1
|
Pullen RH, Sassano E, Agrawal P, Escobar J, Chehtane M, Schanen B, Drake DR, Luna E, Brennan RJ. A Predictive Model of Vaccine Reactogenicity Using Data from an In Vitro Human Innate Immunity Assay System. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2024; 212:904-916. [PMID: 38276072 DOI: 10.4049/jimmunol.2300185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 01/02/2024] [Indexed: 01/27/2024]
Abstract
A primary concern in vaccine development is safety, particularly avoiding an excessive immune reaction in an otherwise healthy individual. An accurate prediction of vaccine reactogenicity using in vitro assays and computational models would facilitate screening and prioritization of novel candidates early in the vaccine development process. Using the modular in vitro immune construct model of human innate immunity, PBMCs from 40 healthy donors were treated with 10 different vaccines of varying reactogenicity profiles and then cell culture supernatants were analyzed via flow cytometry and a multichemokine/cytokine assay. Differential response profiles of innate activity and cell viability were observed in the system. In parallel, an extensive adverse event (AE) dataset for the vaccines was assembled from clinical trial data. A novel reactogenicity scoring framework accounting for the frequency and severity of local and systemic AEs was applied to the clinical data, and a machine learning approach was employed to predict the incidence of clinical AEs from the in vitro assay data. Biomarker analysis suggested that the relative levels of IL-1B, IL-6, IL-10, and CCL4 have higher predictive importance for AE risk. Predictive models were developed for local reactogenicity, systemic reactogenicity, and specific individual AEs. A forward-validation study was performed with a vaccine not used in model development, Trumenba (meningococcal group B vaccine). The clinically observed Trumenba local and systemic reactogenicity fell on the 26th and 93rd percentiles of the ranges predicted by the respective models. Models predicting specific AEs were less accurate. Our study presents a useful framework for the further development of vaccine reactogenicity predictive models.
Collapse
|
2
|
Molenaar-de Backer MWA, Doodeman P, Rezai F, Verhagen LM, van der Ark A, Plagmeijer EM, Metz B, van Vlies N, Ophorst O, Raeven RHM. In vitro alternative for reactogenicity assessment of outer membrane vesicle based vaccines. Sci Rep 2023; 13:12675. [PMID: 37542099 PMCID: PMC10403550 DOI: 10.1038/s41598-023-39908-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 08/02/2023] [Indexed: 08/06/2023] Open
Abstract
Intrinsic or added immune activating molecules are key for most vaccines to provide desired immunity profiles but may increase systemic reactogenicity. Regulatory agencies require rabbit pyrogen testing (RPT) for demonstration of vaccine reactogenicity. Recently, the monocyte activation test (MAT) gained popularity as in vitro alternative, yet this assay was primarily designed to test pyrogen-free products. The aim was to adjust the MAT to enable testing of pyrogen containing vaccines in an early stage of development where no reference batch is yet available. The MAT and RPT were compared for assessing unknown safety profiles of pertussis outer membrane vesicle (OMV) vaccine candidates to those of Bexsero as surrogate reference vaccine. Pertussis OMVs with wild-type LPS predominantly activated TLR2 and TLR4 and were more reactogenic than Bexsero. However, this reactogenicity profile for pertussis OMVs could be equalized or drastically reduced compared to Bexsero or a whole-cell pertussis vaccine, respectively by dose changing, modifying the LPS, intranasal administration, or a combination of these. Importantly, except for LPS modified products, reactogenicity profiles obtained with the RPT and MAT were comparable. Overall, we demonstrated that this pertussis OMV vaccine candidate has an acceptable safety profile. Furthermore, the MAT proved its applicability to assess reactogenicity levels of pyrogen containing vaccines at multiple stages of vaccine development and could eventually replace rabbit pyrogen testing.
