1
|
Alsharksi AN, Sirekbasan S, Gürkök-Tan T, Mustapha A. From Tradition to Innovation: Diverse Molecular Techniques in the Fight Against Infectious Diseases. Diagnostics (Basel) 2024; 14:2876. [PMID: 39767237 PMCID: PMC11674978 DOI: 10.3390/diagnostics14242876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 11/15/2024] [Accepted: 12/17/2024] [Indexed: 01/02/2025] Open
Abstract
Infectious diseases impose a significant burden on global health systems due to high morbidity and mortality rates. According to the World Health Organization, millions die from infectious diseases annually, often due to delays in accurate diagnosis. Traditional diagnostic methods in clinical microbiology, primarily culture-based techniques, are time-consuming and may fail with hard-to-culture pathogens. Molecular biology advancements, notably the polymerase chain reaction (PCR), have revolutionized infectious disease diagnostics by allowing rapid and sensitive detection of pathogens' genetic material. PCR has become the gold standard for many infections, particularly highlighted during the COVID-19 pandemic. Following PCR, next-generation sequencing (NGS) has emerged, enabling comprehensive genomic analysis of pathogens, thus facilitating the detection of new strains and antibiotic resistance tracking. Innovative approaches like CRISPR technology are also enhancing diagnostic precision by identifying specific DNA/RNA sequences. However, the implementation of these methods faces challenges, particularly in low- and middle-income countries due to infrastructural and financial constraints. This review will explore the role of molecular diagnostic methods in infectious disease diagnosis, comparing their advantages and limitations, with a focus on PCR and NGS technologies and their future potential.
Collapse
Affiliation(s)
- Ahmed Nouri Alsharksi
- Department of Microbiology, Faculty of Medicine, Misurata University, Misrata 93FH+66F, Libya;
| | - Serhat Sirekbasan
- Department of Medical Laboratory Techniques, Şabanözü Vocational School, Çankırı Karatekin University, Çankırı 18650, Turkey
| | - Tuğba Gürkök-Tan
- Department of Field Crops, Food and Agriculture Vocational School, Çankırı Karatekin University, Çankırı 18100, Turkey;
| | - Adam Mustapha
- Department of Microbiology, Faculty of Life Sciences, University of Maiduguri, Maiduguri 600104, Nigeria;
| |
Collapse
|
2
|
Wilawer M, Elikowski W, Fertała N, Włodarski A, Szczęśniewski P, Ratajska PA, Bugajski P. Broviac Catheter-Related Aortic Valve Infective Endocarditis Complicated With Massive Aortic Regurgitation Requiring Emergency Surgery: A Case Report. Case Rep Infect Dis 2024; 2024:1093820. [PMID: 39483987 PMCID: PMC11527529 DOI: 10.1155/2024/1093820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 09/06/2024] [Accepted: 10/14/2024] [Indexed: 11/03/2024] Open
Abstract
Introduction: Broviac catheter is a type of central venous catheter (CVC) used for long-term parenteral nutrition in specific patients, e.g., diagnosed with intestinal failure as short bowel syndrome (SBS). The way of the catheter insertion is conceived to minimalize the risk of infections. However, CVC-related blood stream infections (CVC-BSIs), including infective endocarditis (IE), remain most important complications associated with Broviac catheter. Staphylococcus epidermidis stands out as a prevalent pathogen. The increasing number of CVCs results in an increased incidence of healthcare-associated IE. Complete parenteral treatment is an independent risk that increases the likelihood of IE. Treatment of IE is mainly based on antibiotic therapy, but in certain cases, surgical treatment is needed. Presentation of Case: A 71-year-old female with SBS who had been receiving total parenteral nutrition through the Broviac catheter for several months was admitted in a serious condition with significant weakness, increasing shortness of breath, deteriorating cough, fever, low blood pressure, and heart palpitations. Echocardiography revealed severe aortic valve IE with a large, longitudinal, highly mobile vegetation (up to 40 mm) and massive aortic regurgitation with pulmonary edema. Fast pathogen detection in the patients' blood (S. epidermidis) was obtained using PCR-based multiplex test. Due to life-threatening conditions, emergency surgery with aortic valve replacement was performed. Consistent rehabilitation resulted in good condition achievement. Follow-up echocardiography showed normal function of the aortic valve bioprosthesis. Conclusion: The use of CVC, including Broviac catheter, is associated with an increased risk of infections, including IE. Treatment-resistant severe HF complicating IE requires emergency surgery.
Collapse
Affiliation(s)
| | | | - Natalia Fertała
- Department of Internal Medicine, Józef Struś Hospital, Poznań, Poland
| | | | | | | | - Paweł Bugajski
- Department of Cardiac Surgery, Józef Struś Hospital, Poznan, Poland
| |
Collapse
|
3
|
Islam Sajib MS, Brunker K, Oravcova K, Everest P, Murphy ME, Forde T. Advances in Host Depletion and Pathogen Enrichment Methods for Rapid Sequencing-Based Diagnosis of Bloodstream Infection. J Mol Diagn 2024; 26:741-753. [PMID: 38925458 DOI: 10.1016/j.jmoldx.2024.05.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 05/05/2024] [Accepted: 05/17/2024] [Indexed: 06/28/2024] Open
Abstract
Bloodstream infection is a major cause of morbidity and death worldwide. Timely and appropriate treatment can reduce mortality among critically ill patients. Current diagnostic methods are too slow to inform precise antibiotic choice, leading to the prescription of empirical antibiotics, which may fail to cover the resistance profile of the pathogen, risking poor patient outcomes. Additionally, overuse of broad-spectrum antibiotics may lead to more resistant organisms, putting further pressure on the dwindling pipeline of antibiotics, and risk transmission of these resistant organisms in the health care environment. Therefore, rapid diagnostics are urgently required to better inform antibiotic choice early in the course of treatment. Sequencing offers great promise in reducing time to microbiological diagnosis; however, the amount of host DNA compared with the pathogen in patient samples presents a significant obstacle. Various host-depletion and bacterial-enrichment strategies have been used in samples, such as saliva, urine, or tissue. However, these methods have yet to be collectively integrated and/or extensively explored for rapid bloodstream infection diagnosis. Although most of these workflows possess individual strengths, their lack of analytical/clinical sensitivity and/or comprehensiveness demands additional improvements or synergistic application. This review provides a distinctive classification system for various methods based on their working principles to guide future research, and discusses their strengths and limitations and explores potential avenues for improvement to assist the reader in workflow selection.
Collapse
Affiliation(s)
- Mohammad S Islam Sajib
- School of Biodiversity, One Health and Veterinary Medicine, University of Glasgow, Glasgow, United Kingdom.
