1
|
Kousalová J, Šálek P, Pavlova E, Konefał R, Kobera L, Brus J, Kočková O, Etrych T. Biodegradable Covalently Crosslinked Poly[ N-(2-Hydroxypropyl) Methacrylamide] Nanogels: Preparation and Physicochemical Properties. Polymers (Basel) 2024; 16:263. [PMID: 38257062 PMCID: PMC10821105 DOI: 10.3390/polym16020263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 01/12/2024] [Accepted: 01/16/2024] [Indexed: 01/24/2024] Open
Abstract
Recently, suitably sized polymer-based nanogels containing functional groups for the binding of biologically active substances and ultimately degradable to products that can be removed by glomerular filtration have become extensively studied systems in the field of drug delivery. Herein, we designed and tailored the synthesis of hydrophilic and biodegradable poly[N-(2-hydroxypropyl) methacrylamide-co-N,N'-bis(acryloyl) cystamine-co-6-methacrylamidohexanoyl hydrazine] (PHPMA-BAC-BMH) nanogels. The facile and versatile dispersion polymerization enabled the preparation of nanogels with a diameter below 50 nm, which is the key parameter for efficient and selective passive tumor targeting. The effects of the N,N'-bis(acryloyl) cystamine crosslinker, polymerization composition, and medium including H2O/MetCel and H2O/EtCel on the particle size, particle size distribution, morphology, and polymerization kinetics and copolymer composition were investigated in detail. We demonstrated the formation of a 38 nm colloidally stable PHPMA-BAC-BMH nanogel with a core-shell structure that can be rapidly degraded in the presence of 10 mM glutathione solution under physiologic conditions. The nanogels were stable in an aqueous solution modeling the bloodstream; thus, these nanogels have the potential to become highly important carriers in the drug delivery of various molecules.
Collapse
Affiliation(s)
| | - Petr Šálek
- Institute of Macromolecular Chemistry, Academy of Sciences of the Czech Republic, Heyrovského Nám. 2, 162 00 Prague, Czech Republic; (J.K.); (E.P.); (R.K.); (L.K.); (J.B.); (O.K.); (T.E.)
| | | | | | | | | | | | | |
Collapse
|
2
|
Scotti A, Schulte MF, Lopez CG, Crassous JJ, Bochenek S, Richtering W. How Softness Matters in Soft Nanogels and Nanogel Assemblies. Chem Rev 2022; 122:11675-11700. [PMID: 35671377 DOI: 10.1021/acs.chemrev.2c00035] [Citation(s) in RCA: 46] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Softness plays a key role in determining the macroscopic properties of colloidal systems, from synthetic nanogels to biological macromolecules, from viruses to star polymers. However, we are missing a way to quantify what the term "softness" means in nanoscience. Having quantitative parameters is fundamental to compare different systems and understand what the consequences of softness on the macroscopic properties are. Here, we propose different quantities that can be measured using scattering methods and microscopy experiments. On the basis of these quantities, we review the recent literature on micro- and nanogels, i.e. cross-linked polymer networks swollen in water, a widely used model system for soft colloids. Applying our criteria, we address the question what makes a nanomaterial soft? We discuss and introduce general criteria to quantify the different definitions of softness for an individual compressible colloid. This is done in terms of the energetic cost associated with the deformation and the capability of the colloid to isotropically deswell. Then, concentrated solutions of soft colloids are considered. New definitions of softness and new parameters, which depend on the particle-to-particle interactions, are introduced in terms of faceting and interpenetration. The influence of the different synthetic routes on the softness of nanogels is discussed. Concentrated solutions of nanogels are considered and we review the recent results in the literature concerning the phase behavior and flow properties of nanogels both in three and two dimensions, in the light of the different parameters we defined. The aim of this review is to look at the results on micro- and nanogels in a more quantitative way that allow us to explain the reported properties in terms of differences in colloidal softness. Furthermore, this review can give researchers dealing with soft colloids quantitative methods to define unambiguously which softness matters in their compound.
