1
|
Homolka P, Breyer L, Semturs F. 3D Printing Materials Mimicking Human Tissues after Uptake of Iodinated Contrast Agents for Anthropomorphic Radiology Phantoms. Biomimetics (Basel) 2024; 9:606. [PMID: 39451811 PMCID: PMC11504517 DOI: 10.3390/biomimetics9100606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 09/27/2024] [Accepted: 10/02/2024] [Indexed: 10/26/2024] Open
Abstract
(1) Background: 3D printable materials with accurately defined iodine content enable the development and production of radiological phantoms that simulate human tissues, including lesions after contrast administration in medical imaging with X-rays. These phantoms provide accurate, stable and reproducible models with defined iodine concentrations, and 3D printing allows maximum flexibility and minimal development and production time, allowing the simulation of anatomically correct anthropomorphic replication of lesions and the production of calibration and QA standards in a typical medical research facility. (2) Methods: Standard printing resins were doped with an iodine contrast agent and printed using a consumer 3D printer, both (resins and printer) available from major online marketplaces, to produce printed specimens with iodine contents ranging from 0 to 3.0% by weight, equivalent to 0 to 3.85% elemental iodine per volume, covering the typical levels found in patients. The printed samples were scanned in a micro-CT scanner to measure the properties of the materials in the range of the iodine concentrations used. (3) Results: Both mass density and attenuation show a linear dependence on iodine concentration (R2 = 1.00), allowing highly accurate, stable, and predictable results. (4) Conclusions: Standard 3D printing resins can be doped with liquids, avoiding the problem of sedimentation, resulting in perfectly homogeneous prints with accurate dopant content. Iodine contrast agents are perfectly suited to dope resins with appropriate iodine concentrations to radiologically mimic tissues after iodine uptake. In combination with computer-aided design, this can be used to produce printed objects with precisely defined iodine concentrations in the range of up to a few percent of elemental iodine, with high precision and anthropomorphic shapes. Applications include radiographic phantoms for detectability studies and calibration standards in projective X-ray imaging modalities, such as contrast-enhanced dual energy mammography (abbreviated CEDEM, CEDM, TICEM, or CESM depending on the equipment manufacturer), and 3-dimensional modalities like CT, including spectral and dual energy CT (DECT), and breast tomosynthesis.
Collapse
Affiliation(s)
- Peter Homolka
- Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, 1090 Vienna, Austria
| | - Lara Breyer
- Department of Biomedical Imaging and Image-Guided Therapy, Medical Imaging Cluster (MIC), Medical University of Vienna, 1090 Vienna, Austria
| | - Friedrich Semturs
- Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, 1090 Vienna, Austria
| |
Collapse
|
2
|
Jędrzejczak K, Antonowicz A, Butruk-Raszeja B, Orciuch W, Wojtas K, Piasecki P, Narloch J, Wierzbicki M, Makowski Ł. Three-Dimensionally Printed Elastic Cardiovascular Phantoms for Carotid Angioplasty Training and Personalized Healthcare. J Clin Med 2024; 13:5115. [PMID: 39274329 PMCID: PMC11396471 DOI: 10.3390/jcm13175115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 08/25/2024] [Accepted: 08/26/2024] [Indexed: 09/16/2024] Open
Abstract
Background/Objective: Atherosclerosis is becoming increasingly common in modern society. Owing to the increasing number of complex angioplasty procedures, there is an increasing need for training in cases where the risk of periprocedural complications is high. Methods: A procedure was developed to obtain three-dimensional (3D) models and printing of blood vessels. The mechanical and optical properties of the printed materials were also examined. Angioplasty and stent implantation were tested, and the phantom was compared with the clinical data of patients who underwent interventional treatment. Both laser techniques and cone-beam computed tomography of the phantoms were used for comparison. Results: The printed material exhibited mechanical parameters similar to those of blood vessel walls. The refractive index of 1.473 ± 0.002 and high transparency allowed for non-invasive laser examination of the interior of the print. The printed models behaved similarly to human arteries in vivo, allowing training in treatment procedures and considering vessel deformation during the procedure. Models with stents can be analyzed using laser and cone-beam computed tomography to compare stents from different manufacturers. Conclusions: The developed methodology allows for simple and time-efficient production of personalized vessel phantoms.