| | - Kirstyn Brunker
- School of Biodiversity, One Health and Veterinary Medicine, University of Glasgow, Glasgow, United Kingdom; Medical Research Council-University of Glasgow Centre for Virus Research, Glasgow, United Kingdom
| | - Katarina Oravcova
- School of Biodiversity, One Health and Veterinary Medicine, University of Glasgow, Glasgow, United Kingdom
| | - Paul Everest
- School of Biodiversity, One Health and Veterinary Medicine, University of Glasgow, Glasgow, United Kingdom
| | - Michael E Murphy
- Department of Microbiology, National Health Service Greater Glasgow and Clyde, Glasgow, United Kingdom; School of Medicine, Dentistry and Nursing, University of Glasgow, Glasgow, United Kingdom
| | - Taya Forde
- School of Biodiversity, One Health and Veterinary Medicine, University of Glasgow, Glasgow, United Kingdom
| |
Collapse
|
4
|
Narayana Iyengar S, Dowden B, Ragheb K, Patsekin V, Rajwa B, Bae E, Robinson JP. Identifying antibiotic-resistant strains via cell sorting and elastic-light-scatter phenotyping. Appl Microbiol Biotechnol 2024; 108:406. [PMID: 38958764 PMCID: PMC11222266 DOI: 10.1007/s00253-024-13232-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 03/04/2024] [Accepted: 03/19/2024] [Indexed: 07/04/2024]
Abstract
The proliferation and dissemination of antimicrobial-resistant bacteria is an increasingly global challenge and is attributed mainly to the excessive or improper use of antibiotics. Currently, the gold-standard phenotypic methodology for detecting resistant strains is agar plating, which is a time-consuming process that involves multiple subculturing steps. Genotypic analysis techniques are fast, but they require pure starting samples and cannot differentiate between viable and non-viable organisms. Thus, there is a need to develop a better method to identify and prevent the spread of antimicrobial resistance. This work presents a novel method for detecting and identifying antibiotic-resistant strains by combining a cell sorter for bacterial detection and an elastic-light-scattering method for bacterial classification. The cell sorter was equipped with safety mechanisms for handling pathogenic organisms and enabled precise placement of individual bacteria onto an agar plate. The patterning was performed on an antibiotic-gradient plate, where the growth of colonies in sections with high antibiotic concentrations confirmed the presence of a resistant strain. The antibiotic-gradient plate was also tested with an elastic-light-scattering device where each colony's unique colony scatter pattern was recorded and classified using machine learning for rapid identification of bacteria. Sorting and patterning bacteria on an antibiotic-gradient plate using a cell sorter reduced the number of subculturing steps and allowed direct qualitative binary detection of resistant strains. Elastic-light-scattering technology is a rapid, label-free, and non-destructive method that permits instantaneous classification of pathogenic strains based on the unique bacterial colony scatter pattern. KEY POINTS: • Individual bacteria cells are placed on gradient agar plates by a cell sorter • Laser-light scatter patterns are used to recognize antibiotic-resistant organisms • Scatter patterns formed by colonies correspond to AMR-associated phenotypes.
Collapse
Affiliation(s)
| | - Brianna Dowden
- Department of Basic Medical Sciences, Purdue University, West Lafayette, IN, 47907, USA
| | - Kathy Ragheb
- Department of Basic Medical Sciences, Purdue University, West Lafayette, IN, 47907, USA
| | - Valery Patsekin
- Department of Basic Medical Sciences, Purdue University, West Lafayette, IN, 47907, USA
| | - Bartek Rajwa
- Bindley Bioscience Center, Purdue University, West Lafayette, IN, 47907, USA
| | - Euiwon Bae
- School of Mechanical Engineering, Purdue University, West Lafayette, IN, 47907, USA
| | - J Paul Robinson
- Department of Basic Medical Sciences, Purdue University, West Lafayette, IN, 47907, USA.
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN, 47907, USA.
| |
Collapse
|
5
|
Miao Y, Guo W, Zhang W, Chen Z, Mian D, Li R, Xu A, Chen M, Li D. Detection of Bartonella spp. in farmed deer (Artiodactyla: Cervidae) using multiplex assays in the Qinghai-Tibet Plateau, China. Microbiol Spectr 2024; 12:e0412023. [PMID: 38785439 PMCID: PMC11218516 DOI: 10.1128/spectrum.04120-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 04/05/2024] [Indexed: 05/25/2024] Open
Abstract
In this study, we investigated the prevalence of Bartonella in deer from Qilian County, Qinghai Province, China. Blood samples were collected from 69 red deer, 40 white-lipped deer, and 27 sika deer. The detection of Bartonella spp. has been conducted. The overall prevalence of Bartonella was 33.6% (46/135). Species-specific prevalence was 50.72% in red deer (35/69), 20.00% in white-lipped deer (8/40), and 11.11% in sika deer (3/27). There were significant differences in the prevalence rates among the different species of deer. The amplicon sequence comparison revealed a high homology of the ruminant-associated Bartonella spp. Nanopore sequencing further confirmed the results. Bartonella reads were presented in each of the qPCR-positive samples. Phylogenetic analysis indicated that the Bartonella sequences detected in deer blood were closely related to ruminant-borne Bartonella spp. In summary, we reported the Bartonella prevalence of different deer species in Qinghai, and there were at least one species of ruminant-associated Bartonella, B. schoenbuchensis. IMPORTANCE This is the first report about Bartonella infections in the deer population from China. We found that there were two species of Bartonella and an unidentified species of Bartonella among the unculturing strains carried by these deer populations. We first used Nanopore sequencing to detect Bartonella from deer blood samples and indicated that Nanopore sequencing is beneficial to detect pathogens due to its advantage of real-time and high sensitivity.
Collapse
Affiliation(s)
- Yu Miao
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Wentao Guo
- Qinghai Provincial Institute of Endemic Disease Control and Prevention, Xining, China
| | - Wen Zhang
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Zhizheng Chen
- Qilian County Center for Disease Control and Prevention, Haibei Tibetan Autonomous Prefecture, Qilian, China
| | - Delan Mian
- Qilian County Center for Disease Control and Prevention, Haibei Tibetan Autonomous Prefecture, Qilian, China
| | - Ruixiao Li
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
- School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Ailing Xu
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Min Chen
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Dongmei Li
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| |
Collapse
|
6
|
Dao DT, Le HY, Nguyen MH, Thi TD, Nguyen XD, Bui TT, Tran THT, Pham VL, Do HN, Horng JT, Le HS, Nguyen DT. Spectrum and antimicrobial resistance in acute exacerbation of chronic obstructive pulmonary disease with pneumonia: a cross-sectional prospective study from Vietnam. BMC Infect Dis 2024; 24:622. [PMID: 38910264 PMCID: PMC11194910 DOI: 10.1186/s12879-024-09515-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Accepted: 06/14/2024] [Indexed: 06/25/2024] Open
Abstract
BACKGROUND Respiratory infections have long been recognized as a primary cause of acute exacerbation of chronic obstructive pulmonary disease (AE-COPD). Additionally, the emergence of antimicrobial resistance has led to an urgent and critical situation in developing countries, including Vietnam. This study aimed to investigate the distribution and antimicrobial resistance of bacteria in patients with AE-COPD using both conventional culture and multiplex real-time PCR. Additionally, associations between clinical characteristics and indicators of pneumonia in these patients were examined. METHODS This cross-sectional prospective study included 92 AE-COPD patients with pneumonia and 46 without pneumonia. Sputum specimens were cultured and examined for bacterial identification, and antimicrobial susceptibility was determined for each isolate. Multiplex real-time PCR was also performed to detect ten bacteria and seven viruses. RESULTS The detection rates of pathogens in AE-COPD patients with pneumonia were 92.39%, compared to 86.96% in those without pneumonia. A total of 26 pathogenic species were identified, showing no significant difference in distribution between the two groups. The predominant bacteria included Klebsiella pneumoniae, Haemophilus influenzae, Moraxella catarrhalis, and Streptococcus pneumoniae, followed by Acinetobacter baumannii and Streptococcus mitis. There was a slight difference in antibiotic resistance between bacteria isolated from two groups. The frequency of H. influenzae was notably greater in AE-COPD patients who experienced respiratory failure (21.92%) than in those who did not (9.23%). S. pneumoniae was more common in patients with stage I (44.44%) or IV (36.36%) COPD than in patients with stage II (17.39%) or III (9.72%) disease. ROC curve analysis revealed that C-reactive protein (CRP) levels could distinguish patients with AE-COPD with and without pneumonia (AUC = 0.78). CONCLUSION Gram-negative bacteria still play a key role in the etiology of AE-COPD patients, regardless of the presence of pneumonia. This study provides updated evidence for the epidemiology of AE-COPD pathogens and the appropriate selection of antimicrobial agents in Vietnam.
