | - Sabyasachi Rakshit
- Department of Chemical Sciences, Indian Institute of Science Education and Research Mohali, 140306, Punjab, India.
- Centre for Protein Science Design and Engineering, Indian Institute of Science Education and Research Mohali, 140306, Punjab, India
| |
Collapse
|
7
|
Elferich J, Clark S, Ge J, Goehring A, Matsui A, Gouaux E. Molecular structures and conformations of protocadherin-15 and its complexes on stereocilia elucidated by cryo-electron tomography. eLife 2021; 10:74512. [PMID: 34964715 PMCID: PMC8776254 DOI: 10.7554/elife.74512] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Accepted: 12/27/2021] [Indexed: 11/23/2022] Open
Abstract
Mechanosensory transduction (MT), the conversion of mechanical stimuli into electrical signals, underpins hearing and balance and is carried out within hair cells in the inner ear. Hair cells harbor actin-filled stereocilia, arranged in rows of descending heights, where the tips of stereocilia are connected to their taller neighbors by a filament composed of protocadherin 15 (PCDH15) and cadherin 23 (CDH23), deemed the ‘tip link.’ Tension exerted on the tip link opens an ion channel at the tip of the shorter stereocilia, thus converting mechanical force into an electrical signal. While biochemical and structural studies have provided insights into the molecular composition and structure of isolated portions of the tip link, the architecture, location, and conformational states of intact tip links, on stereocilia, remains unknown. Here, we report in situ cryo-electron microscopy imaging of the tip link in mouse stereocilia. We observe individual PCDH15 molecules at the tip and shaft of stereocilia and determine their stoichiometry, conformational heterogeneity, and their complexes with other filamentous proteins, perhaps including CDH23. The PCDH15 complexes occur in clusters, frequently with more than one copy of PCDH15 at the tip of stereocilia, suggesting that tip links might consist of more than one copy of PCDH15 complexes and, by extension, might include multiple MT complexes.
Collapse
Affiliation(s)
- Johannes Elferich
- Vollum Institute, Oregon Health and Science University, Portland, United States
| | - Sarah Clark
- Vollum Institute, Oregon Health and Science University, Portland, United States
| | - Jingpeng Ge
- Vollum Institute, Oregon Health and Science University, Portland, United States
| | - April Goehring
- Vollum Institute, Oregon Health and Science University, Portland, United States
| | - Aya Matsui
- Vollum Institute, Oregon Health and Science University, Portland, United States
| | - Eric Gouaux
- Vollum Institute, Oregon Health and Science University, Portland, United States
| |
Collapse
|
8
|
Arora N, Hazra JP, Rakshit S. Anisotropy in mechanical unfolding of protein upon partner-assisted pulling and handle-assisted pulling. Commun Biol 2021; 4:925. [PMID: 34326473 PMCID: PMC8322310 DOI: 10.1038/s42003-021-02445-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Accepted: 07/07/2021] [Indexed: 02/07/2023] Open
Abstract
Proteins as force-sensors respond to mechanical cues and regulate signaling in physiology. Proteins commonly connect the source and response points of mechanical cues in two conformations, independent proteins in end-to-end geometry and protein complexes in handshake geometry. The force-responsive property of independent proteins in end-to-end geometry is studied extensively using single-molecule force spectroscopy (SMFS). The physiological significance of the complex conformations in force-sensing is often disregarded as mere surge protectors. However, with the potential of force-steering, protein complexes possess a distinct mechano-responsive property over individual force-sensors. To decipher, we choose a force-sensing protein, cadherin-23, from tip-link complex and perform SMFS using end-to-end geometry and handshake complex geometry. We measure higher force-resilience of cadherin-23 with preferential shorter extensions in handshake mode of pulling over the direct mode. The handshake geometry drives the force-response of cadherin-23 through different potential-energy landscapes than direct pulling. Analysis of the dynamic network structure of cadherin-23 under tension indicates narrow force-distributions among residues in cadherin-23 in direct pulling, resulting in low force-dissipation paths and low resilience to force. Overall, the distinct and superior mechanical responses of cadherin-23 in handshake geometry than single protein geometry highlight a probable evolutionary drive of protein-protein complexes as force-conveyors over independent ones.
