1
|
Kentistou KA, Lim BEM, Kaisinger LR, Steinthorsdottir V, Sharp LN, Patel KA, Tragante V, Hawkes G, Gardner EJ, Olafsdottir T, Wood AR, Zhao Y, Thorleifsson G, Day FR, Ozanne SE, Hattersley AT, O'Rahilly S, Stefansson K, Ong KK, Beaumont RN, Perry JRB, Freathy RM. Rare variant associations with birth weight identify genes involved in adipose tissue regulation, placental function and insulin-like growth factor signalling. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.04.03.24305248. [PMID: 38633783 PMCID: PMC11023655 DOI: 10.1101/2024.04.03.24305248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/19/2024]
Abstract
Investigating the genetic factors influencing human birth weight may lead to biological insights into fetal growth and long-term health. Genome-wide association studies of birth weight have highlighted associated variants in more than 200 regions of the genome, but the causal genes are mostly unknown. Rare genetic variants with robust evidence of association are more likely to point to causal genes, but to date, only a few rare variants are known to influence birth weight. We aimed to identify genes that harbour rare variants that impact birth weight when carried by either the fetus or the mother, by analysing whole exome sequence data in UK Biobank participants. We annotated rare (minor allele frequency <0.1%) protein-truncating or high impact missense variants on whole exome sequence data in up to 234,675 participants with data on their own birth weight (fetal variants), and up to 181,883 mothers who reported the birth weight of their first child (maternal variants). Variants within each gene were collapsed to perform gene burden tests and for each associated gene, we compared the observed fetal and maternal effects. We identified 8 genes with evidence of rare fetal variant effects on birth weight, of which 2 also showed maternal effects. One additional gene showed evidence of maternal effects only. We observed 10/11 directionally concordant associations in an independent sample of up to 45,622 individuals (sign test P=0.01). Of the genes identified, IGF1R and PAPPA2 (fetal and maternal-acting) have known roles in insulin-like growth factor bioavailability and signalling. PPARG, INHBE and ACVR1C (all fetal-acting) have known roles in adipose tissue regulation and rare variants in the latter two also showed associations with favourable adiposity patterns in adults. We highlight the dual role of PPARG in both adipocyte differentiation and placental angiogenesis. NOS3, NRK, and ADAMTS8 (fetal and maternal-acting) have been implicated in both placental function and hypertension. Analysis of rare coding variants has identified regulators of fetal adipose tissue and fetoplacental angiogenesis as determinants of birth weight, as well as further evidence for the role of insulin-like growth factors.
Collapse
Affiliation(s)
- Katherine A Kentistou
- MRC Epidemiology Unit, Box 285 Institute of Metabolic Science, University of Cambridge School of Clinical Medicine, Cambridge CB2 0QQ, UK
| | - Brandon E M Lim
- Department of Clinical and Biomedical Sciences, Faculty of Health and Life Sciences, University of Exeter, Exeter, UK
| | - Lena R Kaisinger
- MRC Epidemiology Unit, Box 285 Institute of Metabolic Science, University of Cambridge School of Clinical Medicine, Cambridge CB2 0QQ, UK
| | | | - Luke N Sharp
- Department of Clinical and Biomedical Sciences, Faculty of Health and Life Sciences, University of Exeter, Exeter, UK
| | - Kashyap A Patel
- Department of Clinical and Biomedical Sciences, Faculty of Health and Life Sciences, University of Exeter, Exeter, UK
| | | | - Gareth Hawkes
- Department of Clinical and Biomedical Sciences, Faculty of Health and Life Sciences, University of Exeter, Exeter, UK
| | - Eugene J Gardner
- MRC Epidemiology Unit, Box 285 Institute of Metabolic Science, University of Cambridge School of Clinical Medicine, Cambridge CB2 0QQ, UK
| | | | - Andrew R Wood
- Department of Clinical and Biomedical Sciences, Faculty of Health and Life Sciences, University of Exeter, Exeter, UK
| | - Yajie Zhao
- MRC Epidemiology Unit, Box 285 Institute of Metabolic Science, University of Cambridge School of Clinical Medicine, Cambridge CB2 0QQ, UK
| | | | - Felix R Day
- MRC Epidemiology Unit, Box 285 Institute of Metabolic Science, University of Cambridge School of Clinical Medicine, Cambridge CB2 0QQ, UK
| | - Susan E Ozanne
- MRC Metabolic Diseases Unit, Institute of Metabolic Science, University of Cambridge School of Clinical Medicine, University of Cambridge, Cambridge CB2 0QQ, UK