Collapse
Affiliation(s)
- Duy Tuyen Dao
- Department of Respiratory Diseases, 108 Military Central Hospital, Hanoi, Vietnam
| | - Huu Y Le
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan
- Faculty of Respiratory Medicine, 108 Institute of Clinical Medical and Pharmaceutical Sciences, Hanoi, Vietnam
| | - Minh Hai Nguyen
- Department of Respiratory Diseases, 108 Military Central Hospital, Hanoi, Vietnam
- Faculty of Respiratory Medicine, 108 Institute of Clinical Medical and Pharmaceutical Sciences, Hanoi, Vietnam
| | - Thi Duyen Thi
- Department of Respiratory Diseases, 108 Military Central Hospital, Hanoi, Vietnam
- Faculty of Respiratory Medicine, 108 Institute of Clinical Medical and Pharmaceutical Sciences, Hanoi, Vietnam
| | - Xuan Dung Nguyen
- Department of Respiratory Diseases, 108 Military Central Hospital, Hanoi, Vietnam
| | - Thanh Thuyet Bui
- Vietnamese-German Center for Medical Research (VG-CARE), 108 Military Central Hospital, Hanoi, Vietnam
- Department of Microbiology, 108 Military Central Hospital, Hanoi, Vietnam
| | - Thi Huyen Trang Tran
- Vietnamese-German Center for Medical Research (VG-CARE), 108 Military Central Hospital, Hanoi, Vietnam
- Department of Molecular Biology, 108 Military Central Hospital, Hanoi, Vietnam
| | - Van Luan Pham
- Department of Respiratory Diseases, 108 Military Central Hospital, Hanoi, Vietnam
- Faculty of Respiratory Medicine, 108 Institute of Clinical Medical and Pharmaceutical Sciences, Hanoi, Vietnam
| | - Hang Nga Do
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Jim-Tong Horng
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan.
- Department of Biochemistry and Molecular Biology, College of Medicine, Chang Gung University, Taoyuan, Taiwan.
- Research Center for Emerging Viral Infections, College of Medicine, Chang Gung University, Taoyuan, Taiwan.
- Molecular Infectious Disease Research Center, Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Taoyuan, Taiwan.
- Research Center for Industry of Human Ecology and Research Center for Chinese Herbal Medicine, Graduate Institute of Health Industry Technology, Chang Gung University of Science and Technology, Taoyuan, Taiwan.
| | - Huu Song Le
- Vietnamese-German Center for Medical Research (VG-CARE), 108 Military Central Hospital, Hanoi, Vietnam.
- Faculty of Infectious Diseases, 108 Institute of Clinical Medical and Pharmaceutical Sciences, Hanoi, Vietnam.
| | - Dinh Tien Nguyen
- Department of Respiratory Diseases, 108 Military Central Hospital, Hanoi, Vietnam.
- Faculty of Respiratory Medicine, 108 Institute of Clinical Medical and Pharmaceutical Sciences, Hanoi, Vietnam.
| |
Collapse
|
7
|
Kaushal S, Priyadarshi N, Garg P, Singhal NK, Lim DK. Nano-Biotechnology for Bacteria Identification and Potent Anti-bacterial Properties: A Review of Current State of the Art. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:2529. [PMID: 37764558 PMCID: PMC10536455 DOI: 10.3390/nano13182529] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 08/26/2023] [Accepted: 09/05/2023] [Indexed: 09/29/2023]
Abstract
Sepsis is a critical disease caused by the abrupt increase of bacteria in human blood, which subsequently causes a cytokine storm. Early identification of bacteria is critical to treating a patient with proper antibiotics to avoid sepsis. However, conventional culture-based identification takes a long time. Polymerase chain reaction (PCR) is not so successful because of the complexity and similarity in the genome sequence of some bacterial species, making it difficult to design primers and thus less suitable for rapid bacterial identification. To address these issues, several new technologies have been developed. Recent advances in nanotechnology have shown great potential for fast and accurate bacterial identification. The most promising strategy in nanotechnology involves the use of nanoparticles, which has led to the advancement of highly specific and sensitive biosensors capable of detecting and identifying bacteria even at low concentrations in very little time. The primary drawback of conventional antibiotics is the potential for antimicrobial resistance, which can lead to the development of superbacteria, making them difficult to treat. The incorporation of diverse nanomaterials and designs of nanomaterials has been utilized to kill bacteria efficiently. Nanomaterials with distinct physicochemical properties, such as optical and magnetic properties, including plasmonic and magnetic nanoparticles, have been extensively studied for their potential to efficiently kill bacteria. In this review, we are emphasizing the recent advances in nano-biotechnologies for bacterial identification and anti-bacterial properties. The basic principles of new technologies, as well as their future challenges, have been discussed.
Collapse
Affiliation(s)
- Shimayali Kaushal
- KU-KIST Graduate School of Converging Science and Technology, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea;
| | - Nitesh Priyadarshi
- National Agri-Food Biotechnology Institute (NABI), Sector-81, Mohali 140306, India; (N.P.); (P.G.)
| | - Priyanka Garg
- National Agri-Food Biotechnology Institute (NABI), Sector-81, Mohali 140306, India; (N.P.); (P.G.)
| | - Nitin Kumar Singhal
- National Agri-Food Biotechnology Institute (NABI), Sector-81, Mohali 140306, India; (N.P.); (P.G.)
| | - Dong-Kwon Lim
- KU-KIST Graduate School of Converging Science and Technology, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea;
- Department of Integrative Energy Engineering, College of Engineering, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea
- Brain Science Institute, Korea Institute of Science and Technology (KIST), 5, Hwarang-ro 14-gil, Seongbuk-gu, Seoul 02792, Republic of Korea
| |
Collapse
|
8
|
Point-of-care diagnostics for sepsis using clinical biomarkers and microfluidic technology. Biosens Bioelectron 2023; 227:115181. [PMID: 36867959 DOI: 10.1016/j.bios.2023.115181] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 02/13/2023] [Accepted: 02/23/2023] [Indexed: 03/05/2023]
Abstract
Sepsis is a life-threatening immune response which is caused by a wide variety of sources and is a leading cause of mortality globally. Rapid diagnosis and appropriate antibiotic treatment are critical for successful patient outcomes; however, current molecular diagnostic techniques are time-consuming, costly and require trained personnel. Additionally, there is a lack of rapid point-of-care (POC) devices available for sepsis detection despite the urgent requirements in emergency departments and low-resource areas. Recent advances have been made toward developing a POC test for early sepsis detection that will be more rapid and accurate compared to conventional techniques. Within this context, this review discusses the use of current and novel biomarkers for early sepsis diagnosis using microfluidics devices for POC testing.
Collapse
|
9
|
Alves J, Abreu B, Palma P, Alp E, Vieceli T, Rello J. Antimicrobial Stewardship on Patients with Neutropenia: A Narrative Review Commissioned by Microorganisms. Microorganisms 2023; 11:1127. [PMID: 37317101 DOI: 10.3390/microorganisms11051127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 04/21/2023] [Accepted: 04/24/2023] [Indexed: 06/16/2023] Open
Abstract
The emergence of antibiotic resistance poses a global health threat. High-risk patients such as those with neutropenia are particularly vulnerable to opportunistic infections, sepsis, and multidrug-resistant infections, and clinical outcomes remain the primary concern. Antimicrobial stewardship (AMS) programs should mainly focus on optimizing antibiotic use, decreasing adverse effects, and improving patient outcomes. There is a limited number of published studies assessing the impact of AMS programs on patients with neutropenia, where early appropriate antibiotic choice can be the difference between life and death. This narrative review updates the current advances in strategies of AMS for bacterial infections among high-risk patients with neutropenia. Diagnosis, drug, dose, duration, and de-escalation (5D) are the core variables among AMS strategies. Altered volumes of distribution can make standard dose regimens inadequate, and developing skills towards a personalized approach represents a major advance in therapy. Intensivists should partner antibiotic stewardship programs to improve patient care. Assembling multidisciplinary teams with trained and dedicated professionals for AMS is a priority.
