1
|
Veling MT, Nguyen DT, Thadani NN, Oster ME, Rollins NJ, Brock KP, Bethel NP, Lim S, Baker D, Way JC, Marks DS, Chang RL, Silver PA. Natural and Designed Proteins Inspired by Extremotolerant Organisms Can Form Condensates and Attenuate Apoptosis in Human Cells. ACS Synth Biol 2022; 11:1292-1302. [PMID: 35176859 DOI: 10.1021/acssynbio.1c00572] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Many organisms can survive extreme conditions and successfully recover to normal life. This extremotolerant behavior has been attributed in part to repetitive, amphipathic, and intrinsically disordered proteins that are upregulated in the protected state. Here, we assemble a library of approximately 300 naturally occurring and designed extremotolerance-associated proteins to assess their ability to protect human cells from chemically induced apoptosis. We show that several proteins from tardigrades, nematodes, and the Chinese giant salamander are apoptosis-protective. Notably, we identify a region of the human ApoE protein with similarity to extremotolerance-associated proteins that also protects against apoptosis. This region mirrors the phase separation behavior seen with such proteins, like the tardigrade protein CAHS2. Moreover, we identify a synthetic protein, DHR81, that shares this combination of elevated phase separation propensity and apoptosis protection. Finally, we demonstrate that driving protective proteins into the condensate state increases apoptosis protection, and highlights the ability of DHR81 condensates to sequester caspase-7. Taken together, this work draws a link between extremotolerance-associated proteins, condensate formation, and designing human cellular protection.
Collapse
Affiliation(s)
- Mike T. Veling
- Department of Systems Biology, Harvard Medical School, Boston, Massachusetts 02115, United States
- Wyss Institute for Biologically Inspired Engineering, Boston, Massachusetts 02115, United States
| | - Dan T. Nguyen
- Department of Systems Biology, Harvard Medical School, Boston, Massachusetts 02115, United States
- Wyss Institute for Biologically Inspired Engineering, Boston, Massachusetts 02115, United States
| | - Nicole N. Thadani
- Department of Systems Biology, Harvard Medical School, Boston, Massachusetts 02115, United States
| | - Michela E. Oster
- Department of Systems Biology, Harvard Medical School, Boston, Massachusetts 02115, United States
- Wyss Institute for Biologically Inspired Engineering, Boston, Massachusetts 02115, United States
| | - Nathan J. Rollins
- Department of Systems Biology, Harvard Medical School, Boston, Massachusetts 02115, United States
- Wyss Institute for Biologically Inspired Engineering, Boston, Massachusetts 02115, United States
| | - Kelly P. Brock
- Department of Systems Biology, Harvard Medical School, Boston, Massachusetts 02115, United States
| | - Neville P. Bethel
- Institute for Protein Design, University of Washington, Seattle, Washington 98195, United States
- Department of Biochemistry, University of Washington, Seattle, Washington 98195, United States
| | - Samuel Lim
- Department of Systems Biology, Harvard Medical School, Boston, Massachusetts 02115, United States
- Wyss Institute for Biologically Inspired Engineering, Boston, Massachusetts 02115, United States
| | - David Baker
- Institute for Protein Design, University of Washington, Seattle, Washington 98195, United States
- Department of Biochemistry, University of Washington, Seattle, Washington 98195, United States
- Howard Hughes Medical Institute, University of Washington, Seattle, Washington 98195, United States
| | - Jeffrey C. Way
- Department of Systems Biology, Harvard Medical School, Boston, Massachusetts 02115, United States
- Wyss Institute for Biologically Inspired Engineering, Boston, Massachusetts 02115, United States
| | - Debora S. Marks
- Department of Systems Biology, Harvard Medical School, Boston, Massachusetts 02115, United States
- Broad Institute of Harvard and MIT, Cambridge, Massachusetts 02142, United States
| | - Roger L. Chang
- Department of Systems Biology, Harvard Medical School, Boston, Massachusetts 02115, United States
- Wyss Institute for Biologically Inspired Engineering, Boston, Massachusetts 02115, United States
- Department of Systems & Computational Biology, Albert Einstein College of Medicine, Bronx, New York 10461, United States
| | - Pamela A. Silver
- Department of Systems Biology, Harvard Medical School, Boston, Massachusetts 02115, United States
- Wyss Institute for Biologically Inspired Engineering, Boston, Massachusetts 02115, United States
| |
Collapse
|
2
|
Quality Characteristics and Moisture Mobility of Giant Salamander (Andrias davidianus) Jerky during Roasting Process. J FOOD QUALITY 2021. [DOI: 10.1155/2021/9970797] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Quality attributes and water mobility of giant salamander jerkies (GSJs) during roasting process (160°C, for 0, 20, 40, 60, and 80 min) were investigated. The results showed that
values and shear force increased of GSJs roasting from 20 to 80 min, while
, yield, and moisture content decreased significantly (
). Sensory assessment showed that GSJs at a roasting time of 40–60 min had higher scores. GSJs contained great amount of healthy unsaturated fatty acids (including DHA and EPA), and the total amino acids and essential amino acids were among 59.33–71.77 g·100 g−1 and 25.94–31.40 g·100 g−1, respectively. The mobility of the immobilized moisture and free moisture were shrunk dramatically during roasting. The proton density weighted images also exhibited the moisture shrinkage during roasting. In addition, T22 and T23 were positively correlated with MRI signal, moisture content, and yield of GSJs, but negatively correlated with shear force and overall acceptability, respectively. Thus, in view of various quality attributes and sensory evaluation, a roasting time of 40–60 min was favored for nutritive GSJs production. LF-NMR and MRI might be employed to profile the quality characteristics during roasting as a rapid and nondestructive analytical tool.
Collapse
|
3
|
Baxi AB, Pade LR, Nemes P. Mass spectrometry based proteomics for developmental neurobiology in the amphibian Xenopus laevis. Curr Top Dev Biol 2021; 145:205-231. [PMID: 34074530 PMCID: PMC8314003 DOI: 10.1016/bs.ctdb.2021.04.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The South African clawed frog (Xenopus laevis), a prominent vertebrate model in cell and developmental biology, has been instrumental in studying molecular mechanisms of neural development and disease. Recently, high-resolution mass spectrometry (HRMS), a bioanalytical technology, has expanded the molecular toolbox of protein detection and characterization (proteomics). This chapter overviews the characteristics, advantages, and challenges of this biological model and technology. Discussions are offered on their combined use to aid studies on cell differentiation and development of neural tissues. Finally, the emerging integration of proteomics and other 'omic technologies is reflected on to generate new knowledge, drive and test new hypotheses, and ultimately, advance the understanding of neural development during states of health and disease.
Collapse
Affiliation(s)
- Aparna B Baxi
- Department of Chemistry & Biochemistry, University of Maryland, College Park, College Park, MD, United States; Department of Anatomy and Cell Biology, The George Washington University, Washington, DC, United States
| | - Leena R Pade
- Department of Chemistry & Biochemistry, University of Maryland, College Park, College Park, MD, United States
| | - Peter Nemes
- Department of Chemistry & Biochemistry, University of Maryland, College Park, College Park, MD, United States; Department of Anatomy and Cell Biology, The George Washington University, Washington, DC, United States.
| |
Collapse
|