1
|
Miyazaki Y, Miyazaki S. Reporter parasite lines: valuable tools for the study of Plasmodium biology. Trends Parasitol 2024; 40:1000-1015. [PMID: 39389901 DOI: 10.1016/j.pt.2024.09.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 08/30/2024] [Accepted: 09/09/2024] [Indexed: 10/12/2024]
Abstract
The human malaria parasite Plasmodium falciparum causes the most severe form of malaria in endemic regions and is transmitted via mosquito bites. To better understand the biology of this deadly pathogen, a variety of P. falciparum reporter lines have been generated using transgenic approaches to express reporter proteins, such as fluorescent proteins and luciferases. This review discusses the advances in recently generated P. falciparum transgenic reporter lines, which will aid in the investigation of parasite physiology and the discovery of novel antimalarial drugs. Future prospects for the generation of new and superior human malaria parasite reporter lines are also discussed, and unresolved questions in malaria biology are highlighted to help boost support for the development and implementation of malaria treatments.
Collapse
Affiliation(s)
- Yukiko Miyazaki
- Department of Protozoology, Institute of Tropical Medicine (NEKKEN), Nagasaki University, Japan
| | - Shinya Miyazaki
- Department of Protozoology, Institute of Tropical Medicine (NEKKEN), Nagasaki University, Japan.
| |
Collapse
|
2
|
Liu Z, Li S, Anantha P, Thanakornsombut T, Wu L, Chen J, Tsuchiya R, Tripathi AK, Chen Y, Barman I. Plasmodium sporozoite shows distinct motility patterns in responses to three-dimensional environments. iScience 2024; 27:110463. [PMID: 39129829 PMCID: PMC11315120 DOI: 10.1016/j.isci.2024.110463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 11/20/2023] [Accepted: 07/02/2024] [Indexed: 08/13/2024] Open
Abstract
During malaria infection, Plasmodium sporozoites, the fast-moving stage of the parasite, are injected by a mosquito into the skin of the mammalian host. In the skin, sporozoites need to migrate through the dermal tissue to enter the blood vessel. Sporozoite motility is critical for infection but not well understood. Here, we used collagen hydrogels with tunable fiber structures, as an in vitro model for the skin. After injecting sporozoites into the hydrogel, we analyzed their motility in three-dimension (3D). We found that sporozoites demonstrated chiral motility, in that they mostly follow right-handed helical trajectories. In high-concentration collagen gel, sporozoites have lower instantaneous speed, but exhibit straighter tracks compared to low-concentration collagen gel, which leads to longer net displacement and faster dissemination. Taken together, our study indicates an inner mechanism for sporozoites to adapt to the environment, which could help with their successful exit from the skin tissue.
Collapse
Affiliation(s)
- Zhenhui Liu
- Department of Mechanical Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Songman Li
- Department of Mechanical Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Pooja Anantha
- Department of Mechanical Engineering, Johns Hopkins University, Baltimore, MD, USA
| | | | - Lintong Wu
- Department of Mechanical Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Junjie Chen
- Department of Mechanical Engineering, Johns Hopkins University, Baltimore, MD, USA
- Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, MD, USA
- Center for Cell Dynamics, Johns Hopkins University, Baltimore, MD, USA
| | - Ryohma Tsuchiya
- Department of Mechanical Engineering, Johns Hopkins University, Baltimore, MD, USA
- Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, MD, USA