Collapse
Affiliation(s)
| | - Paulien Doodeman
- Department of Virology and MAT Services, Sanquin Diagnostiek, Plesmanlaan 125, 1066CX, Amsterdam, The Netherlands
| | - Fereshte Rezai
- Department of Virology and MAT Services, Sanquin Diagnostiek, Plesmanlaan 125, 1066CX, Amsterdam, The Netherlands
| | - Lisa M Verhagen
- Intravacc, Antonie Van Leeuwenhoeklaan 9, 3721 MA, Bilthoven, The Netherlands
| | - Arno van der Ark
- Intravacc, Antonie Van Leeuwenhoeklaan 9, 3721 MA, Bilthoven, The Netherlands
| | - Els M Plagmeijer
- Department of Virology and MAT Services, Sanquin Diagnostiek, Plesmanlaan 125, 1066CX, Amsterdam, The Netherlands
| | - Bernard Metz
- Intravacc, Antonie Van Leeuwenhoeklaan 9, 3721 MA, Bilthoven, The Netherlands.
| | - Naomi van Vlies
- Intravacc, Antonie Van Leeuwenhoeklaan 9, 3721 MA, Bilthoven, The Netherlands
| | - Olga Ophorst
- Intravacc, Antonie Van Leeuwenhoeklaan 9, 3721 MA, Bilthoven, The Netherlands
| | - René H M Raeven
- Intravacc, Antonie Van Leeuwenhoeklaan 9, 3721 MA, Bilthoven, The Netherlands
| |
Collapse
|
3
|
Exploring COVID-19 at the single-cell level: a narrative review. JOURNAL OF BIO-X RESEARCH 2022. [DOI: 10.1097/jbr.0000000000000109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
|
4
|
Sheerin D, Dold C, O'Connor D, Pollard AJ, Rollier CS. Distinct patterns of whole blood transcriptional responses are induced in mice following immunisation with adenoviral and poxviral vector vaccines encoding the same antigen. BMC Genomics 2021; 22:777. [PMID: 34717548 PMCID: PMC8556829 DOI: 10.1186/s12864-021-08061-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Accepted: 09/21/2021] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Viral vectors, including adenovirus (Ad) and modified vaccinia Ankara (MVA), have gained increasing attention as vaccine platforms in recent years due to their capacity to express antigens from a wide array of pathogens, their rapid induction of humoral and cellular protective immune responses, and their relatively low production costs. In particular, the chimpanzee Ad vector, ChAdOx1, has taken centre stage as a leading COVID-19 vaccine candidate. However, despite mounting data, both clinical and pre-clinical, demonstrating effective induction of adaptive immune responses, the innate immune signals that precede the protective responses that make these vectors attractive vaccine platforms remain poorly understood. RESULTS In this study, a mouse immunisation model was used to evaluate whole blood gene expression changes 24 h after either a single dose or heterologous prime-boost regimen of an Ad and/or MVA vaccine. We demonstrate through comparative analysis of Ad vectors encoding different antigens that a transgene product-specific gene signature can be discerned from the vector-induced transcriptional response. Expression of genes involved in TLR2 stimulation and γδ T cell and natural killer cell activation were induced after a single dose of Ad, while MVA led to greater expression of type I interferon genes. The order of prime-boost combinations was found to influence the magnitude of the gene expression changes, with MVA/Ad eliciting greater transcriptional perturbation than Ad/MVA. Contrasting the two regimens revealed significant enrichment of epigenetic regulation pathways and augmented expression of MHC class I and II molecules associated with MVA/Ad. CONCLUSION These data demonstrate that the order in which vaccines from heterologous prime-boost regimens are administered leads to distinct transcriptional responses and may shape the immune response induced by such combinations. The characterisation of early vaccine-induce responses strengthens our understanding of viral vector vaccine mechanisms of action ahead of their characterisation in human clinical trials and are a valuable resource to inform the pre-clinical design of appropriate vaccine constructs for emerging infectious diseases.
Collapse
Affiliation(s)
- Dylan Sheerin
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford, and the NIHR Oxford Biomedical Research Centre, Centre for Clinical Vaccinology and Tropical Medicine, Churchill Hospital, Oxford, UK.
- Infectious Diseases and Immune Defence Division, The Walter & Eliza Hall Institute of Medical Research (WEHI), Melbourne, Victoria, 3052, Australia.