Collapse
Affiliation(s)
- Andrea Scotti
- Institute of Physical Chemistry, RWTH Aachen University, Landoltweg 2, 52056 Aachen, Germany, European Union
| | - M Friederike Schulte
- Institute of Physical Chemistry, RWTH Aachen University, Landoltweg 2, 52056 Aachen, Germany, European Union
| | - Carlos G Lopez
- Institute of Physical Chemistry, RWTH Aachen University, Landoltweg 2, 52056 Aachen, Germany, European Union
| | - Jérôme J Crassous
- Institute of Physical Chemistry, RWTH Aachen University, Landoltweg 2, 52056 Aachen, Germany, European Union
| | - Steffen Bochenek
- Institute of Physical Chemistry, RWTH Aachen University, Landoltweg 2, 52056 Aachen, Germany, European Union
| | - Walter Richtering
- Institute of Physical Chemistry, RWTH Aachen University, Landoltweg 2, 52056 Aachen, Germany, European Union
| |
Collapse
|
3
|
Sabadasch V, Dirksen M, Fandrich P, Hellweg T. Multifunctional Core-Shell Microgels as Pd-Nanoparticle Containing Nanoreactors With Enhanced Catalytic Turnover. Front Chem 2022; 10:889521. [PMID: 35692683 PMCID: PMC9185801 DOI: 10.3389/fchem.2022.889521] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Accepted: 04/21/2022] [Indexed: 11/26/2022] Open
Abstract
In this work, we present core-shell microgels with tailor-made architecture and properties for the incorporation of palladium nanoparticles. The microgel core consists of poly-N-isopropylacrylamide (PNIPAM) copolymerized with methacrylic acid (MAc) as anchor point for the incorporation of palladium nanoparticles. The microgel shell is prepared by copolymerization of NIPAM and the UV-sensitive comonomer 2-hydroxy-4-(methacryloyloxy)-benzophenone (HMABP). The obtained core-shell architecture was analyzed by means of photon correlation spectroscopy, while the incorporated amount of HMABP was further confirmed via Fourier transform infrared spectroscopy. Subsequently, the microgel system was used for loading with palladium nanoparticles and their size and localization were investigated by transmission electron microscopy. The catalytic activity of the monodisperse palladium nanoparticles was tested by reduction of 4-nitrophenol to 4-aminophenol. The obtained reaction rate constants for the core-shell system showed enhanced activity compared to the Pd-loaded bare core system. Furthermore, it was possible to recycle the catalyst several times. Analysis via transmission electron microscopy revealed, that the incorporated palladium nanoparticles emerged undamaged after the reaction and subsequent purification process since no aggregation or loss in size was observed.
Collapse
|
4
|
Wrede O, Bergmann S, Hannappel Y, Hellweg T, Huser T. Smart microgels investigated by super-resolution fluorescence microscopy: influence of the monomer structure on the particle morphology. SOFT MATTER 2020; 16:8078-8084. [PMID: 32789349 DOI: 10.1039/d0sm00597e] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
In a recent publication [Bergmann et al. Phys. Chem. Chem. Phys., 2018, 20, 5074-5083] we presented a method which enables to investigate the morphology of microgels by superresolution fluorescence microscopy. Here, this method is applied to three microgel species, based on N-isopropylmethacrylamide (NIPMAM), N-n-propylacrylamide (NNPAM) and N-n-propylmethacrylamide (NNPMAM)) with 5, 7.5 and 10 mol% cross-linker, respectively. Super-resolution microscopy reveals differences of the network morphology of the synthesized particles showing the importance of the monomer structure.
Collapse
Affiliation(s)
- Oliver Wrede
- Biomolecular Photonics, Department of Physics, Bielefeld University, Universitätsstraße 25, 33615 Bielefeld, Germany.
| | | | | | | | | |
Collapse
|
5
|
Scheffold F. Pathways and challenges towards a complete characterization of microgels. Nat Commun 2020; 11:4315. [PMID: 32887886 PMCID: PMC7473851 DOI: 10.1038/s41467-020-17774-5] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2019] [Accepted: 07/20/2020] [Indexed: 01/07/2023] Open
Abstract
Due to their controlled size, sensitivity to external stimuli, and ease-of-use, microgel colloids are unique building blocks for soft materials made by crosslinking polymers on the micrometer scale. Despite the plethora of work published, many questions about their internal structure, interactions, and phase behavior are still open. The reasons for this lack of understanding are the challenges arising from the small size of the microgel particles, complex pairwise interactions, and their solvent permeability. Here we describe pathways toward a complete understanding of microgel colloids based on recent experimental advances in nanoscale characterization, such as super-resolution microscopy, scattering methods, and modeling.