- Center for Cell Dynamics, Johns Hopkins University, Baltimore, MD, USA
| | - Abhai K. Tripathi
- Department of Molecular Microbiology & Immunology, Johns Hopkins University, Baltimore, MD, USA
| | - Yun Chen
- Department of Mechanical Engineering, Johns Hopkins University, Baltimore, MD, USA
- Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, MD, USA
- Center for Cell Dynamics, Johns Hopkins University, Baltimore, MD, USA
| | - Ishan Barman
- Department of Mechanical Engineering, Johns Hopkins University, Baltimore, MD, USA
| |
Collapse
|
3
|
van Schuijlenburg R, Azargoshasb S, de Korne CM, Sijtsma JC, Bezemer S, van der Ham AJ, Baalbergen E, Geurten F, de Bes-Roeleveld LM, Chevalley-Maurel SC, van Oosterom MN, van Leeuwen FWB, Franke-Fayard B, Roestenberg M. Ageing of Plasmodium falciparum malaria sporozoites alters their motility, infectivity and reduces immune activation in vitro. Malar J 2024; 23:111. [PMID: 38641838 PMCID: PMC11027264 DOI: 10.1186/s12936-024-04946-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 04/12/2024] [Indexed: 04/21/2024] Open
Abstract
BACKGROUND Sporozoites (SPZ), the infective form of Plasmodium falciparum malaria, can be inoculated into the human host skin by Anopheline mosquitoes. These SPZ migrate at approximately 1 µm/s to find a blood vessel and travel to the liver where they infect hepatocytes and multiply. In the skin they are still low in number (50-100 SPZ) and vulnerable to immune attack by antibodies and skin macrophages. This is why whole SPZ and SPZ proteins are used as the basis for most malaria vaccines currently deployed and undergoing late clinical testing. Mosquitoes typically inoculate SPZ into a human host between 14 and 25 days after their previous infective blood meal. However, it is unknown whether residing time within the mosquito affects SPZ condition, infectivity or immunogenicity. This study aimed to unravel how the age of P. falciparum SPZ in salivary glands (14, 17, or 20 days post blood meal) affects their infectivity and the ensuing immune responses. METHODS SPZ numbers, viability by live/dead staining, motility using dedicated sporozoite motility orienting and organizing tool software (SMOOT), and infectivity of HC-04.j7 liver cells at 14, 17 and 20 days after mosquito feeding have been investigated. In vitro co-culture assays with SPZ stimulated monocyte-derived macrophages (MoMɸ) and CD8+ T-cells, analysed by flow cytometry, were used to investigate immune responses. RESULTS SPZ age did not result in different SPZ numbers or viability. However, a markedly different motility pattern, whereby motility decreased from 89% at day 14 to 80% at day 17 and 71% at day 20 was observed (p ≤ 0.0001). Similarly, infectivity of day 20 SPZ dropped to ~ 50% compared with day 14 SPZ (p = 0.004). MoMɸ were better able to take up day 14 SPZ than day 20 SPZ (from 7.6% to 4.1%, p = 0.03) and displayed an increased expression of pro-inflammatory CD80, IL-6 (p = 0.005), regulatory markers PDL1 (p = 0.02), IL-10 (p = 0.009) and cytokines upon phagocytosis of younger SPZ. Interestingly, co-culture of these cells with CD8+ T-cells revealed a decreased expression of activation marker CD137 and cytokine IFNγ compared to their day 20 counterparts. These findings suggest that older (day 17-20) P. falciparum SPZ are less infectious and have decreased immune regulatory potential. CONCLUSION Overall, this data is a first step in enhancing the understanding of how mosquito residing time affects P. falciparum SPZ and could impact the understanding of the P. falciparum infectious reservoir and the potency of whole SPZ vaccines.