| | - Christina Dold
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford, and the NIHR Oxford Biomedical Research Centre, Centre for Clinical Vaccinology and Tropical Medicine, Churchill Hospital, Oxford, UK
| | - Daniel O'Connor
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford, and the NIHR Oxford Biomedical Research Centre, Centre for Clinical Vaccinology and Tropical Medicine, Churchill Hospital, Oxford, UK
| | - Andrew J Pollard
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford, and the NIHR Oxford Biomedical Research Centre, Centre for Clinical Vaccinology and Tropical Medicine, Churchill Hospital, Oxford, UK
| | - Christine S Rollier
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford, and the NIHR Oxford Biomedical Research Centre, Centre for Clinical Vaccinology and Tropical Medicine, Churchill Hospital, Oxford, UK
| |
Collapse
|
5
|
Meldgaard TS, Blengio F, Maffione D, Sammicheli C, Tavarini S, Nuti S, Kratzer R, Medini D, Siena E, Bertholet S. Single-Cell Analysis of Antigen-Specific CD8+ T-Cell Transcripts Reveals Profiles Specific to mRNA or Adjuvanted Protein Vaccines. Front Immunol 2021; 12:757151. [PMID: 34777370 PMCID: PMC8586650 DOI: 10.3389/fimmu.2021.757151] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Accepted: 10/05/2021] [Indexed: 12/29/2022] Open
Abstract
CD8+ T cells play a key role in mediating protective immunity after immune challenges such as infection or vaccination. Several subsets of differentiated CD8+ T cells have been identified, however, a deeper understanding of the molecular mechanism that underlies T-cell differentiation is lacking. Conventional approaches to the study of immune responses are typically limited to the analysis of bulk groups of cells that mask the cells' heterogeneity (RNA-seq, microarray) and to the assessment of a relatively limited number of biomarkers that can be evaluated simultaneously at the population level (flow and mass cytometry). Single-cell analysis, on the other hand, represents a possible alternative that enables a deeper characterization of the underlying cellular heterogeneity. In this study, a murine model was used to characterize immunodominant hemagglutinin (HA533-541)-specific CD8+ T-cell responses to nucleic- and protein-based influenza vaccine candidates, using single-cell sorting followed by transcriptomic analysis. Investigation of single-cell gene expression profiles enabled the discovery of unique subsets of CD8+ T cells that co-expressed cytotoxic genes after vaccination. Moreover, this method enabled the characterization of antigen specific CD8+ T cells that were previously undetected. Single-cell transcriptome profiling has the potential to allow for qualitative discrimination of cells, which could lead to novel insights on biological pathways involved in cellular responses. This approach could be further validated and allow for more informed decision making in preclinical and clinical settings.
Collapse
Affiliation(s)
- Trine Sundebo Meldgaard
- Research & Development, GSK, Siena, Italy
- Biochemistry & Molecular Biology, University of Siena, Siena, Italy
| | - Fabiola Blengio
- Chemical & Biological Sciences, University of Torino, Torino, Italy
| | - Denise Maffione
- Chemical & Biological Sciences, University of Torino, Torino, Italy
| | | | | | - Sandra Nuti
- Research & Development, GSK, Siena, Italy
- Research & Development, GSK, Rockville, MD, United States
| | | | | | | | - Sylvie Bertholet
- Research & Development, GSK, Siena, Italy
- Research & Development, GSK, Rockville, MD, United States
| |
Collapse
|
6
|
O’Connor D, Pinto MV, Sheerin D, Tomic A, Drury RE, Channon‐Wells S, Galal U, Dold C, Robinson H, Kerridge S, Plested E, Hughes H, Stockdale L, Sadarangani M, Snape MD, Rollier CS, Levin M, Pollard AJ. Gene expression profiling reveals insights into infant immunological and febrile responses to group B meningococcal vaccine. Mol Syst Biol 2020; 16:e9888. [PMID: 33210468 PMCID: PMC7674973 DOI: 10.15252/msb.20209888] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2020] [Revised: 10/06/2020] [Accepted: 10/08/2020] [Indexed: 12/12/2022] Open
Abstract
Neisseria meningitidis is a major cause of meningitis and septicaemia. A MenB vaccine (4CMenB) was licensed by the European Medicines Agency in January 2013. Here we describe the blood transcriptome and proteome following infant immunisations with or without concomitant 4CMenB, to gain insight into the molecular mechanisms underlying post-vaccination reactogenicity and immunogenicity. Infants were randomised to receive control immunisations (PCV13 and DTaP-IPV-Hib) with or without 4CMenB at 2 and 4 months of age. Blood gene expression and plasma proteins were measured prior to, then 4 h, 24 h, 3 days or 7 days post-vaccination. 4CMenB vaccination was associated with increased expression of ENTPD7 and increased concentrations of 4 plasma proteins: CRP, G-CSF, IL-1RA and IL-6. Post-vaccination fever was associated with increased expression of SELL, involved in neutrophil recruitment. A murine model dissecting the vaccine components found the concomitant regimen to be associated with increased gene perturbation compared with 4CMenB vaccine alone with enhancement of pathways such as interleukin-3, -5 and GM-CSF signalling. Finally, we present transcriptomic profiles predictive of immunological and febrile responses following 4CMenB vaccine.