Collapse
Affiliation(s)
- Joana Alves
- Infectious Diseases Department, Hospital de Braga, 4710-243 Braga, Portugal
| | - Betânia Abreu
- Pharmaceuticals Department, Hospital de Braga, 4710-243 Braga, Portugal
| | - Pedro Palma
- Infectious Diseases Department, Centro Hospitalar do Tâmega e Sousa, 4564-007 Penafiel, Portugal
| | - Emine Alp
- Infectious Diseases and Clinical Microbiology Department, Ankara Yıldırım Beyazıt University, 06760 Ankara, Turkey
| | - Tarsila Vieceli
- Infectious Diseases Department, Hospital de Clínicas de Porto Alegre, Porto Alegre 90035-903, Brazil
| | - Jordi Rello
- Clinical Research in Pneumonia & Sepsis (CRIPS), Vall d'Hebron Institute of Research (VHIR), 08035 Barcelona, Spain
- FOREVA Research Pôle, Centre Hôpitalaire Universitaire de Nîmes, 30900 Nîmes, France
| |
Collapse
|
10
|
Karimi F, Lewis LE, Thunga G, Najmi A, Sahu P, Kunhikatta V. Relationship between antibiotic consumption pattern and antibiotic resistance in neonatal sepsis. Med Pharm Rep 2023; 96:35-40. [PMID: 36818325 PMCID: PMC9924814 DOI: 10.15386/mpr-2409] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 05/26/2022] [Accepted: 06/09/2022] [Indexed: 01/20/2023] Open
Abstract
Background and aim Inappropriate use of antibiotics may increase antimicrobial resistance (AMR) among different microorganisms and may lead to treatment failure in neonatal septicemia. The aim of this study was to recognize the most common microorganisms responsible for neonatal sepsis and to evaluate the trend of change of resistance pattern among microorganisms. Methods This study was done retrospectively on 344 cases diagnosed with neonatal sepsis, including both early and late onset cases, admitted to the tertiary care teaching hospital of southern India from January 2012 to July 2017. Accordingly, 231 culture positive neonatal sepsis cases were collected from hospital data base and analyzed. Culture positive cases within 72 hours of life were termed as early onset while after 72 hours were late onset. Antibiotics utilization during the period was calculated using WHO AMC tool and reported as (DDD)/100 bed days. Results Klebsiella pneumoniae with 56 (21.8%) and Coagulase negative Staphylococcus with 52 (20.2%) cases were the most frequent isolated organisms which were responsible for 55.8% and 14.6% of deaths among the study subjects respectively. Amikacin (86.7%), vancomycin (52.3%) and ampicillin (40.6%) were the most used antibiotics in terms of DDD/100 bed days. Conclusion The results obtained from our study have brought substantial information on the antibiotic resistance pattern among microorganisms causing neonatal sepsis. Moreover, results obtained from this study can be used for designing antibiotic stewardship policies to prevent the emergence of resistance and to improve the treatment outcome.
Collapse
Affiliation(s)
- Fateme Karimi
- Department of Pharmacy Practice, Manipal College of Pharmaceutical Sciences, Manipal Academy Higher Education, Manipal, Karnataka, India
| | - Leslie Edward Lewis
- Department of Pediatrics, Kasturba Medical College - Manipal, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Girish Thunga
- Department of Pharmacy Practice, Manipal College of Pharmaceutical Sciences, Manipal Academy Higher Education, Manipal, Karnataka, India
| | - Amirreza Najmi
- Department of Pharmacy Practice, Manipal College of Pharmaceutical Sciences, Manipal Academy Higher Education, Manipal, Karnataka, India
| | - Puspita Sahu
- Department of Pharmacy Practice, Manipal College of Pharmaceutical Sciences, Manipal Academy Higher Education, Manipal, Karnataka, India
| | - Vijayanarayana Kunhikatta
- Department of Pharmacy Practice, Manipal College of Pharmaceutical Sciences, Manipal Academy Higher Education, Manipal, Karnataka, India
| |
Collapse
|
11
|
Gomes MZR, Braga DQ, Pinheiro DOBP, Verduc RCAS, dos Reis LV, de Lima EM, Lourenço ND, Cid PA, Beck DS, Pinheiro LHZ, Tonhá JPS, de Sousa LS, Dias MLS, da Silva Machado AA, Castro MM, Dutra VPR, de Mello LS, da Silva MC, Tozo TM, Mathuiy YR, de Abreu Rosas LLP, Barros PCM, da Silva JO, da Silva PP, Bandeira CS, de Sant′Anna Reis Di Chiara Salgado SM, de Oliveira Alves MZ, Santos RQ, Marques JA, Rodrigues CAS, dos Santos Gomes Junior SC. Predictive Score for Carbapenem-Resistant Gram-Negative Bacilli Sepsis: Single-Center Prospective Cohort Study. Antibiotics (Basel) 2022; 12:21. [PMID: 36671222 PMCID: PMC9854893 DOI: 10.3390/antibiotics12010021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Revised: 09/29/2022] [Accepted: 10/04/2022] [Indexed: 12/28/2022] Open
Abstract
A clinical-epidemiological score to predict CR-GNB sepsis to guide empirical antimicrobial therapy (EAT), using local data, persists as an unmet need. On the basis of a case-case-control design in a prospective cohort study, the predictive factors for CR-GNB sepsis were previously determined as prior infection, use of mechanical ventilation and carbapenem, and length of hospital stay. In this study, each factor was scored according to the logistic regression coefficients, and the ROC curve analysis determined its accuracy in predicting CR-GNB sepsis in the entire cohort. Among the total of 629 admissions followed by 7797 patient-days, 329 single or recurrent episodes of SIRS/sepsis were enrolled, from August 2015 to March 2017. At least one species of CR-GNB was identified as the etiology in 108 (33%) episodes, and 221 were classified as the control group. The cutoff point of ≥3 (maximum of 4) had the best sensitivity/specificity, while ≤1 showed excellent sensitivity to exclude CR-GNB sepsis. The area under the curve was 0.80 (95% CI: 0.76-0.85) and the number needed to treat was 2.0. The score may improve CR-GNB coverage and spare polymyxins with 22% (95% CI: 17-28%) adequacy rate change. The score has a good ability to predict CR-GNB sepsis and to guide EAT in the future.