Collapse
Affiliation(s)
- Roos van Schuijlenburg
- Leiden University Center for Infectious Diseases (LUCID), Leiden University Medical Center, Leiden, Netherlands
| | - Samaneh Azargoshasb
- Interventional Molecular Imaging Laboratory, Department of Radiology, Leiden University Medical Center, Leiden, Netherlands
| | - Clarize M de Korne
- Leiden University Center for Infectious Diseases (LUCID), Leiden University Medical Center, Leiden, Netherlands
- Interventional Molecular Imaging Laboratory, Department of Radiology, Leiden University Medical Center, Leiden, Netherlands
| | - Jeroen C Sijtsma
- Leiden University Center for Infectious Diseases (LUCID), Leiden University Medical Center, Leiden, Netherlands
| | - Sascha Bezemer
- Leiden University Center for Infectious Diseases (LUCID), Leiden University Medical Center, Leiden, Netherlands
| | - Alwin J van der Ham
- Leiden University Center for Infectious Diseases (LUCID), Leiden University Medical Center, Leiden, Netherlands
| | - Els Baalbergen
- Leiden University Center for Infectious Diseases (LUCID), Leiden University Medical Center, Leiden, Netherlands
| | - Fiona Geurten
- Leiden University Center for Infectious Diseases (LUCID), Leiden University Medical Center, Leiden, Netherlands
| | - Laura M de Bes-Roeleveld
- Leiden University Center for Infectious Diseases (LUCID), Leiden University Medical Center, Leiden, Netherlands
| | - Severine C Chevalley-Maurel
- Leiden University Center for Infectious Diseases (LUCID), Leiden University Medical Center, Leiden, Netherlands
| | - Matthias N van Oosterom
- Interventional Molecular Imaging Laboratory, Department of Radiology, Leiden University Medical Center, Leiden, Netherlands
| | - Fijs W B van Leeuwen
- Interventional Molecular Imaging Laboratory, Department of Radiology, Leiden University Medical Center, Leiden, Netherlands
| | - Blandine Franke-Fayard
- Leiden University Center for Infectious Diseases (LUCID), Leiden University Medical Center, Leiden, Netherlands
| | - Meta Roestenberg
- Leiden University Center for Infectious Diseases (LUCID), Leiden University Medical Center, Leiden, Netherlands.
| |
Collapse
|
4
|
Ferreira JL, Pražák V, Vasishtan D, Siggel M, Hentzschel F, Binder AM, Pietsch E, Kosinski J, Frischknecht F, Gilberger TW, Grünewald K. Variable microtubule architecture in the malaria parasite. Nat Commun 2023; 14:1216. [PMID: 36869034 PMCID: PMC9984467 DOI: 10.1038/s41467-023-36627-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 02/09/2023] [Indexed: 03/05/2023] Open
Abstract
Microtubules are a ubiquitous eukaryotic cytoskeletal element typically consisting of 13 protofilaments arranged in a hollow cylinder. This arrangement is considered the canonical form and is adopted by most organisms, with rare exceptions. Here, we use in situ electron cryo-tomography and subvolume averaging to analyse the changing microtubule cytoskeleton of Plasmodium falciparum, the causative agent of malaria, throughout its life cycle. Unexpectedly, different parasite forms have distinct microtubule structures coordinated by unique organising centres. In merozoites, the most widely studied form, we observe canonical microtubules. In migrating mosquito forms, the 13 protofilament structure is further reinforced by interrupted luminal helices. Surprisingly, gametocytes contain a wide distribution of microtubule structures ranging from 13 to 18 protofilaments, doublets and triplets. Such a diversity of microtubule structures has not been observed in any other organism to date and is likely evidence of a distinct role in each life cycle form. This data provides a unique view into an unusual microtubule cytoskeleton of a relevant human pathogen.
Collapse
Affiliation(s)
- Josie L Ferreira
- Centre for Structural Systems Biology, Hamburg, Germany
- Leibniz Institute for Virology (LIV), Hamburg, Germany
- Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
- Institute of Structural and Molecular Biology, Birkbeck, University of London, London, UK
| | - Vojtěch Pražák
- Centre for Structural Systems Biology, Hamburg, Germany
- Leibniz Institute for Virology (LIV), Hamburg, Germany
- Division of Structural Biology, Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK
| | - Daven Vasishtan
- Centre for Structural Systems Biology, Hamburg, Germany
- Leibniz Institute for Virology (LIV), Hamburg, Germany
- Division of Structural Biology, Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK
| | - Marc Siggel
- Centre for Structural Systems Biology, Hamburg, Germany
- European Molecular Biology Laboratory, Hamburg, Germany
| | - Franziska Hentzschel
- Integrative Parasitology, Centre for Infectious Diseases, Heidelberg University Medical School, Heidelberg, Germany
- German Center for Infection Research, DZIF Partner Site Heidelberg, Heidelberg, Germany
| | - Annika M Binder
- Integrative Parasitology, Centre for Infectious Diseases, Heidelberg University Medical School, Heidelberg, Germany
| | - Emma Pietsch
- Centre for Structural Systems Biology, Hamburg, Germany
- Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
- University of Hamburg, Hamburg, Germany
| | - Jan Kosinski
- Centre for Structural Systems Biology, Hamburg, Germany
- European Molecular Biology Laboratory, Hamburg, Germany
- Structural and Computational Biology Unit, EMBL, Heidelberg, Germany
| | - Friedrich Frischknecht
- Integrative Parasitology, Centre for Infectious Diseases, Heidelberg University Medical School, Heidelberg, Germany
- German Center for Infection Research, DZIF Partner Site Heidelberg, Heidelberg, Germany
| | - Tim W Gilberger
- Centre for Structural Systems Biology, Hamburg, Germany
- Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
- University of Hamburg, Hamburg, Germany
| | - Kay Grünewald
- Centre for Structural Systems Biology, Hamburg, Germany.