Collapse
Affiliation(s)
- Frank Scheffold
- Department of Physics, University of Fribourg, Chemin du Musée 3, 1700, Fribourg, Switzerland.
| |
Collapse
|
6
|
Kawaguchi H. On Going to a New Era of Microgel Exhibiting Volume Phase Transition. Gels 2020; 6:gels6030026. [PMID: 32824458 PMCID: PMC7559898 DOI: 10.3390/gels6030026] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 08/03/2020] [Accepted: 08/10/2020] [Indexed: 12/14/2022] Open
Abstract
The discovery of phenomena of volume phase transition has had a great impact not only on bulk gels but also on the world of microgels. In particular, research on poly(N-isopropylacrylamide) (PNIPAM) microgels, whose transition temperature is close to body temperature, has made remarkable progress in almost 35 years. This review presents some breakthrough findings in microgels that exhibit volume phase transitions and outlines recent works on the synthesis, structural analysis, and research direction of microgels.
Collapse
Affiliation(s)
- Haruma Kawaguchi
- Faculty of Science and Technology, Keio University, Hiyoshi, Yokohama 241-0814, Japan
| |
Collapse
|
7
|
Sabadasch V, Wiehemeier L, Kottke T, Hellweg T. Core-shell microgels as thermoresponsive carriers for catalytic palladium nanoparticles. SOFT MATTER 2020; 16:5422-5430. [PMID: 32490485 DOI: 10.1039/d0sm00433b] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Responsive core-shell microgels are promising systems for a stabilization of Pd nanoparticles and control of their catalytic activity. Here, poly-N-n-propylacrylamide (PNNPAM) was copolymerized with methacrylic acid to yield microgel core particles, which were subsequently coated with an additional, acid-free poly-N-isopropylmethacrylamide (PNIPMAM) shell. Both core and core-shell systems were used as pH- and temperature-responsive carrier systems for the incorporation of palladium nanoparticles. The embedded nanoparticles were found to have a uniform size distribution with diameters at around 20 nm. Their catalytic activity was investigated by following the kinetics of the reduction of p-nitrophenol to p-aminophenol using UV-vis spectroscopy. For the PNNPAM microgel core, the temperature dependence of the rate constant followed the Arrhenius equation, which is an unusual behaviour for thermoresponsive carrier systems but common for passive systems such as polyelectrolyte brushes. In contrast, the catalytic activity of nanoparticles embedded in microgel core-shell systems decreased drastically at the volume phase transition temperature (44 °C) of the PNIPMAM shell. Accordingly, a promising architecture of passive nanoparticle-carrying core and thermoresponsive shell was realized successfully.
Collapse
Affiliation(s)
- Viktor Sabadasch
- Physical and Biophysical Chemistry, Bielefeld University, Germany.
| | | | | | | |
Collapse
|
8
|
Oberdisse J, Hellweg T. Recent advances in stimuli-responsive core-shell microgel particles: synthesis, characterisation, and applications. Colloid Polym Sci 2020. [DOI: 10.1007/s00396-020-04629-0] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
AbstractInspired by the path followed by Matthias Ballauff over the past 20 years, the development of thermosensitive core-shell microgel structures is reviewed. Different chemical structures, from hard nanoparticle cores to double stimuli-responsive microgels have been devised and successfully implemented by many different groups. Some of the rich variety of these systems is presented, as well as some recent progress in structural analysis of such microstructures by small-angle scattering of neutrons or X-rays, including modelling approaches. In the last part, again following early work by the group of Matthias Ballauff, applications with particular emphasis on incorporation of catalytic nanoparticles inside core-shell structures—stabilising the nanoparticles and granting external control over activity—will be discussed, as well as core-shell microgels at interfaces.