| | - Andrew T Hattersley
- Department of Clinical and Biomedical Sciences, Faculty of Health and Life Sciences, University of Exeter, Exeter, UK
| | - Stephen O'Rahilly
- MRC Metabolic Diseases Unit, Institute of Metabolic Science, University of Cambridge School of Clinical Medicine, University of Cambridge, Cambridge CB2 0QQ, UK
| | - Kari Stefansson
- deCODE genetics/Amgen, Inc., 102 Reykjavik, Iceland
- Faculty of Medicine, University of Iceland, 101 Reykjavik, Iceland
| | - Ken K Ong
- MRC Epidemiology Unit, Box 285 Institute of Metabolic Science, University of Cambridge School of Clinical Medicine, Cambridge CB2 0QQ, UK
- Department of Paediatrics, University of Cambridge, Cambridge CB2 0QQ, UK
| | - Robin N Beaumont
- Department of Clinical and Biomedical Sciences, Faculty of Health and Life Sciences, University of Exeter, Exeter, UK
| | - John R B Perry
- MRC Epidemiology Unit, Box 285 Institute of Metabolic Science, University of Cambridge School of Clinical Medicine, Cambridge CB2 0QQ, UK
- MRC Metabolic Diseases Unit, Institute of Metabolic Science, University of Cambridge School of Clinical Medicine, University of Cambridge, Cambridge CB2 0QQ, UK
| | - Rachel M Freathy
- Department of Clinical and Biomedical Sciences, Faculty of Health and Life Sciences, University of Exeter, Exeter, UK
| |
Collapse
|
2
|
Conover CA, Oxvig C. The Pregnancy-Associated Plasma Protein-A (PAPP-A) Story. Endocr Rev 2023; 44:1012-1028. [PMID: 37267421 DOI: 10.1210/endrev/bnad017] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 05/01/2023] [Accepted: 05/31/2023] [Indexed: 06/04/2023]
Abstract
Pregnancy-associated plasma protein-A (PAPP-A) was first identified in the early 1970s as a placental protein of unknown function, present at high concentrations in the circulation of pregnant women. In the mid-to-late 1990s, PAPP-A was discovered to be a metzincin metalloproteinase, expressed by many nonplacental cells, that regulates local insulin-like growth factor (IGF) activity through cleavage of high-affinity IGF binding proteins (IGFBPs), in particular IGFBP-4. With PAPP-A as a cell surface-associated enzyme, the reduced affinity of the cleavage fragments results in increased IGF available to bind and activate IGF receptors in the pericellular environment. This proteolytic regulation of IGF activity is important, since the IGFs promote proliferation, differentiation, migration, and survival in various normal and cancer cells. Thus, there has been a steady growth in investigation of PAPP-A structure and function outside of pregnancy. This review provides historical perspective on the discovery of PAPP-A and its structure and cellular function, highlights key studies of the first 50 years in PAPP-A research, and introduces new findings from recent years.
Collapse
Affiliation(s)
- Cheryl A Conover
- Division of Endocrinology, Mayo Clinic, Rochester, MN 55905, USA
| | - Claus Oxvig
- Department of Molecular Biology and Genetics, Aarhus University, 8000 Aarhus, Denmark
| |
Collapse
|
3
|
Haque MA, Alam MZ, Iqbal A, Lee YM, Dang CG, Kim JJ. Genome-Wide Association Studies for Body Conformation Traits in Korean Holstein Population. Animals (Basel) 2023; 13:2964. [PMID: 37760364 PMCID: PMC10526087 DOI: 10.3390/ani13182964] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 09/15/2023] [Accepted: 09/18/2023] [Indexed: 09/29/2023] Open
Abstract
The objective of this study was to identify quantitative trait loci (QTL) and nearby candidate genes that influence body conformation traits. Phenotypic data for 24 body conformation traits were collected from a population of 2329 Korean Holstein cattle, and all animals were genotyped using the 50 K Illumina bovine SNP chip. A total of 24 genome-wide significant SNPs associated with 24 body conformation traits were identified by genome-wide association analysis. The selection of the most promising candidate genes was based on gene ontology (GO) terms and the previously identified functions that influence various body conformation traits as determined in our study. These genes include KCNA1, RYBP, PTH1R, TMIE, and GNAI3 for body traits; ANGPT1 for rump traits; MALRD1, INHBA, and HOXA13 for feet and leg traits; and CDK1, RHOBTB1, and SLC17A1 for udder traits, respectively. These findings contribute to our understanding of the genetic basis of body conformation traits in this population and pave the way for future breeding strategies aimed at enhancing desirable traits in dairy cattle.