- Leibniz Institute for Virology (LIV), Hamburg, Germany.
- Division of Structural Biology, Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK.
- University of Hamburg, Hamburg, Germany.
| |
Collapse
|
5
|
Naturally Acquired Antibodies against Plasmodium falciparum: Friend or Foe? Pathogens 2021; 10:pathogens10070832. [PMID: 34357982 PMCID: PMC8308493 DOI: 10.3390/pathogens10070832] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Revised: 06/28/2021] [Accepted: 06/30/2021] [Indexed: 11/17/2022] Open
Abstract
Antibodies are central to acquired immunity against malaria. Plasmodium falciparum elicits antibody responses against many of its protein components, but there is also formation of antibodies against different parts of the red blood cells, in which the parasites spend most of their time. In the absence of a decisive intervention such as a vaccine, people living in malaria endemic regions largely depend on naturally acquired antibodies for protection. However, these antibodies do not confer sterile immunity and the mechanisms of action are still unclear. Most studies have focused on the inhibitory effect of antibodies, but here, we review both the beneficial as well as the potentially harmful roles of naturally acquired antibodies, as well as autoantibodies formed in malaria. We discuss different studies that have sought to understand acquired antibody responses against P. falciparum antigens, and potential problems when different antibodies are combined, such as in naturally acquired immunity.
Collapse
|
6
|
Azargoshasb S, van Alphen S, Slof LJ, Rosiello G, Puliatti S, van Leeuwen SI, Houwing KM, Boonekamp M, Verhart J, Dell'Oglio P, van der Hage J, van Oosterom MN, van Leeuwen FWB. The Click-On gamma probe, a second-generation tethered robotic gamma probe that improves dexterity and surgical decision-making. Eur J Nucl Med Mol Imaging 2021; 48:4142-4151. [PMID: 34031721 PMCID: PMC8566398 DOI: 10.1007/s00259-021-05387-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Accepted: 04/25/2021] [Indexed: 11/24/2022]
Abstract
Purpose Decision-making and dexterity, features that become increasingly relevant in (robot-assisted) minimally invasive surgery, are considered key components in improving the surgical accuracy. Recently, DROP-IN gamma probes were introduced to facilitate radioguided robotic surgery. We now studied if robotic DROP-IN radioguidance can be further improved using tethered Click-On designs that integrate gamma detection onto the robotic instruments themselves. Methods Using computer-assisted drawing software, 3D printing and precision machining, we created a Click-On probe containing two press-fit connections and an additional grasping moiety for a ProGrasp instrument combined with fiducials that could be video tracked using the Firefly laparoscope. Using a dexterity phantom, the duration of the specific tasks and the path traveled could be compared between use of the Click-On or DROP-IN probe. To study the impact on surgical decision-making, we performed a blinded study, in porcine models, wherein surgeons had to identify a hidden 57Co-source using either palpation or Click-On radioguidance. Results When assembled onto a ProGrasp instrument, while preserving grasping function and rotational freedom, the fully functional prototype could be inserted through a 12-mm trocar. In dexterity assessments, the Click-On provided a 40% reduction in movements compared to the DROP-IN, which converted into a reduction in time, path length, and increase in straightness index. Radioguidance also improved decision-making; task-completion rate increased by 60%, procedural time was reduced, and movements became more focused. Conclusion The Click-On gamma probe provides a step toward full integration of radioguidance in minimal invasive surgery. The value of this concept was underlined by its impact on surgical dexterity and decision-making.