Collapse
|
9
|
Deswelling studies of pH and temperature-sensitive ultra-low cross-linked microgels with cross-linked cores. Colloid Polym Sci 2020. [DOI: 10.1007/s00396-020-04620-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
10
|
Cors M, Wiehemeier L, Wrede O, Feoktystov A, Cousin F, Hellweg T, Oberdisse J. Contrast variation SANS measurement of shell monomer density profiles of smart core-shell microgels. SOFT MATTER 2020; 16:1922-1930. [PMID: 31995091 DOI: 10.1039/c9sm02036e] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The radial density profile of deuterated poly(N,n-propyl acrylamide) shell monomers within core-shell microgels has been studied by small-angle neutron scattering in order to shed light on the origin of their linear thermally-induced swelling. The poly(N-isopropyl methacrylamide) core monomers have been contrast-matched by the H2O/D2O solvent mixture, and the intensity thus provides a direct measurement of the spatial distribution of the shell monomers. Straightforward modelling shows that their structure does not correspond to the expected picture of a well-defined external shell. A multi-shell model solved by a reverse Monte Carlo approach is then applied to extract the monomer density as a function of temperature and of the core crosslinking. It is found that most shell monomers fill the core at high temperatures approaching synthesis conditions of collapsed particles, forming only a dilute corona. As the core monomers tend to swell at lower temperatures, a skeleton of insoluble shell monomers hinders swelling, inducing the progressive linear thermoresponse.
Collapse
Affiliation(s)
- Marian Cors
- Department of Physical and Biophysical Chemistry, Bielefeld University, Universitätsstr. 25, 33615 Bielefeld, Germany. and Laboratoire Charles Coulomb (L2C), University of Montpellier, CNRS, 34095 Montpellier, France.
| | - Lars Wiehemeier
- Department of Physical and Biophysical Chemistry, Bielefeld University, Universitätsstr. 25, 33615 Bielefeld, Germany.
| | - Oliver Wrede
- Department of Physical and Biophysical Chemistry, Bielefeld University, Universitätsstr. 25, 33615 Bielefeld, Germany.
| | - Artem Feoktystov
- Forschungszentrum Jülich GmbH, Jülich Centre for Neutron Science JCNS at Heinz Maier-Leibnitz Zentrum MLZ, 85748 Garching, Germany
| | - Fabrice Cousin
- Laboratoire Léon Brillouin, UMR 12 CEA/CNRS, CEA Saclay, 91191 Gif Sur Yvette, France
| | - Thomas Hellweg
- Department of Physical and Biophysical Chemistry, Bielefeld University, Universitätsstr. 25, 33615 Bielefeld, Germany.
| | - Julian Oberdisse
- Laboratoire Charles Coulomb (L2C), University of Montpellier, CNRS, 34095 Montpellier, France.
| |
Collapse
|
11
|
Otto P, Bergmann S, Sandmeyer A, Dirksen M, Wrede O, Hellweg T, Huser T. Resolving the internal morphology of core-shell microgels with super-resolution fluorescence microscopy. NANOSCALE ADVANCES 2020; 2:323-331. [PMID: 36134006 PMCID: PMC9416983 DOI: 10.1039/c9na00670b] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Accepted: 11/28/2019] [Indexed: 06/10/2023]
Abstract
We investigate the internal morphology of smart core-shell microgels by super-resolution fluorescence microscopy exploiting a combination of 3D single molecule localization and structured illumination microscopy utilizing freely diffusing fluorescent dyes. This approach does not require any direct chemical labeling and does not perturb the network structure of these colloidal gels. Hence, it allows us to study the morphology of the particles with very high precision. We found that the structure of the core-forming seed particles is drastically changed by the second synthesis step necessary for making the shell, resulting in a core region with highly increased dye localization density. The present work shows that super-resolution microscopy has great potential with respect to the study of soft colloidal systems.
Collapse
Affiliation(s)
- Pia Otto
- Physical and Biophysical Chemistry, Bielefeld University Germany
| | | | | | - Maxim Dirksen
- Physical and Biophysical Chemistry, Bielefeld University Germany
| | - Oliver Wrede
- Physical and Biophysical Chemistry, Bielefeld University Germany
| | - Thomas Hellweg
- Physical and Biophysical Chemistry, Bielefeld University Germany
| | - Thomas Huser
- Biomolecular Photonics, Bielefeld University Germany
| |
Collapse
|