Collapse
Affiliation(s)
- Marisa Zenaide Ribeiro Gomes
- Laboratório de Genética Molecular de Microrganismos, Instituto Oswaldo Cruz, Oswaldo Cruz Foundation (IOC/FIOCRUZ), Rio de Janeiro 21040-900, Brazil
- Laboratório de Pesquisa em Infecção Hospitalar, Instituto Oswaldo Cruz, Oswaldo Cruz Foundation (IOC/FIOCRUZ), Rio de Janeiro 21040-900, Brazil
- Hospital Federal dos Servidores do Estado (HFSE), Ministry of Health, Rio de Janeiro 20221-903, Brazil
- Hospital Infection Control Committee, Hospital Universitário Pedro Ernesto, Rio de Janeiro State University, Rio de Janeiro 20551-030, Brazil
| | - Douglas Quintanilha Braga
- Laboratório de Genética Molecular de Microrganismos, Instituto Oswaldo Cruz, Oswaldo Cruz Foundation (IOC/FIOCRUZ), Rio de Janeiro 21040-900, Brazil
- Hospital Federal dos Servidores do Estado (HFSE), Ministry of Health, Rio de Janeiro 20221-903, Brazil
| | - Debora Otero Britto Passos Pinheiro
- Hospital Infection Control Committee, Hospital Universitário Pedro Ernesto, Rio de Janeiro State University, Rio de Janeiro 20551-030, Brazil
| | - Renata Cristina Amorim Silveira Verduc
- Laboratório de Genética Molecular de Microrganismos, Instituto Oswaldo Cruz, Oswaldo Cruz Foundation (IOC/FIOCRUZ), Rio de Janeiro 21040-900, Brazil
- Hospital Federal dos Servidores do Estado (HFSE), Ministry of Health, Rio de Janeiro 20221-903, Brazil
| | - Letícia Vellozo dos Reis
- Hospital Federal dos Servidores do Estado (HFSE), Ministry of Health, Rio de Janeiro 20221-903, Brazil
| | - Elisangela Martins de Lima
- Laboratório de Pesquisa em Infecção Hospitalar, Instituto Oswaldo Cruz, Oswaldo Cruz Foundation (IOC/FIOCRUZ), Rio de Janeiro 21040-900, Brazil
- Hospital Federal dos Servidores do Estado (HFSE), Ministry of Health, Rio de Janeiro 20221-903, Brazil
| | - Newton Dias Lourenço
- Hospital Federal dos Servidores do Estado (HFSE), Ministry of Health, Rio de Janeiro 20221-903, Brazil
| | - Patrícia Aquen Cid
- Laboratório de Pesquisa em Infecção Hospitalar, Instituto Oswaldo Cruz, Oswaldo Cruz Foundation (IOC/FIOCRUZ), Rio de Janeiro 21040-900, Brazil
| | - Debora Souza Beck
- Laboratório de Pesquisa em Infecção Hospitalar, Instituto Oswaldo Cruz, Oswaldo Cruz Foundation (IOC/FIOCRUZ), Rio de Janeiro 21040-900, Brazil
| | - Luiz Henrique Zanata Pinheiro
- Laboratório de Pesquisa em Infecção Hospitalar, Instituto Oswaldo Cruz, Oswaldo Cruz Foundation (IOC/FIOCRUZ), Rio de Janeiro 21040-900, Brazil
| | - João Pedro Silva Tonhá
- Laboratório de Genética Molecular de Microrganismos, Instituto Oswaldo Cruz, Oswaldo Cruz Foundation (IOC/FIOCRUZ), Rio de Janeiro 21040-900, Brazil
| | - Luiza Silva de Sousa
- Laboratório de Genética Molecular de Microrganismos, Instituto Oswaldo Cruz, Oswaldo Cruz Foundation (IOC/FIOCRUZ), Rio de Janeiro 21040-900, Brazil
| | - Mayra Lopes Secundo Dias
- Laboratório de Genética Molecular de Microrganismos, Instituto Oswaldo Cruz, Oswaldo Cruz Foundation (IOC/FIOCRUZ), Rio de Janeiro 21040-900, Brazil
| | - Amanda Aparecida da Silva Machado
- Laboratório de Genética Molecular de Microrganismos, Instituto Oswaldo Cruz, Oswaldo Cruz Foundation (IOC/FIOCRUZ), Rio de Janeiro 21040-900, Brazil
| | - Murillo Marçal Castro
- Laboratório de Genética Molecular de Microrganismos, Instituto Oswaldo Cruz, Oswaldo Cruz Foundation (IOC/FIOCRUZ), Rio de Janeiro 21040-900, Brazil
| | - Vitoria Pinson Ruggi Dutra
- Laboratório de Genética Molecular de Microrganismos, Instituto Oswaldo Cruz, Oswaldo Cruz Foundation (IOC/FIOCRUZ), Rio de Janeiro 21040-900, Brazil
| | - Luciana Sênos de Mello
- Laboratório de Genética Molecular de Microrganismos, Instituto Oswaldo Cruz, Oswaldo Cruz Foundation (IOC/FIOCRUZ), Rio de Janeiro 21040-900, Brazil
| | - Maxuel Cassiano da Silva
- Laboratório de Genética Molecular de Microrganismos, Instituto Oswaldo Cruz, Oswaldo Cruz Foundation (IOC/FIOCRUZ), Rio de Janeiro 21040-900, Brazil
| | - Thaisa Medeiros Tozo
- Hospital Federal dos Servidores do Estado (HFSE), Ministry of Health, Rio de Janeiro 20221-903, Brazil
| | - Yann Rodrigues Mathuiy
- Laboratório de Genética Molecular de Microrganismos, Instituto Oswaldo Cruz, Oswaldo Cruz Foundation (IOC/FIOCRUZ), Rio de Janeiro 21040-900, Brazil
| | - Lucas Lameirão Pinto de Abreu Rosas
- Laboratório de Genética Molecular de Microrganismos, Instituto Oswaldo Cruz, Oswaldo Cruz Foundation (IOC/FIOCRUZ), Rio de Janeiro 21040-900, Brazil
| | - Paulo Cesar Mendes Barros
- Hospital Federal dos Servidores do Estado (HFSE), Ministry of Health, Rio de Janeiro 20221-903, Brazil
| | - Jeane Oliveira da Silva
- Laboratório de Genética Molecular de Microrganismos, Instituto Oswaldo Cruz, Oswaldo Cruz Foundation (IOC/FIOCRUZ), Rio de Janeiro 21040-900, Brazil
| | - Priscila Pinho da Silva
- Laboratório de Genética Molecular de Microrganismos, Instituto Oswaldo Cruz, Oswaldo Cruz Foundation (IOC/FIOCRUZ), Rio de Janeiro 21040-900, Brazil
| | - Carolina Souza Bandeira
- Laboratório de Genética Molecular de Microrganismos, Instituto Oswaldo Cruz, Oswaldo Cruz Foundation (IOC/FIOCRUZ), Rio de Janeiro 21040-900, Brazil
| | | | | | - Roberto Queiroz Santos
- Hospital Federal dos Servidores do Estado (HFSE), Ministry of Health, Rio de Janeiro 20221-903, Brazil
| | - José Aurélio Marques
- Hospital Federal dos Servidores do Estado (HFSE), Ministry of Health, Rio de Janeiro 20221-903, Brazil
| | | | | |
Collapse
|
12
|
Soedarmono P, Diana A, Tauran P, Lokida D, Aman AT, Alisjahbana B, Arlinda D, Tjitra E, Kosasih H, Merati KTP, Arif M, Gasem MH, Susanto NH, Lukman N, Sugiyono RI, Hadi U, Lisdawati V, Tchos KGF, Neal A, Karyana M. The characteristics of bacteremia among patients with acute febrile illness requiring hospitalization in Indonesia. PLoS One 2022; 17:e0273414. [PMID: 36074783 PMCID: PMC9455855 DOI: 10.1371/journal.pone.0273414] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Accepted: 08/09/2022] [Indexed: 11/19/2022] Open
Abstract
Blood culturing remains the "gold standard" for bloodstream infection (BSI) diagnosis, but the method is inaccessible to many developing countries due to high costs and insufficient resources. To better understand the utility of blood cultures among patients in Indonesia, a country where blood cultures are not routinely performed, we evaluated data from a previous cohort study that included blood cultures for all participants. An acute febrile illness study was conducted from July 2013 to June 2016 at eight major hospitals in seven provincial capitals in Indonesia. All participants presented with a fever, and two-sided aerobic blood cultures were performed within 48 hours of hospital admission. Positive cultures were further assessed for antimicrobial resistance (AMR) patterns. Specimens from participants with negative culture results were screened by advanced molecular and serological methods for evidence of causal pathogens. Blood cultures were performed for 1,459 of 1,464 participants, and the 70.6% (1,030) participants that were negative by dengue NS1 antigen test were included in further analysis. Bacteremia was observed in 8.9% (92) participants, with the most frequent pathogens being Salmonella enterica serovar Typhi (41) and Paratyphi A (10), Escherichia coli (14), and Staphylococcus aureus (10). Two S. Paratyphi A cases had evidence of AMR, and several E. coli cases were multidrug resistant (42.9%, 6/14) or monoresistant (14.3%, 2/14). Culture contamination was observed in 3.6% (37) cases. Molecular and serological assays identified etiological agents in participants having negative cultures, with 23.1% to 90% of cases being missed by blood cultures. Blood cultures are a valuable diagnostic tool for hospitalized patients presenting with fever. In Indonesia, pre-screening patients for the most common viral infections, such as dengue, influenza, and chikungunya viruses, would maximize the benefit to the patient while also conserving resources. Blood cultures should also be supplemented with advanced laboratory tests when available.