Collapse
Affiliation(s)
- Md Azizul Haque
- Department of Biotechnology, Yeungnam University, Gyeongsan 38541, Gyeongbuk, Republic of Korea; (M.A.H.); (M.Z.A.); (A.I.); (Y.-M.L.)
| | - Mohammad Zahangir Alam
- Department of Biotechnology, Yeungnam University, Gyeongsan 38541, Gyeongbuk, Republic of Korea; (M.A.H.); (M.Z.A.); (A.I.); (Y.-M.L.)
| | - Asif Iqbal
- Department of Biotechnology, Yeungnam University, Gyeongsan 38541, Gyeongbuk, Republic of Korea; (M.A.H.); (M.Z.A.); (A.I.); (Y.-M.L.)
| | - Yun-Mi Lee
- Department of Biotechnology, Yeungnam University, Gyeongsan 38541, Gyeongbuk, Republic of Korea; (M.A.H.); (M.Z.A.); (A.I.); (Y.-M.L.)
| | - Chang-Gwon Dang
- Animal Breeding and Genetics Division, National Institute of Animal Science, Cheonan 31000, Chungcheongnam-do, Republic of Korea
| | - Jong-Joo Kim
- Department of Biotechnology, Yeungnam University, Gyeongsan 38541, Gyeongbuk, Republic of Korea; (M.A.H.); (M.Z.A.); (A.I.); (Y.-M.L.)
| |
Collapse
|
4
|
Hjortebjerg R, Pedersen DA, Mengel-From J, Jørgensen LH, Christensen K, Frystyk J. Heritability and circulating concentrations of pregnancy-associated plasma protein-A and stanniocalcin-2 in elderly monozygotic and dizygotic twins. Front Endocrinol (Lausanne) 2023; 14:1193742. [PMID: 37334305 PMCID: PMC10272750 DOI: 10.3389/fendo.2023.1193742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Accepted: 05/15/2023] [Indexed: 06/20/2023] Open
Abstract
Introduction Pregnancy-associated plasma protein-A (PAPP-A) is an IGF-activating enzyme suggested to influence aging-related diseases. However, knowledge on serum PAPP-A concentration and regulation in elderly subjects is limited. Therefore, we measured serum PAPP-A in elderly same-sex monozygotic (MZ) and dizygotic (DZ) twins, as this allowed us to describe the age-relationship of PAPP-A, and to test the hypothesis that serum PAPP-A concentrations are genetically determined. As PAPP-A is functionally related to stanniocalcin-2 (STC2), an endogenous PAPP-A inhibitor, we included measurements on STC2 as well as IGF-I and IGF-II. Methods The twin cohort contained 596 subjects (250 MZ twins, 346 DZ twins), whereof 33% were males. The age ranged from 73.2 to 94.3 (mean 78.8) years. Serum was analyzed for PAPP-A, STC2, IGF-I, and IGF-II by commercial immunoassays. Results In the twin cohort, PAPP-A increased with age (r=0.19; P<0.05), whereas IGF-I decreased (r=-0.12; P<0.05). Neither STC2 nor IGF-II showed any age relationship. When analyzed according to sex, PAPP-A correlated positively with age in males (r=0.18; P<0.05) and females (r=0.25; P<0.01), whereas IGF-I correlated inversely in females only (r=-0.15; P<0.01). Males had higher levels of PAPP-A (29%), STC2 (18%) and IGF-I (19%), whereas serum IGF-II was 28% higher in females (all P<0.001). For all four proteins, within-pair correlations were significantly higher for MZ twins than for DZ twins, and they demonstrated substantial and significant heritability, which after adjustment for age and sex averaged 59% for PAPP-A, 66% for STC2, 58% for IGF-I, and 52% for IGF-II. Discussion This twin study confirms our hypothesis that the heritability of PAPP-A serum concentrations is substantial, and the same is true for STC2. As regards the age relationship, PAPP-A increases with age, whereas STC2 remains unchanged, thereby supporting the idea that the ability of STC2 to inhibit PAPP-A enzymatic activity decreases with increasing age.