Collapse
Affiliation(s)
- Nisha Arora
- Department of Chemical Sciences, Indian Institute of Science Education and Research Mohali, Mohali, Punjab, India
| | - Jagadish Prasad Hazra
- Department of Chemical Sciences, Indian Institute of Science Education and Research Mohali, Mohali, Punjab, India.
| | - Sabyasachi Rakshit
- Department of Chemical Sciences, Indian Institute of Science Education and Research Mohali, Mohali, Punjab, India.
- Centre for Protein Science Design and Engineering, Indian Institute of Science Education and Research Mohali, Mohali, Punjab, India.
| |
Collapse
|
9
|
Nanopores: a versatile tool to study protein dynamics. Essays Biochem 2021; 65:93-107. [PMID: 33296461 DOI: 10.1042/ebc20200020] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 11/10/2020] [Accepted: 11/11/2020] [Indexed: 12/15/2022]
Abstract
Proteins are the active workhorses in our body. These biomolecules perform all vital cellular functions from DNA replication and general biosynthesis to metabolic signaling and environmental sensing. While static 3D structures are now readily available, observing the functional cycle of proteins - involving conformational changes and interactions - remains very challenging, e.g., due to ensemble averaging. However, time-resolved information is crucial to gain a mechanistic understanding of protein function. Single-molecule techniques such as FRET and force spectroscopies provide answers but can be limited by the required labelling, a narrow time bandwidth, and more. Here, we describe electrical nanopore detection as a tool for probing protein dynamics. With a time bandwidth ranging from microseconds to hours, nanopore experiments cover an exceptionally wide range of timescales that is very relevant for protein function. First, we discuss the working principle of label-free nanopore experiments, various pore designs, instrumentation, and the characteristics of nanopore signals. In the second part, we review a few nanopore experiments that solved research questions in protein science, and we compare nanopores to other single-molecule techniques. We hope to make electrical nanopore sensing more accessible to the biochemical community, and to inspire new creative solutions to resolve a variety of protein dynamics - one molecule at a time.
Collapse
|
10
|
刘 晓, 陈 森, 孙 宇, 孔 维. [Nonsyndromic deafness due to compound heterozygous mutation of the CDH23 gene]. LIN CHUANG ER BI YAN HOU TOU JING WAI KE ZA ZHI = JOURNAL OF CLINICAL OTORHINOLARYNGOLOGY, HEAD, AND NECK SURGERY 2021; 35:229-233;237. [PMID: 33794607 PMCID: PMC10128237 DOI: 10.13201/j.issn.2096-7993.2021.03.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Indexed: 11/12/2022]
Abstract
Objective:To identify the pathogenic gene mutation of two patients with non-syndromic deafness(NSHL). Methods:Two patient with NSHL and their parents were selected in the research object. Each participant provided 3-5 mL of peripheral venous blood, which was used to establish a DNA library. Next generation sequencing was used to detect the sequence of the patient's genome, and the sequencing results were compared with the human genome sequence (GRCh)37/hg19. Sanger sequencing was used to verify the parents' genome sequence. Finally the patient's pathogenic gene mutation was confirmed.Amino acid conservatism and single nucleotide polymorphisms of the mutant sites were analyzed using a variety of databases and software. Results:The mutation was located to CDH23 gene in the chromosomal location 10q21-q22. Complex heterozygous mutations consist of c. 1343T>C and c. 7991_7993delTCA. Parents are heterozygous carriers of a single mutation. Conclusion:The next generation sequencing technology were used to screen the pathogenic gene mutation of inherited deafness. Combined with the genetic sequencing results of parents, the specific pathogenic gene mutation of deafness patients can be identified. While the pathogenicity of complex heterozygous mutation were explained by various pathogenicity analysis methods.