Collapse
Affiliation(s)
- Daniel O’Connor
- Department of PaediatricsUniversity of OxfordOxfordUK
- NIHR Oxford Biomedical Research CentreOxford University Hospitals NHS Foundation TrustOxfordUK
| | - Marta Valente Pinto
- Department of PaediatricsUniversity of OxfordOxfordUK
- NIHR Oxford Biomedical Research CentreOxford University Hospitals NHS Foundation TrustOxfordUK
| | - Dylan Sheerin
- Department of PaediatricsUniversity of OxfordOxfordUK
- NIHR Oxford Biomedical Research CentreOxford University Hospitals NHS Foundation TrustOxfordUK
| | - Adriana Tomic
- Department of PaediatricsUniversity of OxfordOxfordUK
- NIHR Oxford Biomedical Research CentreOxford University Hospitals NHS Foundation TrustOxfordUK
- Institute of Immunity, Transplantation and InfectionStanford University School of MedicineStanfordCAUSA
| | - Ruth E Drury
- Department of PaediatricsUniversity of OxfordOxfordUK
- NIHR Oxford Biomedical Research CentreOxford University Hospitals NHS Foundation TrustOxfordUK
| | - Samuel Channon‐Wells
- Department of PaediatricsUniversity of OxfordOxfordUK
- NIHR Oxford Biomedical Research CentreOxford University Hospitals NHS Foundation TrustOxfordUK
| | - Ushma Galal
- Nuffield Department of Primary Health CareClinical Trials UnitUniversity of OxfordOxfordUK
| | - Christina Dold
- Department of PaediatricsUniversity of OxfordOxfordUK
- NIHR Oxford Biomedical Research CentreOxford University Hospitals NHS Foundation TrustOxfordUK
| | - Hannah Robinson
- Department of PaediatricsUniversity of OxfordOxfordUK
- NIHR Oxford Biomedical Research CentreOxford University Hospitals NHS Foundation TrustOxfordUK
| | - Simon Kerridge
- Department of PaediatricsUniversity of OxfordOxfordUK
- NIHR Oxford Biomedical Research CentreOxford University Hospitals NHS Foundation TrustOxfordUK
| | - Emma Plested
- Department of PaediatricsUniversity of OxfordOxfordUK
- NIHR Oxford Biomedical Research CentreOxford University Hospitals NHS Foundation TrustOxfordUK
| | - Harri Hughes
- Department of PaediatricsUniversity of OxfordOxfordUK
- NIHR Oxford Biomedical Research CentreOxford University Hospitals NHS Foundation TrustOxfordUK
| | - Lisa Stockdale
- Department of PaediatricsUniversity of OxfordOxfordUK
- NIHR Oxford Biomedical Research CentreOxford University Hospitals NHS Foundation TrustOxfordUK
| | | | - Matthew D Snape
- Department of PaediatricsUniversity of OxfordOxfordUK
- NIHR Oxford Biomedical Research CentreOxford University Hospitals NHS Foundation TrustOxfordUK
| | - Christine S Rollier
- Department of PaediatricsUniversity of OxfordOxfordUK
- NIHR Oxford Biomedical Research CentreOxford University Hospitals NHS Foundation TrustOxfordUK
| | - Michael Levin
- Division of Infectious DiseasesDepartment of MedicineImperial College LondonLondonUK
| | - Andrew J Pollard
- Department of PaediatricsUniversity of OxfordOxfordUK
- NIHR Oxford Biomedical Research CentreOxford University Hospitals NHS Foundation TrustOxfordUK
| |
Collapse
|
7
|
Noé A, Cargill TN, Nielsen CM, Russell AJC, Barnes E. The Application of Single-Cell RNA Sequencing in Vaccinology. J Immunol Res 2020; 2020:8624963. [PMID: 32802896 PMCID: PMC7411487 DOI: 10.1155/2020/8624963] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Accepted: 07/09/2020] [Indexed: 02/06/2023] Open
Abstract
Single-cell RNA sequencing allows highly detailed profiling of cellular immune responses from limited-volume samples, advancing prospects of a new era of systems immunology. The power of single-cell RNA sequencing offers various opportunities to decipher the immune response to infectious diseases and vaccines. Here, we describe the potential uses of single-cell RNA sequencing methods in prophylactic vaccine development, concentrating on infectious diseases including COVID-19. Using examples from several diseases, we review how single-cell RNA sequencing has been used to evaluate the immunological response to different vaccine platforms and regimens. By highlighting published and unpublished single-cell RNA sequencing studies relevant to vaccinology, we discuss some general considerations how the field could be enriched with the widespread adoption of this technology.