Collapse
Affiliation(s)
- Rikke Hjortebjerg
- Endocrine Research Unit, Department of Endocrinology, Odense University Hospital, Odense, Denmark
- Department of Clinical Research, Faculty of Health Sciences, University of Southern Denmark, Odense, Denmark
- Steno Diabetes Center Odense, Odense University Hospital, Odense, Denmark
| | - Dorthe Almind Pedersen
- The Danish Twin Registry and Danish Aging Research Center, University of Southern Denmark, Odense, Denmark
| | - Jonas Mengel-From
- The Danish Twin Registry and Danish Aging Research Center, University of Southern Denmark, Odense, Denmark
- Department of Clinical Genetics, Odense University Hospital, Odense, Denmark
| | | | - Kaare Christensen
- The Danish Twin Registry and Danish Aging Research Center, University of Southern Denmark, Odense, Denmark
- Department of Clinical Genetics, Odense University Hospital, Odense, Denmark
| | - Jan Frystyk
- Endocrine Research Unit, Department of Endocrinology, Odense University Hospital, Odense, Denmark
- Department of Clinical Research, Faculty of Health Sciences, University of Southern Denmark, Odense, Denmark
| |
Collapse
|
5
|
Structure of the proteolytic enzyme PAPP-A with the endogenous inhibitor stanniocalcin-2 reveals its inhibitory mechanism. Nat Commun 2022; 13:6084. [PMID: 36257932 PMCID: PMC9579167 DOI: 10.1038/s41467-022-33698-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Accepted: 09/27/2022] [Indexed: 12/24/2022] Open
Abstract
The metzincin metalloproteinase PAPP-A plays a key role in the regulation of insulin-like growth factor (IGF) signaling by specific cleavage of inhibitory IGF binding proteins (IGFBPs). Using single-particle cryo-electron microscopy (cryo-EM), we here report the structure of PAPP-A in complex with its endogenous inhibitor, stanniocalcin-2 (STC2), neither of which have been reported before. The highest resolution (3.1 Å) was obtained for the STC2 subunit and the N-terminal approximately 1000 residues of the PAPP-A subunit. The 500 kDa 2:2 PAPP-A·STC2 complex is a flexible multidomain ensemble with numerous interdomain contacts. In particular, a specific disulfide bond between the subunits of STC2 and PAPP-A prevents dissociation, and interactions between STC2 and a module located in the very C-terminal end of the PAPP-A subunit prevent binding of its main substrate, IGFBP-4. While devoid of activity towards IGFBP-4, the active site cleft of the catalytic domain is accessible in the inhibited PAPP-A·STC2 complex, as shown by its ability to hydrolyze a synthetic peptide derived from IGFBP-4. Relevant to multiple human pathologies, this unusual mechanism of proteolytic inhibition may support the development of specific pharmaceutical agents, by which IGF signaling can be indirectly modulated.
Collapse
|
6
|
Judge RA, Sridar J, Tunyasuvunakool K, Jain R, Wang JCK, Ouch C, Xu J, Mafi A, Nile AH, Remarcik C, Smith CL, Ghosh C, Xu C, Stoll V, Jumper J, Singh AH, Eaton D, Hao Q. Structure of the PAPP-A BP5 complex reveals mechanism of substrate recognition. Nat Commun 2022; 13:5500. [PMID: 36127359 PMCID: PMC9489782 DOI: 10.1038/s41467-022-33175-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 09/03/2022] [Indexed: 11/09/2022] Open
Abstract
Insulin-like growth factor (IGF) signaling is highly conserved and tightly regulated by proteases including Pregnancy-Associated Plasma Protein A (PAPP-A). PAPP-A and its paralog PAPP-A2 are metalloproteases that mediate IGF bioavailability through cleavage of IGF binding proteins (IGFBPs). Here, we present single-particle cryo-EM structures of the catalytically inactive mutant PAPP-A (E483A) in complex with a peptide from its substrate IGFBP5 (PAPP-ABP5) and also in its substrate-free form, by leveraging the power of AlphaFold to generate a high quality predicted model as a starting template. We show that PAPP-A is a flexible trans-dimer that binds IGFBP5 via a 25-amino acid anchor peptide which extends into the metalloprotease active site. This unique IGFBP5 anchor peptide that mediates the specific PAPP-A-IGFBP5 interaction is not found in other PAPP-A substrates. Additionally, we illustrate the critical role of the PAPP-A central domain as it mediates both IGFBP5 recognition and trans-dimerization. We further demonstrate that PAPP-A trans-dimer formation and distal inter-domain interactions are both required for efficient proteolysis of IGFBP4, but dispensable for IGFBP5 cleavage. Together the structural and biochemical studies reveal the mechanism of PAPP-A substrate binding and selectivity.