Collapse
Affiliation(s)
- Pratiwi Soedarmono
- Faculty of Medicine, Universitas Indonesia/ Dr. Cipto Mangunkusumo Hospital, Jakarta, Indonesia
| | - Aly Diana
- Indonesia Research Partnership on Infectious Disease (INA-RESPOND), Jakarta, Indonesia
- Department of Public Health, Faculty of Medicine, Universitas Padjadjaran, Sumedang, Indonesia
| | - Patricia Tauran
- Faculty of Medicine, Universitas Hasanuddin/ Dr. Wahidin Sudirohusodo Hospital, Makassar, Indonesia
| | - Dewi Lokida
- Tangerang District Hospital, Tangerang, Banten, Indonesia
| | - Abu Tholib Aman
- Faculty of Medicine, Public Heath, and Nursing, Universitas Gadjah Mada/ Dr. Sardjito Hospital, Yogyakarta, Indonesia
| | - Bachti Alisjahbana
- Department of Internal Medicine, Faculty of Medicine, Universitas Padjadjaran/ Dr Hasan Sadikin Hospital, Bandung, Indonesia
| | - Dona Arlinda
- National Institute of Health Research and Development (NIHRD), Ministry of Health Republic of Indonesia, Jakarta, Indonesia
| | - Emiliana Tjitra
- National Institute of Health Research and Development (NIHRD), Ministry of Health Republic of Indonesia, Jakarta, Indonesia
| | - Herman Kosasih
- Indonesia Research Partnership on Infectious Disease (INA-RESPOND), Jakarta, Indonesia
| | | | - Mansyur Arif
- Faculty of Medicine, Universitas Hasanuddin/ Dr. Wahidin Sudirohusodo Hospital, Makassar, Indonesia
| | | | - Nugroho Harry Susanto
- Indonesia Research Partnership on Infectious Disease (INA-RESPOND), Jakarta, Indonesia
| | - Nurhayati Lukman
- Indonesia Research Partnership on Infectious Disease (INA-RESPOND), Jakarta, Indonesia
| | - Retna Indah Sugiyono
- Indonesia Research Partnership on Infectious Disease (INA-RESPOND), Jakarta, Indonesia
| | - Usman Hadi
- Faculty of Medicine, Universitas Airlangga/ Dr. Soetomo Hospital, Surabaya, Indonesia
| | - Vivi Lisdawati
- Sulianti Saroso Infectious Disease Hospital, Jakarta, Indonesia
| | - Karine G. Fouth Tchos
- National Institute of Allergy and Infectious Disease (NIAID), National Institutes of Health, Bethesda, Maryland, United States of America
| | - Aaron Neal
- National Institute of Allergy and Infectious Disease (NIAID), National Institutes of Health, Bethesda, Maryland, United States of America
| | - Muhammad Karyana
- Indonesia Research Partnership on Infectious Disease (INA-RESPOND), Jakarta, Indonesia
- National Institute of Health Research and Development (NIHRD), Ministry of Health Republic of Indonesia, Jakarta, Indonesia
| |
Collapse
|
13
|
Pallerla SR, Van Dong D, Linh LTK, Van Son T, Quyen DT, Hoan PQ, Trung NT, The NT, Rüter J, Boutin S, Nurjadi D, Sy BT, Kremsner PG, Meyer CG, Song LH, Velavan TP. Diagnosis of pathogens causing bacterial meningitis using Nanopore sequencing in a resource-limited setting. Ann Clin Microbiol Antimicrob 2022; 21:39. [PMID: 36064402 PMCID: PMC9443622 DOI: 10.1186/s12941-022-00530-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Accepted: 08/11/2022] [Indexed: 11/21/2022] Open
Abstract
Aim The aim of the present study is to compare the performance of 16S rRNA Nanopore sequencing and conventional culture in detecting infectious pathogens in patients with suspected meningitis in a resource-limited setting without extensive bioinformatics expertise. Methods DNA was isolated from the cerebrospinal fluid (CSF) of 30 patients with suspected bacterial meningitis. The isolated DNA was subjected to 16S sequencing using MinION™. The data were analysed in real time via the EPI2ME cloud platform. The Nanopore sequencing was done in parallel to routine microbiological diagnostics. Results Nanopore sequencing detected bacterial pathogens to species level in 13 of 30 (43%) samples. CSF culture showed 40% (12/30) positivity. In 21 of 30 patients (70%) with suspected bacterial meningitis, both methods yielded concordant results. About nine of 30 samples showed discordant results, of these five were false positive and four were false negative. In five of the culture negative results, nanopore sequencing was able to detect pathogen genome, due to the higher sensitivity of the molecular diagnostics. In two other samples, the CSF culture revealed Cryptococcus neoformans and Streptococcus pneumoniae, which were not detected by Nanopore sequencing. Overall, using both the cultures and 16S Nanopore sequencing, positivity rate increased from 40% (12/30) to 57% (17/30). Conclusion Next-generation sequencing could detect pathogens within six hours and could become an important tool for both pathogen screening and surveillance in low- and middle-income countries (LMICs) that do not have direct access to extensive bioinformatics expertise. Supplementary Information The online version contains supplementary material available at 10.1186/s12941-022-00530-6.
Collapse
Affiliation(s)
- Srinivas Reddy Pallerla
- Institute of Tropical Medicine, Universitätsklinikum Tübingen, Wilhelmstrasse 27, 72074, Tübingen, Germany
| | - Do Van Dong
- Vietnamese-German Center for Medical Research, VG-CARE, Hanoi, Vietnam
| | - Le Thi Kieu Linh
- Institute of Tropical Medicine, Universitätsklinikum Tübingen, Wilhelmstrasse 27, 72074, Tübingen, Germany.,Vietnamese-German Center for Medical Research, VG-CARE, Hanoi, Vietnam
| | - Trinh Van Son
- Vietnamese-German Center for Medical Research, VG-CARE, Hanoi, Vietnam
| | - Dao Thanh Quyen
- Vietnamese-German Center for Medical Research, VG-CARE, Hanoi, Vietnam.,Department of Molecular Biology, 108 Military Central Hospital, Hanoi, Vietnam
| | - Phan Quoc Hoan
- Vietnamese-German Center for Medical Research, VG-CARE, Hanoi, Vietnam.,Department of Molecular Biology, 108 Military Central Hospital, Hanoi, Vietnam
| | - Ngo Tat Trung
- Vietnamese-German Center for Medical Research, VG-CARE, Hanoi, Vietnam.,Centre de Recherche Médicales de Lambaréné, Lambaréné, Gabon
| | - Nguyen Trong The
- Vietnamese-German Center for Medical Research, VG-CARE, Hanoi, Vietnam.,Centre de Recherche Médicales de Lambaréné, Lambaréné, Gabon
| | - Jule Rüter
- Institute of Tropical Medicine, Universitätsklinikum Tübingen, Wilhelmstrasse 27, 72074, Tübingen, Germany
| | - Sébastien Boutin
- Department of Infectious Diseases, Medical Microbiology and Hygiene, Heidelberg University Hospital, Heidelberg, Germany
| | - Dennis Nurjadi
- Department of Infectious Diseases, Medical Microbiology and Hygiene, Heidelberg University Hospital, Heidelberg, Germany.,Department of Infectious Diseases and Microbiology, University of Lübeck, Lübeck, Germany
| | - Bui Tien Sy
- Vietnamese-German Center for Medical Research, VG-CARE, Hanoi, Vietnam.,Department of Microbiology, 108 Military Central Hospital, Hanoi, Vietnam
| | - Peter G Kremsner
- Institute of Tropical Medicine, Universitätsklinikum Tübingen, Wilhelmstrasse 27, 72074, Tübingen, Germany.,Centre de Recherche Médicales de Lambaréné, Lambaréné, Gabon
| | - Christian G Meyer
- Institute of Tropical Medicine, Universitätsklinikum Tübingen, Wilhelmstrasse 27, 72074, Tübingen, Germany.,Vietnamese-German Center for Medical Research, VG-CARE, Hanoi, Vietnam
| | - Le Huu Song
- Vietnamese-German Center for Medical Research, VG-CARE, Hanoi, Vietnam. .,108 Military Central Hospital, Hanoi, Vietnam.