Collapse
MESH Headings
- Animals
- Betacoronavirus/immunology
- COVID-19
- Cell Line
- Clinical Trials as Topic
- Coronavirus Infections/epidemiology
- Coronavirus Infections/immunology
- Coronavirus Infections/prevention & control
- Coronavirus Infections/virology
- Disease Models, Animal
- Drug Evaluation, Preclinical
- Host-Pathogen Interactions/genetics
- Host-Pathogen Interactions/immunology
- Humans
- Immunity, Cellular/genetics
- Immunity, Innate/genetics
- Immunogenicity, Vaccine
- Pandemics/prevention & control
- Pneumonia, Viral/epidemiology
- Pneumonia, Viral/immunology
- Pneumonia, Viral/prevention & control
- Pneumonia, Viral/virology
- RNA, Viral/isolation & purification
- RNA-Seq/methods
- SARS-CoV-2
- Single-Cell Analysis
- Vaccinology/methods
- Viral Vaccines/administration & dosage
- Viral Vaccines/immunology
Collapse
Affiliation(s)
- Andrés Noé
- The Jenner Institute, University of Oxford, Old Road Campus Research Building, Oxford OX3 7DQ, UK
| | - Tamsin N. Cargill
- Peter Medawar Building for Pathogen Research and Oxford NIHR Biomedical Research Centre, Nuffield Department of Medicine, University of Oxford, South Parks Road, Oxford OX1 3SY, UK
- Translational Gastroenterology Unit, John Radcliffe Hospital, Oxford OX3 9DU, UK
| | - Carolyn M. Nielsen
- The Jenner Institute, University of Oxford, Old Road Campus Research Building, Oxford OX3 7DQ, UK
| | | | - Eleanor Barnes
- Peter Medawar Building for Pathogen Research and Oxford NIHR Biomedical Research Centre, Nuffield Department of Medicine, University of Oxford, South Parks Road, Oxford OX1 3SY, UK
- Translational Gastroenterology Unit, John Radcliffe Hospital, Oxford OX3 9DU, UK
| |
Collapse
|
8
|
Rossi O, Citiulo F, Mancini F. Outer membrane vesicles: moving within the intricate labyrinth of assays that can predict risks of reactogenicity in humans. Hum Vaccin Immunother 2020; 17:601-613. [PMID: 32687736 PMCID: PMC7899674 DOI: 10.1080/21645515.2020.1780092] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Outer membrane vesicles (OMV) are exosomes naturally released from the surface of Gram-negative bacteria. Since the ’80s, OMVs have been proposed as powerful vaccine platforms due to their intrinsic self-adjuvanticity and ability to present multiple antigens in natural conformation. However, the presence of several pathogen-associated molecular patterns (PAMPs), especially lipid A, has raised concerns about potential systemic reactogenicity in humans. Recently, chemical and genetic approaches allowed to efficiently modulate the balance between reactogenicity and immunogenicity for the use of OMV in humans. Several assays (monocyte activation test, rabbit pyrogenicity test, limulus amebocyte lysate, human transfectant cells, and toxicology studies) were developed to test, with highly predictive potential, the risk of reactogenicity in humans before moving to clinical use. In this review, we provide a historical perspective on how different assays were and can be used to successfully evaluate systemic reactogenicity during clinical development and after licensure.
Collapse
Affiliation(s)
- Omar Rossi
- GSK Vaccines Institute for Global Health S.r.l (GVGH) , Siena, Italy
| | - Francesco Citiulo
- GSK Vaccines Institute for Global Health S.r.l (GVGH) , Siena, Italy
| | - Francesca Mancini
- GSK Vaccines Institute for Global Health S.r.l (GVGH) , Siena, Italy
| |
Collapse
|