Collapse
Affiliation(s)
- Samaneh Azargoshasb
- Interventional Molecular Imaging-Laboratory, Department of Radiology, Leiden University Medical Center, Leiden, the Netherlands.,Department of Urology, Netherlands Cancer Institute-Antoni van Leeuwenhoek Hospital, Amsterdam, the Netherlands
| | - Simon van Alphen
- Interventional Molecular Imaging-Laboratory, Department of Radiology, Leiden University Medical Center, Leiden, the Netherlands
| | - Leon J Slof
- Interventional Molecular Imaging-Laboratory, Department of Radiology, Leiden University Medical Center, Leiden, the Netherlands.,Instrumentele zaken ontwikkeling, facilitair bedrijf, Leiden University Medical Center, Leiden, the Netherlands
| | - Giuseppe Rosiello
- Department of Urology and Division of Experimental Oncology, Urological Research Institute IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Stefano Puliatti
- Department of Urology, University of Modena and Reggio Emilia, Via del Pozzo, 71, 41124, Modena, Italy.,ORSI Academy, Melle, Belgium.,Department of Urology, Onze Lieve Vrouw Hospital, Aalst, Belgium
| | - Sven I van Leeuwen
- Interventional Molecular Imaging-Laboratory, Department of Radiology, Leiden University Medical Center, Leiden, the Netherlands
| | - Krijn M Houwing
- Interventional Molecular Imaging-Laboratory, Department of Radiology, Leiden University Medical Center, Leiden, the Netherlands
| | - Michael Boonekamp
- Instrumentele zaken ontwikkeling, facilitair bedrijf, Leiden University Medical Center, Leiden, the Netherlands
| | - Jeroen Verhart
- Instrumentele zaken ontwikkeling, facilitair bedrijf, Leiden University Medical Center, Leiden, the Netherlands
| | - Paolo Dell'Oglio
- Interventional Molecular Imaging-Laboratory, Department of Radiology, Leiden University Medical Center, Leiden, the Netherlands.,Department of Urology, Netherlands Cancer Institute-Antoni van Leeuwenhoek Hospital, Amsterdam, the Netherlands.,ORSI Academy, Melle, Belgium.,Department of Urology, ASST Grande Ospedale Metropolitano Niguarda, Milan, Italy
| | - Jos van der Hage
- Department of Surgery, Leiden University Medical Center, Leiden, the Netherlands
| | - Matthias N van Oosterom
- Interventional Molecular Imaging-Laboratory, Department of Radiology, Leiden University Medical Center, Leiden, the Netherlands.,Department of Urology, Netherlands Cancer Institute-Antoni van Leeuwenhoek Hospital, Amsterdam, the Netherlands
| | - Fijs W B van Leeuwen
- Interventional Molecular Imaging-Laboratory, Department of Radiology, Leiden University Medical Center, Leiden, the Netherlands. .,Department of Urology, Netherlands Cancer Institute-Antoni van Leeuwenhoek Hospital, Amsterdam, the Netherlands. .,ORSI Academy, Melle, Belgium.