Collapse
Affiliation(s)
| | - Janani Sridar
- Calico Life Sciences LLC, South San Francisco, CA, USA
| | | | - Rinku Jain
- AbbVie, 1 North Waukegan Road, North Chicago, IL, USA
| | - John C K Wang
- Calico Life Sciences LLC, South San Francisco, CA, USA
| | - Christna Ouch
- Department of Biochemistry & Molecular Biotechnology, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Jun Xu
- Calico Life Sciences LLC, South San Francisco, CA, USA
| | | | - Aaron H Nile
- Calico Life Sciences LLC, South San Francisco, CA, USA
| | | | | | - Crystal Ghosh
- Calico Life Sciences LLC, South San Francisco, CA, USA
| | - Chen Xu
- Department of Biochemistry & Molecular Biotechnology, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Vincent Stoll
- AbbVie, 1 North Waukegan Road, North Chicago, IL, USA
| | | | - Amoolya H Singh
- Calico Life Sciences LLC, South San Francisco, CA, USA
- GRAIL, Menlo Park, CA, USA
| | - Dan Eaton
- Calico Life Sciences LLC, South San Francisco, CA, USA.
| | - Qi Hao
- Calico Life Sciences LLC, South San Francisco, CA, USA.
| |
Collapse
|
7
|
Man L, Lustgarten Guahmich N, Kallinos E, Caiazza B, Khan M, Liu ZY, Patel R, Torres C, Pepin D, Yang HS, Bodine R, Zaninovic N, Schattman G, Rosenwaks Z, James D. Chronic superphysiologic AMH promotes premature luteinization of antral follicles in human ovarian xenografts. SCIENCE ADVANCES 2022; 8:eabi7315. [PMID: 35263130 PMCID: PMC8906729 DOI: 10.1126/sciadv.abi7315] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Accepted: 01/14/2022] [Indexed: 05/19/2023]
Abstract
Anti-Müllerian hormone (AMH) is produced by growing ovarian follicles and provides a diagnostic measure of reproductive reserve in women; however, the impact of AMH on folliculogenesis is poorly understood. We cotransplanted human ovarian cortex with control or AMH-expressing endothelial cells in immunocompromised mice and recovered antral follicles for purification and downstream single-cell RNA sequencing of granulosa and theca/stroma cell fractions. A total of 38 antral follicles were observed (19 control and 19 AMH) at long-term intervals (>10 weeks). In the context of exogenous AMH, follicles exhibited a decreased ratio of primordial to growing follicles and antral follicles of increased diameter. Transcriptomic analysis and immunolabeling revealed a marked increase in factors typically noted at more advanced stages of follicle maturation, with granulosa and theca/stroma cells also displaying molecular hallmarks of luteinization. These results suggest that superphysiologic AMH alone may contribute to ovulatory dysfunction by accelerating maturation and/or luteinization of antral-stage follicles.
Collapse
Affiliation(s)
- Limor Man
- Ronald O. Perelman and Claudia Cohen Center for Reproductive Medicine and Infertility, Weill Cornell Medicine, New York, NY 10065, USA
| | - Nicole Lustgarten Guahmich
- Ronald O. Perelman and Claudia Cohen Center for Reproductive Medicine and Infertility, Weill Cornell Medicine, New York, NY 10065, USA
| | - Eleni Kallinos
- Ronald O. Perelman and Claudia Cohen Center for Reproductive Medicine and Infertility, Weill Cornell Medicine, New York, NY 10065, USA
| | - Barbara Caiazza
- Ronald O. Perelman and Claudia Cohen Center for Reproductive Medicine and Infertility, Weill Cornell Medicine, New York, NY 10065, USA
| | - Monica Khan
- Ronald O. Perelman and Claudia Cohen Center for Reproductive Medicine and Infertility, Weill Cornell Medicine, New York, NY 10065, USA
| | - Zong-Ying Liu
- Ronald O. Perelman and Claudia Cohen Center for Reproductive Medicine and Infertility, Weill Cornell Medicine, New York, NY 10065, USA
| | - Ritaben Patel
- Ronald O. Perelman and Claudia Cohen Center for Reproductive Medicine and Infertility, Weill Cornell Medicine, New York, NY 10065, USA
| | - Carmen Torres
- Ronald O. Perelman and Claudia Cohen Center for Reproductive Medicine and Infertility, Weill Cornell Medicine, New York, NY 10065, USA
| | - David Pepin
- Department of Surgery, Harvard Medical School, Boston, MA 02215, USA
- Pediatric Surgical Research Laboratories, Massachusetts General Hospital, Boston, MA 02214, USA
| | - He S. Yang
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY 10065, USA
| | - Richard Bodine
- Ronald O. Perelman and Claudia Cohen Center for Reproductive Medicine and Infertility, Weill Cornell Medicine, New York, NY 10065, USA
| | - Nikica Zaninovic
- Ronald O. Perelman and Claudia Cohen Center for Reproductive Medicine and Infertility, Weill Cornell Medicine, New York, NY 10065, USA