Collapse
Affiliation(s)
- 晓宙 刘
- 华中科技大学同济医学院附属协和医院耳鼻咽喉头颈外科(武汉,430022)Department of Otorhinolaryngology Head and Neck Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - 森 陈
- 华中科技大学同济医学院附属协和医院耳鼻咽喉头颈外科(武汉,430022)Department of Otorhinolaryngology Head and Neck Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - 宇 孙
- 华中科技大学同济医学院附属协和医院耳鼻咽喉头颈外科(武汉,430022)Department of Otorhinolaryngology Head and Neck Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - 维佳 孔
- 华中科技大学同济医学院附属协和医院耳鼻咽喉头颈外科(武汉,430022)Department of Otorhinolaryngology Head and Neck Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| |
Collapse
|
11
|
Structural determinants of protocadherin-15 mechanics and function in hearing and balance perception. Proc Natl Acad Sci U S A 2020; 117:24837-24848. [PMID: 32963095 PMCID: PMC7547225 DOI: 10.1073/pnas.1920444117] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
When sound vibrations reach the inner ear, fine protein filaments called “tip links” stretch and open cochlear hair-cell mechanosensitive channels that trigger sensory perception. Similarly, vestibular hair cells use tip links to sense mechanical stimuli produced by head motions. Tip links are formed by cadherin-23 and protocadherin-15, two large proteins involved in hearing loss and balance disorders. Here we present multiple structures, models, and simulations that depict the lower end of the tip link, including the complete protocadherin-15 ectodomain. These models show an essential connection between cadherin-23 and protocadherin-15 with dual molecular “handshakes” and various protein sites that are mutated in inherited deafness. The simulations also reveal how the tip link responds to force to mediate hearing and balance sensing. The vertebrate inner ear, responsible for hearing and balance, is able to sense minute mechanical stimuli originating from an extraordinarily broad range of sound frequencies and intensities or from head movements. Integral to these processes is the tip-link protein complex, which conveys force to open the inner-ear transduction channels that mediate sensory perception. Protocadherin-15 and cadherin-23, two atypically large cadherins with 11 and 27 extracellular cadherin (EC) repeats, are involved in deafness and balance disorders and assemble as parallel homodimers that interact to form the tip link. Here we report the X-ray crystal structure of a protocadherin-15 + cadherin-23 heterotetrameric complex at 2.9-Å resolution, depicting a parallel homodimer of protocadherin-15 EC1-3 molecules forming an antiparallel complex with two cadherin-23 EC1-2 molecules. In addition, we report structures for 10 protocadherin-15 fragments used to build complete high-resolution models of the monomeric protocadherin-15 ectodomain. Molecular dynamics simulations and validated crystal contacts are used to propose models for the complete extracellular protocadherin-15 parallel homodimer and the tip-link bond. Steered molecular dynamics simulations of these models suggest conditions in which a structurally diverse and multimodal protocadherin-15 ectodomain can act as a stiff or soft gating spring. These results reveal the structural determinants of tip-link–mediated inner-ear sensory perception and elucidate protocadherin-15’s structural and adhesive properties relevant in disease.
Collapse
|
12
|
Yang B, Liu Z, Liu H, Nash MA. Next Generation Methods for Single-Molecule Force Spectroscopy on Polyproteins and Receptor-Ligand Complexes. Front Mol Biosci 2020; 7:85. [PMID: 32509800 PMCID: PMC7248566 DOI: 10.3389/fmolb.2020.00085] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Accepted: 04/16/2020] [Indexed: 12/31/2022] Open
Abstract
Single-molecule force spectroscopy with the atomic force microscope provides molecular level insights into protein function, allowing researchers to reconstruct energy landscapes and understand functional mechanisms in biology. With steadily advancing methods, this technique has greatly accelerated our understanding of force transduction, mechanical deformation, and mechanostability within single- and multi-domain polyproteins, and receptor-ligand complexes. In this focused review, we summarize the state of the art in terms of methodology and highlight recent methodological improvements for AFM-SMFS experiments, including developments in surface chemistry, considerations for protein engineering, as well as theory and algorithms for data analysis. We hope that by condensing and disseminating these methods, they can assist the community in improving data yield, reliability, and throughput and thereby enhance the information that researchers can extract from such experiments. These leading edge methods for AFM-SMFS will serve as a groundwork for researchers cognizant of its current limitations who seek to improve the technique in the future for in-depth studies of molecular biomechanics.
Collapse
Affiliation(s)
- Byeongseon Yang
- Department of Chemistry, University of Basel, Basel, Switzerland
- Department of Biosystems Science and Engineering, ETH Zürich, Basel, Switzerland
| | - Zhaowei Liu
- Department of Chemistry, University of Basel, Basel, Switzerland
- Department of Biosystems Science and Engineering, ETH Zürich, Basel, Switzerland
| | - Haipei Liu
- Department of Chemistry, University of Basel, Basel, Switzerland
- Department of Biosystems Science and Engineering, ETH Zürich, Basel, Switzerland
| | - Michael A. Nash
- Department of Chemistry, University of Basel, Basel, Switzerland
- Department of Biosystems Science and Engineering, ETH Zürich, Basel, Switzerland
| |
Collapse
|