| |
Collapse
|
7
|
Clustering and Erratic Movement Patterns of Syringe-Injected versus Mosquito-Inoculated Malaria Sporozoites Underlie Decreased Infectivity. mSphere 2021; 6:6/2/e00218-21. [PMID: 33827910 PMCID: PMC8546700 DOI: 10.1128/msphere.00218-21] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Malaria vaccine candidates based on live, attenuated sporozoites have led to high levels of protection. However, their efficacy critically depends on the sporozoites' ability to reach and infect the host liver. Administration via mosquito inoculation is by far the most potent method for inducing immunity but highly impractical. Here, we observed that intradermal syringe-injected Plasmodium berghei sporozoites (syrSPZ) were 3-fold less efficient in migrating to and infecting mouse liver than mosquito-inoculated sporozoites (msqSPZ). This was related to a clustered dermal distribution (2-fold-decreased median distance between syrSPZ and msqSPZ) and, more importantly, a 1.4-fold (significantly)-slower and more erratic movement pattern. These erratic movement patterns were likely caused by alteration of dermal tissue morphology (>15-μm intercellular gaps) due to injection of fluid and may critically decrease sporozoite infectivity. These results suggest that novel microvolume-based administration technologies hold promise for replicating the success of mosquito-inoculated live, attenuated sporozoite vaccines.IMPORTANCE Malaria still causes a major burden on global health and the economy. The efficacy of live, attenuated malaria sporozoites as vaccine candidates critically depends on their ability to migrate to and infect the host liver. This work sheds light on the effect of different administration routes on sporozoite migration. We show that the delivery of sporozoites via mosquito inoculation is more efficient than syringe injection; however, this route of administration is highly impractical for vaccine purposes. Using confocal microscopy and automated imaging software, we demonstrate that syringe-injected sporozoites do cluster, move more slowly, and display more erratic movement due to alterations in tissue morphology. These findings indicate that microneedle-based engineering solutions hold promise for replicating the success of mosquito-inoculated live, attenuated sporozoite vaccines.
Collapse
|
8
|
Hopp CS, Kanatani S, Archer NK, Miller RJ, Liu H, Chiou KK, Miller LS, Sinnis P. Comparative intravital imaging of human and rodent malaria sporozoites reveals the skin is not a species-specific barrier. EMBO Mol Med 2021; 13:e11796. [PMID: 33750026 PMCID: PMC8033530 DOI: 10.15252/emmm.201911796] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Revised: 01/21/2021] [Accepted: 01/27/2021] [Indexed: 01/09/2023] Open
Abstract
Malaria infection starts with the injection of Plasmodium sporozoites into the host’s skin. Sporozoites are motile and move in the skin to find and enter blood vessels to be carried to the liver. Here, we present the first characterization of P. falciparum sporozoites in vivo, analyzing their motility in mouse skin and human skin xenografts and comparing their motility to two rodent malaria species. These data suggest that in contrast to the liver and blood stages, the skin is not a species‐specific barrier for Plasmodium. Indeed, P. falciparum sporozoites enter blood vessels in mouse skin at similar rates to the rodent malaria parasites. Furthermore, we demonstrate that antibodies targeting sporozoites significantly impact the motility of P. falciparum sporozoites in mouse skin. Though the sporozoite stage is a validated vaccine target, vaccine trials have been hampered by the lack of good animal models for human malaria parasites. Pre‐clinical screening of next‐generation vaccines would be significantly aided by the in vivo platform we describe here, expediting down‐selection of candidates prior to human vaccine trials.