| | - Thirumalaisamy P Velavan
- Institute of Tropical Medicine, Universitätsklinikum Tübingen, Wilhelmstrasse 27, 72074, Tübingen, Germany. .,Vietnamese-German Center for Medical Research, VG-CARE, Hanoi, Vietnam.
| |
Collapse
|
14
|
Vinayaka AC, Golabi M, Than TLQ, Wolff A, Bang DD. Point-of-care diagnosis of invasive non-typhoidal Salmonella enterica in bloodstream infections using immunomagnetic capture and loop-mediated isothermal amplification. N Biotechnol 2022; 66:1-7. [PMID: 34428583 DOI: 10.1016/j.nbt.2021.08.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 08/17/2021] [Accepted: 08/19/2021] [Indexed: 12/18/2022]
Abstract
Invasive non-typhoidal salmonellosis is gaining worldwide attention as an emerging disease cluster among bloodstream infections. The disease has the highest burden among immunocompromised and malnourished children in resource-limited areas due to poor access to reliable and rapid diagnostics. Point-of-care (POC) diagnostics are promising for use in such low infrastructure laboratory settings. However, there still remains a major challenge for POC testing to deal with the complexity of blood matrices in rapid detection of an extremely low concentration of blood-borne pathogens. In this work, the challenges were addressed by combining magnetic bead based pathogen concentration and Loop Mediated Isothermal Amplification (LAMP) technology. Sensitivity and performance of the combined approach were determined and compared with a direct PCR method. A direct visual detection strategy, adapted using SYTO-24 DNA intercalating dye, resulted in a limit of detection (LoD) as low as 14 CFU/mL in blood samples with a total analysis time of less than 2 h, including sample preparation. This approach has the potential for wide application as a high-throughput POC testing method to analyze pathogens in clinical, food, feed and environmental samples.
Collapse
Affiliation(s)
- Aaydha C Vinayaka
- Laboratory of Applied Micro and Nanotechnology (LAMINATE), Department of Bioengineering, Technical University of Denmark, DK-2800, Lyngby, Denmark.
| | - Mohsen Golabi
- Laboratory of Applied Micro and Nanotechnology (LAMINATE), Department of Bioengineering, Technical University of Denmark, DK-2800, Lyngby, Denmark
| | - Thi Linh Quyen Than
- Biolabchip Group, Department of Bioengineering, Technical University of Denmark, DK-2800, Lyngby, Denmark
| | - Anders Wolff
- Biolabchip Group, Department of Bioengineering, Technical University of Denmark, DK-2800, Lyngby, Denmark
| | - Dang D Bang
- Laboratory of Applied Micro and Nanotechnology (LAMINATE), Department of Bioengineering, Technical University of Denmark, DK-2800, Lyngby, Denmark
| |
Collapse
|
15
|
Trung NT, Lien TT, Sang VV, Hoan NX, Manh ND, Thau NS, Quyen DT, Hien TTT, Hoan PQ, Bang MH, Velavan TP, Song LH. Circulating miR-147b as a diagnostic marker for patients with bacterial sepsis and septic shock. PLoS One 2021; 16:e0261228. [PMID: 34914790 PMCID: PMC8675720 DOI: 10.1371/journal.pone.0261228] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Accepted: 11/24/2021] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Early diagnosis, precise antimicrobial treatment and subsequent patient stratification can improve sepsis outcomes. Circulating biomarkers such as plasma microRNAs (miRNAs) have proven to be surrogates for diagnosis, severity and case management of infections. The expression of four selected miRNAs (miR-146-3p, miR-147b, miR-155 and miR-223) was validated for their prognostic and diagnostic potential in a clinically defined cohort of patients with sepsis and septic shock. METHODS The expression of plasma miRNAs was quantified by quantitative PCR (qPCR) in patients with bacterial sepsis (n = 78), in patients with septic shock (n = 52) and in patients with dengue haemorrhagic fever (DHF; n = 69) and in healthy controls (n = 82). RESULTS The expression of studied miRNA was significantly increased in patients with bacterial sepsis and septic shock. The plasma miR-147b was able to differentiate bacterial sepsis from non-sepsis and septic shock (AUC = 0.77 and 0.8, respectively, p≤ 0.05), while the combination of plasma miR-147b and procalcitonin (PCT) predicted septic shock (AUC = 0.86, p≤ 0.05). CONCLUSIONS The plasma miR-147b may be an useful biomarker independently or in combination with PCT to support clinical diagnosis of sepsis and equally prognosis of patients with septic shock.
Collapse
Affiliation(s)
- Ngo Tat Trung
- Centre for Genetics Consultation and Cancer Screening, Hanoi, Vietnam
- Vietnamese-German Center for Medical Research, Hanoi, Vietnam
- Department of Molecular Biology, Hanoi, Vietnam
- * E-mail: (LHS); (NTT)
| | - Tran Thi Lien
- Vietnamese-German Center for Medical Research, Hanoi, Vietnam
| | - Vu Viet Sang
- Vietnamese-German Center for Medical Research, Hanoi, Vietnam
- Institute of Clinical Infectious Diseases, Hanoi, Vietnam
| | - Nghiem Xuan Hoan
- Vietnamese-German Center for Medical Research, Hanoi, Vietnam
- Department of Molecular Biology, Hanoi, Vietnam
| | - Nguyen Dang Manh
- Vietnamese-German Center for Medical Research, Hanoi, Vietnam
- Institute of Clinical Infectious Diseases, Hanoi, Vietnam
| | - Nguyen Sy Thau
- Vietnamese-German Center for Medical Research, Hanoi, Vietnam
- Institute of Clinical Infectious Diseases, Hanoi, Vietnam
| | - Dao Thanh Quyen
- Vietnamese-German Center for Medical Research, Hanoi, Vietnam
- Department of Molecular Biology, Hanoi, Vietnam
| | | | | | - Mai Hong Bang
- Vietnamese-German Center for Medical Research, Hanoi, Vietnam
- Department of Gastroenterology, Hanoi, Vietnam
| | - Thirumalaisamy P. Velavan
- Vietnamese-German Center for Medical Research, Hanoi, Vietnam
- Institute of Tropical Medicine, Universitätsklinikum Tübingen, Tübingen, Germany
| | - Le Huu Song
- Vietnamese-German Center for Medical Research, Hanoi, Vietnam
- Institute of Clinical Infectious Diseases, Hanoi, Vietnam
- * E-mail: (LHS); (NTT)
| |
Collapse
|
16
|
Bacteriophage-based advanced bacterial detection: Concept, mechanisms, and applications. Biosens Bioelectron 2021; 177:112973. [DOI: 10.1016/j.bios.2021.112973] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2020] [Revised: 12/24/2020] [Accepted: 01/04/2021] [Indexed: 12/20/2022]
|
17
|
A simple magnetic-assisted microfluidic method for rapid detection and phenotypic characterization of ultralow concentrations of bacteria. Talanta 2021; 230:122291. [PMID: 33934763 DOI: 10.1016/j.talanta.2021.122291] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 01/25/2021] [Accepted: 02/07/2021] [Indexed: 01/11/2023]
Abstract
Isolation and enumeration of bacteria at ultralow concentrations and antibiotic resistance profiling are of great importance for early diagnosis and treatment of bacteremia. In this work, we describe a simple, rapid, and versatile magnetic-assisted microfluidic method for rapid bacterial detection. The developed method enables magnetophoretic loading of bead-captured bacteria into the microfluidic chamber under external static and dynamic magnetic fields in 4 min. A shallow microfluidic chamber design that enables the monolayer orientation and transportation of the beads and a glass substrate with a thickness of 0.17 mm was utilized to allow high-resolution fluorescence imaging for quantitative detection. Escherichia coli (E. coli) with green fluorescent protein (GFP)-expressing gene and streptavidin-modified superparamagnetic microbeads were used as model bacteria and capturing beads, respectively. The specificity of the method was validated using Lactobacillus gasseri as a negative control group. The limit of detection and limit of quantification values were determined as 2 CFU/ml and 10 CFU/ml of E. coli, respectively. The magnetic-assisted microfluidic method is a versatile tool for the detection of ultralow concentrations of viable bacteria with the linear range of 5-5000 CFU/ml E. coli in 1 h, and providing growth curves and phenotypic characterization bead-captured E. coli in the following 5 h of incubation. Our results are promising for future rapid and sensitive antibiotic susceptibility testing of ultralow numbers of viable cells.