- Tri-Institutional Stem Cell Derivation Laboratory, Weill Cornell Medicine, New York, NY 10065, USA
| | - Glenn Schattman
- Ronald O. Perelman and Claudia Cohen Center for Reproductive Medicine and Infertility, Weill Cornell Medicine, New York, NY 10065, USA
| | - Zev Rosenwaks
- Ronald O. Perelman and Claudia Cohen Center for Reproductive Medicine and Infertility, Weill Cornell Medicine, New York, NY 10065, USA
| | - Daylon James
- Ronald O. Perelman and Claudia Cohen Center for Reproductive Medicine and Infertility, Weill Cornell Medicine, New York, NY 10065, USA
- Tri-Institutional Stem Cell Derivation Laboratory, Weill Cornell Medicine, New York, NY 10065, USA
- Department of Obstetrics and Gynecology, Weill Cornell Medicine, New York, NY 10065, USA
| |
Collapse
|
8
|
Inclusion and Withdrawal Criteria for Growth Hormone (GH) Therapy in Children with Idiopathic GH Deficiency—Towards Following the Evidence but Still with Unresolved Problems. ENDOCRINES 2022. [DOI: 10.3390/endocrines3010006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
According to current guidelines, growth hormone (GH) therapy is strongly recommended in children and adolescents with GH deficiency (GHD) in order to accelerate growth rate and attain normal adult height. The diagnosis of GHD requires demonstration of decreased GH secretion in stimulation tests, below the established threshold value. Currently, GHD in children is classified as secondary insulin-like growth factor-1 (IGF-1) deficiency. Most children diagnosed with isolated GHD present with normal GH secretion at the attainment of near-final height or even in mid-puberty. The most important clinical problems, related to the diagnosis of isolated GHD in children and to optimal duration of rhGH therapy include: arbitrary definition of subnormal GH peak in stimulation tests, disregarding factors influencing GH secretion, insufficient diagnostic accuracy and poor reproducibility of GH stimulation tests, discrepancies between spontaneous and stimulated GH secretion, clinical entity of neurosecretory dysfunction, discrepancies between IGF-1 concentrations and results of GH stimulation tests, significance of IGF-1 deficiency for the diagnosis of GHD, and a need for validation IGF-1 reference ranges. Many of these issues have remained unresolved for 25 years or even longer. It seems that finding solutions to them should optimize diagnostics and therapy of children with short stature.
Collapse
|
9
|
Jiang Q, Dai L, Chen N, Li J, Gao Y, Zhao J, Ding L, Xie C, Yi X, Deng H, Wang X. Integrative analysis provides multi-omics evidence for the pathogenesis of placenta percreta. J Cell Mol Med 2020; 24:13837-13852. [PMID: 33085209 PMCID: PMC7754008 DOI: 10.1111/jcmm.15973] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 09/02/2020] [Accepted: 09/18/2020] [Indexed: 02/05/2023] Open
Abstract
Pernicious placenta previa with placenta percreta (PP) is a catastrophic condition during pregnancy. However, the underlying pathogenesis remains unclear. In the present study, the placental tissues of normal cases and PP tissues of pernicious placenta previa cases were collected to determine the expression profile of protein‐coding genes, miRNAs, and lncRNAs through sequencing. Weighted gene co‐expression network analysis (WGCNA), accompanied by miRNA target prediction and correlation analysis, were employed to select potential hub protein‐coding genes and lncRNAs. The expression levels of selected protein‐coding genes, Wnt5A and MAPK13, were determined by quantitative PCR and immunohistochemical staining, and lncRNA PTCHD1‐AS and PAPPA‐AS1 expression levels were determined by quantitative PCR and fluorescence in situ hybridization. The results indicated that 790 protein‐coding genes, 382 miRNAs, and 541 lncRNAs were dysregulated in PP tissues, compared with normal tissues. WGCNA identified coding genes in the module (ME) black and ME turquoise modules that may be involved in the pathogenesis of PP. The selected potential hub protein‐coding genes, Wnt5A and MAPK13, were down‐regulated in PP tissues, and their expression levels were positively correlated with the expression levels of PTCHD1‐AS and PAPPA‐AS1. Further analysis demonstrated that PTCHD1‐AS and PAPPA‐AS1 regulated Wnt5A and MAPK13 expression by interacting with specific miRNAs. Collectively, our results provided multi‐omics data to better understand the pathogenesis of PP and help identify predictive biomarkers and therapeutic targets for PP.