Collapse
Affiliation(s)
- Christine S Hopp
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA.,Johns Hopkins Malaria Institute, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA.,Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD, USA
| | - Sachie Kanatani
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA.,Johns Hopkins Malaria Institute, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Nathan K Archer
- Department of Dermatology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Robert J Miller
- Department of Dermatology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Haiyun Liu
- Department of Dermatology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Kevin K Chiou
- Department of Physics and Astronomy, University of Pennsylvania, Philadelphia, PA, USA
| | - Lloyd S Miller
- Department of Dermatology, Johns Hopkins University School of Medicine, Baltimore, MD, USA.,Department of Medicine, Division of Infectious Diseases, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Photini Sinnis
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA.,Johns Hopkins Malaria Institute, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA.,Department of Medicine, Division of Infectious Diseases, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|
9
|
Livingstone MC, Bitzer AA, Giri A, Luo K, Sankhala RS, Choe M, Zou X, Dennison SM, Li Y, Washington W, Ngauy V, Tomaras GD, Joyce MG, Batchelor AH, Dutta S. In vitro and in vivo inhibition of malaria parasite infection by monoclonal antibodies against Plasmodium falciparum circumsporozoite protein (CSP). Sci Rep 2021; 11:5318. [PMID: 33674699 PMCID: PMC7970865 DOI: 10.1038/s41598-021-84622-x] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Accepted: 02/11/2021] [Indexed: 01/23/2023] Open
Abstract
Plasmodium falciparum malaria contributes to a significant global disease burden. Circumsporozoite protein (CSP), the most abundant sporozoite stage antigen, is a prime vaccine candidate. Inhibitory monoclonal antibodies (mAbs) against CSP map to either a short junctional sequence or the central (NPNA)n repeat region. We compared in vitro and in vivo activities of six CSP-specific mAbs derived from human recipients of a recombinant CSP vaccine RTS,S/AS01 (mAbs 317 and 311); an irradiated whole sporozoite vaccine PfSPZ (mAbs CIS43 and MGG4); or individuals exposed to malaria (mAbs 580 and 663). RTS,S mAb 317 that specifically binds the (NPNA)n epitope, had the highest affinity and it elicited the best sterile protection in mice. The most potent inhibitor of sporozoite invasion in vitro was mAb CIS43 which shows dual-specific binding to the junctional sequence and (NPNA)n. In vivo mouse protection was associated with the mAb reactivity to the NANPx6 peptide, the in vitro inhibition of sporozoite invasion activity, and kinetic parameters measured using intact mAbs or their Fab fragments. Buried surface area between mAb and its target epitope was also associated with in vivo protection. Association and disconnects between in vitro and in vivo readouts has important implications for the design and down-selection of the next generation of CSP based interventions.
Collapse
Affiliation(s)
- Merricka C Livingstone
- Structural Vaccinology Lab, Malaria Biologics Branch, Walter Reed Army Institute of Research, Silver Spring, MD, USA
| | - Alexis A Bitzer
- Structural Vaccinology Lab, Malaria Biologics Branch, Walter Reed Army Institute of Research, Silver Spring, MD, USA
| | - Alish Giri
- Structural Vaccinology Lab, Malaria Biologics Branch, Walter Reed Army Institute of Research, Silver Spring, MD, USA
| | - Kun Luo
- Structural Vaccinology Lab, Malaria Biologics Branch, Walter Reed Army Institute of Research, Silver Spring, MD, USA
| | - Rajeshwer S Sankhala
- US Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD, USA
- The Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, USA
| | - Misook Choe
- US Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD, USA
- The Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, USA
| | - Xiaoyan Zou
- Malaria Department, Naval Medical Research Center, Silver Spring, MD, USA
| | - S Moses Dennison
- Center for Human Systems Immunology, Duke University Medical Center, Durham, NC, USA
- Departments of Surgery, Duke University Medical Center, Durham, NC, USA
| | - Yuanzhang Li
- Statistics and Epidemiology Branch, Walter Reed Army Institute of Research, Silver Spring, MD, USA
| | - William Washington
- Statistics and Epidemiology Branch, Walter Reed Army Institute of Research, Silver Spring, MD, USA
| | - Viseth Ngauy
- Malaria Biologics Branch, Walter Reed Army Institute of Research, Silver Spring, MD, USA
| | - Georgia D Tomaras
- Center for Human Systems Immunology, Duke University Medical Center, Durham, NC, USA
- Departments of Surgery, Duke University Medical Center, Durham, NC, USA
- Departments of Immunology, Duke University Medical Center, Durham, NC, USA
- Departments of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC, USA
- Duke Human Vaccine Institute, Duke University Medical Center, Durham, NC, USA
| | - M Gordon Joyce
- US Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD, USA
- The Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, USA
| | - Adrian H Batchelor
- Structural Vaccinology Lab, Malaria Biologics Branch, Walter Reed Army Institute of Research, Silver Spring, MD, USA
| | - Sheetij Dutta
- Structural Vaccinology Lab, Malaria Biologics Branch, Walter Reed Army Institute of Research, Silver Spring, MD, USA.