Collapse
|
18
|
Hyernard C, Roubaud Baudron C. The Reply. Am J Med 2020; 133:e445. [PMID: 32741452 DOI: 10.1016/j.amjmed.2020.04.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Accepted: 04/22/2020] [Indexed: 11/17/2022]
Affiliation(s)
- Caroline Hyernard
- CHU de Bordeaux, Pôle de Gérontologie Clinique, F-33000 Bordeaux, France
| | - Claire Roubaud Baudron
- CHU de Bordeaux, Pôle de Gérontologie Clinique, F-33000 Bordeaux, France; Univ. Bordeaux, INSERM UMR 1034 BaRITOn, F-33000 Bordeaux, France.
| |
Collapse
|
19
|
Duggan W, Moran D, Challacombe B. Sepsis in urology - where are we now? And where are we going? Scand J Urol 2020; 54:438-442. [PMID: 32677532 DOI: 10.1080/21681805.2020.1792546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
CONTEXT There has been heightened public awareness of the important issue of sepsis in the lay press in recent years with a focus on rapid detection and treatment. Within the field of Urology, how good are we at identifying, preventing and managing sepsis? Review: Reducing the morbidity and mortality associated with sepsis requires a multi-faceted approach including heightening awareness, prevention, early recognition of deterioration, escalation of care when necessary, implementation of antibiotic stewardship and the development of novel anti-microbial treatment strategies. DISCUSSION We review some of the aspects of sepsis management within our field that are working effectively and others that could potentially be optimised.
Collapse
Affiliation(s)
- William Duggan
- Department of Urology, Guys and St. Thomas' NHS Foundation Trust, London, UK
| | - Diarmaid Moran
- Department of Urology, St. Vincent's University Hospital, Dublin, Ireland
| | - Ben Challacombe
- Department of Urology, Guys and St. Thomas' NHS Foundation Trust, London, UK
| |
Collapse
|
20
|
Condrat CE, Thompson DC, Barbu MG, Bugnar OL, Boboc A, Cretoiu D, Suciu N, Cretoiu SM, Voinea SC. miRNAs as Biomarkers in Disease: Latest Findings Regarding Their Role in Diagnosis and Prognosis. Cells 2020; 9:E276. [PMID: 31979244 PMCID: PMC7072450 DOI: 10.3390/cells9020276] [Citation(s) in RCA: 749] [Impact Index Per Article: 149.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Revised: 01/14/2020] [Accepted: 01/21/2020] [Indexed: 02/06/2023] Open
Abstract
MicroRNAs (miRNAs) represent a class of small, non-coding RNAs with the main roles of regulating mRNA through its degradation and adjusting protein levels. In recent years, extraordinary progress has been made in terms of identifying the origin and exact functions of miRNA, focusing on their potential use in both the research and the clinical field. This review aims at improving the current understanding of these molecules and their applicability in the medical field. A thorough analysis of the literature consulting resources available in online databases such as NCBI, PubMed, Medline, ScienceDirect, and UpToDate was performed. There is promising evidence that in spite of the lack of standardized protocols regarding the use of miRNAs in current clinical practice, they constitute a reliable tool for future use. These molecules meet most of the required criteria for being an ideal biomarker, such as accessibility, high specificity, and sensitivity. Despite present limitations, miRNAs as biomarkers for various conditions remain an impressive research field. As current techniques evolve, we anticipate that miRNAs will become a routine approach in the development of personalized patient profiles, thus permitting more specific therapeutic interventions.
Collapse
Affiliation(s)
- Carmen Elena Condrat
- Alessandrescu-Rusescu National Institute for Mother and Child Health, Fetal Medicine Excellence Research Center, 020395 Bucharest, Romania; (C.E.C.); (D.C.T.); (M.G.B.); (O.L.B.); (A.B.); (D.C.); (N.S.)
| | - Dana Claudia Thompson
- Alessandrescu-Rusescu National Institute for Mother and Child Health, Fetal Medicine Excellence Research Center, 020395 Bucharest, Romania; (C.E.C.); (D.C.T.); (M.G.B.); (O.L.B.); (A.B.); (D.C.); (N.S.)
| | - Madalina Gabriela Barbu
- Alessandrescu-Rusescu National Institute for Mother and Child Health, Fetal Medicine Excellence Research Center, 020395 Bucharest, Romania; (C.E.C.); (D.C.T.); (M.G.B.); (O.L.B.); (A.B.); (D.C.); (N.S.)
| | - Oana Larisa Bugnar
- Alessandrescu-Rusescu National Institute for Mother and Child Health, Fetal Medicine Excellence Research Center, 020395 Bucharest, Romania; (C.E.C.); (D.C.T.); (M.G.B.); (O.L.B.); (A.B.); (D.C.); (N.S.)
| | - Andreea Boboc
- Alessandrescu-Rusescu National Institute for Mother and Child Health, Fetal Medicine Excellence Research Center, 020395 Bucharest, Romania; (C.E.C.); (D.C.T.); (M.G.B.); (O.L.B.); (A.B.); (D.C.); (N.S.)
| | - Dragos Cretoiu
- Alessandrescu-Rusescu National Institute for Mother and Child Health, Fetal Medicine Excellence Research Center, 020395 Bucharest, Romania; (C.E.C.); (D.C.T.); (M.G.B.); (O.L.B.); (A.B.); (D.C.); (N.S.)
- Department of Cell and Molecular Biology and Histology, Carol Davila University of Medicine and Pharmacy, 8 Eroii Sanitari Blvd., 050474 Bucharest, Romania
| | - Nicolae Suciu
- Alessandrescu-Rusescu National Institute for Mother and Child Health, Fetal Medicine Excellence Research Center, 020395 Bucharest, Romania; (C.E.C.); (D.C.T.); (M.G.B.); (O.L.B.); (A.B.); (D.C.); (N.S.)
- Division of Obstetrics, Gynecology and Neonatology, Carol Davila University of Medicine and Pharmacy, 8 Eroii Sanitari Blvd., 050474 Bucharest, Romania
- Department of Obstetrics and Gynecology, Polizu Clinical Hospital, Alessandrescu-Rusescu National Institute for Mother and Child Health, 020395 Bucharest, Romania
| | - Sanda Maria Cretoiu
- Department of Cell and Molecular Biology and Histology, Carol Davila University of Medicine and Pharmacy, 8 Eroii Sanitari Blvd., 050474 Bucharest, Romania
| | - Silviu Cristian Voinea
- Department of Surgical Oncology, Prof. Dr. Alexandru Trestioreanu Oncology Institute, Carol Davila University of Medicine and Pharmacy, 252 Fundeni Rd., 022328 Bucharest, Romania;
| |
Collapse
|