Collapse
Affiliation(s)
- Qingyuan Jiang
- Department of Obstetrics and Gynecology, West China Second University Hospital of Sichuan University and Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, China.,Department of Obstetrics, Sichuan Provincial Hospital for Women and Children, Chengdu, China
| | - Lei Dai
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Na Chen
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Junshu Li
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Yan Gao
- Department of Obstetrics, Sichuan Provincial Hospital for Women and Children, Chengdu, China
| | - Jing Zhao
- Imaging Center, Sichuan Provincial Hospital for Women and Children, Chengdu, China
| | - Li Ding
- Imaging Center, Sichuan Provincial Hospital for Women and Children, Chengdu, China
| | - Chengbin Xie
- Department of Laboratory Medicine, Sichuan Provincial Hospital for Women and Children, Chengdu, China
| | - Xiaolian Yi
- Pathology Department, Sichuan Provincial Hospital for Women and Children, Chengdu, China
| | - Hongxin Deng
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Xiaodong Wang
- Department of Obstetrics and Gynecology, West China Second University Hospital of Sichuan University and Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, China
| |
Collapse
|
10
|
Walz M, Chau L, Walz C, Sawitzky M, Ohde D, Brenmoehl J, Tuchscherer A, Langhammer M, Metzger F, Höflich C, Hoeflich A. Overlap of Peak Growth Activity and Peak IGF-1 to IGFBP Ratio: Delayed Increase of IGFBPs versus IGF-1 in Serum as a Mechanism to Speed up and down Postnatal Weight Gain in Mice. Cells 2020; 9:cells9061516. [PMID: 32580353 PMCID: PMC7348928 DOI: 10.3390/cells9061516] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 06/02/2020] [Accepted: 06/17/2020] [Indexed: 11/16/2022] Open
Abstract
Forced expression of insulin-like growth factor binding proteins (IGFBPs) in transgenic mice has clearly revealed inhibitory effects on somatic growth. However, by this approach, it cannot be solved if or how IGFBPs rule insulin-like growth factor (IGF)-dependent growth under normal conditions. In order to address this question, we have used growth-selected mouse models (obese and lean) and studied IGF-1 and IGFBPs in serum with respect to longitudinal growth activity in males and females compared with unselected controls. In mice of both genders, body weights were recorded and daily weight gains were calculated. Between 2 and 54 weeks of age, serum IGF-1 was determined by ELISA and intact IGFBP-2, -3 and -4 were quantified by Western ligand blotting. The molar ratio of IGF-1 to the sum of IGFBP-2 to -4 was calculated for all groups and plotted against the daily weight gain curve. Growth-selected mice are characterized by higher daily weight gains and extended periods of elevated growth activity if compared to matched unselected controls. Therefore, adult mice from the obese and lean groups can achieve more than twofold increased body weight in both genders (p < 0.001). Between 2 and 11 weeks of age, in obese and lean mice of both genders, serum IGF-1 concentrations are increased more prominently if compared to unselected controls (p < 0.001). Instead, substantial decreases of IGFBPs, particularly of IGFBP-2, are observed in males and females of all groups at the age of 2 to 4 weeks (p < 0.001). Due to the strong increase of IGF-1 but not of IGFBPs between two and four weeks of age, the ratio of IGF-1 to IGFBP-2 to -4 in serum significantly increased in all groups and genders (p < 0.05). Notably, the IGF-1 to IGFBP ratio was higher in male and female obese mice if compared to unselected controls (p < 0.05).
Collapse
Affiliation(s)
- Michael Walz
- Institute of Genome Biology, Leibniz-Institute for Farm Animal Biology (FBN), 18196 Dummerstorf, Germany; (M.W.); (L.C.); (C.W.); (M.S.); (D.O.); (J.B.)
| | - Luong Chau
- Institute of Genome Biology, Leibniz-Institute for Farm Animal Biology (FBN), 18196 Dummerstorf, Germany; (M.W.); (L.C.); (C.W.); (M.S.); (D.O.); (J.B.)
| | - Christina Walz
- Institute of Genome Biology, Leibniz-Institute for Farm Animal Biology (FBN), 18196 Dummerstorf, Germany; (M.W.); (L.C.); (C.W.); (M.S.); (D.O.); (J.B.)
| | - Mandy Sawitzky
- Institute of Genome Biology, Leibniz-Institute for Farm Animal Biology (FBN), 18196 Dummerstorf, Germany; (M.W.); (L.C.); (C.W.); (M.S.); (D.O.); (J.B.)
| | - Daniela Ohde
- Institute of Genome Biology, Leibniz-Institute for Farm Animal Biology (FBN), 18196 Dummerstorf, Germany; (M.W.); (L.C.); (C.W.); (M.S.); (D.O.); (J.B.)
| | - Julia Brenmoehl
- Institute of Genome Biology, Leibniz-Institute for Farm Animal Biology (FBN), 18196 Dummerstorf, Germany; (M.W.); (L.C.); (C.W.); (M.S.); (D.O.); (J.B.)