| |
Collapse
|
10
|
Miyazaki S, Yang ASP, Geurten FJA, Marin-Mogollon C, Miyazaki Y, Imai T, Kolli SK, Ramesar J, Chevalley-Maurel S, Salman AM, van Gemert GJA, van Waardenburg YM, Franke-Fayard B, Hill AVS, Sauerwein RW, Janse CJ, Khan SM. Generation of Novel Plasmodium falciparum NF135 and NF54 Lines Expressing Fluorescent Reporter Proteins Under the Control of Strong and Constitutive Promoters. Front Cell Infect Microbiol 2020; 10:270. [PMID: 32587831 PMCID: PMC7298075 DOI: 10.3389/fcimb.2020.00270] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Accepted: 05/06/2020] [Indexed: 12/18/2022] Open
Abstract
Transgenic reporter lines of malaria parasites that express fluorescent or luminescent proteins are valuable tools for drug and vaccine screening assays as well as to interrogate parasite gene function. Different Plasmodium falciparum (Pf ) reporter lines exist, however nearly all have been created in the African NF54/3D7 laboratory strain. Here we describe the generation of novel reporter lines, using CRISPR/Cas9 gene modification, both in the standard Pf NF54 background and in a recently described Cambodian P. falciparum NF135.C10 line. Sporozoites of this line show more effective hepatocyte invasion and enhanced liver merozoite development compared to Pf NF54. We first generated Pf NF54 reporter parasites to analyze two novel promoters for constitutive and high expression of mCherry-luciferase and GFP in blood and mosquito stages. The promoter sequences were selected based on available transcriptome data and are derived from two housekeeping genes, i.e., translation initiation factor SUI1, putative (sui1, PF3D7_1243600) and 40S ribosomal protein S30 (40s, PF3D7_0219200). We then generated and characterized reporter lines in the Pf NF135.C10 line which express GFP driven by the sui1 and 40s promoters as well as by the previously used ef1α promoter (GFP@ef1α, GFP@sui1, GFP@40s). The GFP@40s reporter line showed strongest GFP expression in liver stages as compared to the other two lines. The strength of reporter expression by the 40s promoter throughout the complete life cycle, including liver stages, makes transgenic lines expressing reporters by the 40s promoter valuable novel tools for analyses of P. falciparum.
Collapse
Affiliation(s)
- Shinya Miyazaki
- Department of Parasitology, Leiden University Medical Center, Leiden, Netherlands
| | - Annie S P Yang
- Department of Medical Microbiology, Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, Netherlands
| | - Fiona J A Geurten
- Department of Parasitology, Leiden University Medical Center, Leiden, Netherlands
| | | | - Yukiko Miyazaki
- Department of Parasitology, Leiden University Medical Center, Leiden, Netherlands
| | - Takashi Imai
- Department of Parasitology, Leiden University Medical Center, Leiden, Netherlands.,Department of Infectious Diseases and Host Defense, Gunma University Graduate School of Medicine, Maebashi, Japan
| | - Surendra Kumar Kolli
- Department of Parasitology, Leiden University Medical Center, Leiden, Netherlands
| | - Jai Ramesar
- Department of Parasitology, Leiden University Medical Center, Leiden, Netherlands
| | | | - Ahmed M Salman
- Nuffield Department of Medicine, The Jenner Institute, University of Oxford, Oxford, United Kingdom
| | - Geert-Jan A van Gemert
- Department of Medical Microbiology, Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, Netherlands
| | - Youri M van Waardenburg
- Department of Medical Microbiology, Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, Netherlands
| | | | - Adrian V S Hill
- Nuffield Department of Medicine, The Jenner Institute, University of Oxford, Oxford, United Kingdom
| | - Robert W Sauerwein
- Department of Medical Microbiology, Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, Netherlands.,TropIQ Health Sciences, Nijmegen, Netherlands
| | - Chris J Janse
- Department of Parasitology, Leiden University Medical Center, Leiden, Netherlands
| | - Shahid M Khan
- Department of Parasitology, Leiden University Medical Center, Leiden, Netherlands
| |
Collapse
|