| | - Armin Tuchscherer
- Institute of Genetics and Biometry, Leibniz-Institute for Farm Animal Biology (FBN), 18197 Dummerstorf, Germany; (A.T.); (M.L.)
| | - Martina Langhammer
- Institute of Genetics and Biometry, Leibniz-Institute for Farm Animal Biology (FBN), 18197 Dummerstorf, Germany; (A.T.); (M.L.)
| | | | | | - Andreas Hoeflich
- Institute of Genome Biology, Leibniz-Institute for Farm Animal Biology (FBN), 18196 Dummerstorf, Germany; (M.W.); (L.C.); (C.W.); (M.S.); (D.O.); (J.B.)
- Correspondence: ; Tel.: +49-(0)38208-68744; Fax: +49-(0)38208-68-702
| |
Collapse
|
11
|
Hoeflich A, Fitzner B, Walz C, Hecker M, Tuchscherer A, Brenmoehl J, Zettl UK. Reduced Fragmentation of IGFBP-2 and IGFBP-3 as a Potential Mechanism for Decreased Ratio of IGF-II to IGFBPs in Cerebrospinal Fluid in Response to Repeated Intrathecal Administration of Triamcinolone Acetonide in Patients With Multiple Sclerosis. Front Endocrinol (Lausanne) 2020; 11:565557. [PMID: 33469444 PMCID: PMC7813808 DOI: 10.3389/fendo.2020.565557] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Accepted: 11/13/2020] [Indexed: 12/15/2022] Open
Abstract
Multiple sclerosis (MS) is a chronic autoimmune disease of the brain and spinal cord causing a wide range of symptoms such as impaired walking capability, spasticity, fatigue, and pain. The insulin-like growth factor (IGF) system has regulatory functions for the induction of inflammatory pathways in experimental encephalomyelitis. We have therefore assessed expression and regulation of the IGF system on the level of IGFs and IGFBPs in serum and cerebrospinal fluid (CSF) in the course of four repeated triamcinolone acetonide (TCA) administrations in two female and four male MS patients. Sample series of 20 treatment cycles were analyzed. IGF-I and IGF-II were quantified by ELISAs, and IGFBPs were analyzed by quantitative Western ligand (qWLB) and Western immunoblotting (WIB) in order to differentiate intact and fragmented IGFBPs. The ratios of fragmented to intact IGFBP-2 and -3 were calculated in serum and CSF. Finally, the ratios of IGF-I and IGF-II to the total IGF-binding activity, quantified by qWLB, were determined as an indicator of IGF-related bioactivity. After the fourth TCA administration, the average level of IGF-I was increased in serum (p < 0.001). The increase of IGF-I concentrations in serum resulted in an increased ratio of IGF-I to IGFBPs in the circulation. By contrast in CSF, fragmentation of IGFBP-2 and IGFBP-3 and the ratio of IGF-II to intact IGFBPs were decreased at the fourth TCA administration (p < 0.01). Furthermore, reduced fragmentation of IGFBP-3 in CSF was accompanied by increased concentrations of intact IGFBP-3 (p < 0.001). We conclude that reduced fragmentation of IGFBPs and concomitant reduction of IGF-II to IGFBP ratios indicate regulation of bioactivity of IGF-II in CSF during repeated intrathecal TCA administration in MS patients.
Collapse
Affiliation(s)
- Andreas Hoeflich
- Institute of Genome Biology, Leibniz Institute for Farm Animal Biology (FBN), Dummerstorf, Germany
- *Correspondence: Andreas Hoeflich, ; Uwe Klaus Zettl,
| | - Brit Fitzner
- Department of Neurology, Neuroimmunological Section, University Medicine Rostock, Rostock, Germany
| | - Christina Walz
- Institute of Genome Biology, Leibniz Institute for Farm Animal Biology (FBN), Dummerstorf, Germany
| | - Michael Hecker
- Department of Neurology, Neuroimmunological Section, University Medicine Rostock, Rostock, Germany
| | - Armin Tuchscherer
- Institute of Genetics and Biometry, Leibniz Institute for Farm Animal Biology (FBN), Dummerstorf, Germany
| | - Julia Brenmoehl
- Institute of Genome Biology, Leibniz Institute for Farm Animal Biology (FBN), Dummerstorf, Germany
| | - Uwe Klaus Zettl
- Department of Neurology, Neuroimmunological Section, University Medicine Rostock, Rostock, Germany
- *Correspondence: Andreas Hoeflich, ; Uwe Klaus Zettl,
| |
Collapse
|