Collapse
Affiliation(s)
- Krystian Jędrzejczak
- Faculty of Chemical and Process Engineering, Warsaw University of Technology, Waryńskiego 1, 00-645 Warsaw, Poland
| | - Arkadiusz Antonowicz
- Faculty of Chemical and Process Engineering, Warsaw University of Technology, Waryńskiego 1, 00-645 Warsaw, Poland
- Eurotek International Sp.z o.o., Skrzetuskiego 6, 02-726 Warsaw, Poland
| | - Beata Butruk-Raszeja
- Faculty of Chemical and Process Engineering, Warsaw University of Technology, Waryńskiego 1, 00-645 Warsaw, Poland
| | - Wojciech Orciuch
- Faculty of Chemical and Process Engineering, Warsaw University of Technology, Waryńskiego 1, 00-645 Warsaw, Poland
| | - Krzysztof Wojtas
- Faculty of Chemical and Process Engineering, Warsaw University of Technology, Waryńskiego 1, 00-645 Warsaw, Poland
| | - Piotr Piasecki
- Interventional Radiology Department, Military Institute of Medicine-National Research Institute, Szaserów 128, 04-141 Warsaw, Poland
| | - Jerzy Narloch
- Interventional Radiology Department, Military Institute of Medicine-National Research Institute, Szaserów 128, 04-141 Warsaw, Poland
| | - Marek Wierzbicki
- Interventional Radiology Department, Military Institute of Medicine-National Research Institute, Szaserów 128, 04-141 Warsaw, Poland
| | - Łukasz Makowski
- Faculty of Chemical and Process Engineering, Warsaw University of Technology, Waryńskiego 1, 00-645 Warsaw, Poland
| |
Collapse
|
3
|
Mishra A, Cleveland RO. Agarose as a Tissue Mimic for the Porcine Heart, Kidney, and Liver: Measurements and a Springpot Model. Bioengineering (Basel) 2024; 11:589. [PMID: 38927825 PMCID: PMC11200806 DOI: 10.3390/bioengineering11060589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 05/27/2024] [Accepted: 06/04/2024] [Indexed: 06/28/2024] Open
Abstract
Agarose gels are often used as a tissue mimic. The goal of this work was to determine the appropriate agarose concentrations that result in mechanical properties that match three different porcine organs. Strain tests were carried out with an amplitude varying from 0.01% to 10% at a frequency of 1 Hz on a range of agarose concentrations and porcine organs. Frequency sweep tests were performed from 0.1 Hz to a maximum of 9.5 Hz at a shear strain amplitude of 0.1% for agarose and porcine organs. In agarose samples, the effect of pre-compression of the samples up to 10% axial strain was considered during frequency sweep tests. The experimental measurements from agarose samples were fit to a fractional order viscoelastic (springpot) model. The model was then used to predict stress relaxation in response to a step strain of 0.1%. The prediction was compared to experimental relaxation data, and the results agreed within 12%. The agarose concentrations (by mass) that gave the best fit were 0.25% for the liver, 0.3% for the kidney, and 0.4% for the heart. At a frequency of 0.1 Hz and a shear strain of 0.1%, the agarose concentrations that best matched the shear storage modulus of the porcine organs were 0.4% agarose for the heart, 0.3% agarose for the kidney, and 0.25% agarose for the liver.
Collapse
Affiliation(s)
| | - Robin O. Cleveland
- Department of Engineering Science, University of Oxford, Parks Road, Oxford OX1 3PJ, UK;
| |
Collapse
|
4
|
Ahmed AMM, Buschmann M, Breyer L, Kuntner C, Homolka P. Tailoring the Mass Density of 3D Printing Materials for Accurate X-ray Imaging Simulation by Controlled Underfilling for Radiographic Phantoms. Polymers (Basel) 2024; 16:1116. [PMID: 38675035 PMCID: PMC11053449 DOI: 10.3390/polym16081116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 03/26/2024] [Accepted: 04/11/2024] [Indexed: 04/28/2024] Open
Abstract
Additive manufacturing and 3D printing allow for the design and rapid production of radiographic phantoms for X-ray imaging, including CT. These are used for numerous purposes, such as patient simulation, optimization of imaging procedures and dose levels, system evaluation and quality assurance. However, standard 3D printing polymers do not mimic X-ray attenuation properties of tissues like soft, adipose, lung or bone tissue, and standard materials like liquid water. The mass density of printing polymers-especially important in CT-is often inappropriate, i.e., mostly too high. Different methods can be applied to reduce mass density. This work examines reducing density by controlled underfilling either realized by using 3D printing materials expanded through foaming during heating in the printing process, or reducing polymer flow to introduce microscopic air-filled voids. The achievable density reduction depends on the base polymer used. When using foaming materials, density is controlled by the extrusion temperature, and ranges from 33 to 47% of the base polymer used, corresponding to a range of -650 to -394 HU in CT with 120 kV. Standard filaments (Nylon, modified PLA and modified ABS) allowed density reductions by 20 to 25%, covering HU values in CT from -260 to 77 (Nylon), -230 to -20 (ABS) and -81 to 143 (PLA). A standard chalk-filled PLA filament allowed reproduction of bone tissue in a wide range of bone mineral content resulting in CT numbers from 57 to 460 HU. Controlled underfilling allowed the production of radiographic phantom materials with continuously adjustable attenuation in a limited but appropriate range, allowing for the reproduction of X-ray attenuation properties of water, adipose, soft, lung, and bone tissue in an accurate, predictable and reproducible manner.
Collapse
Affiliation(s)
| | - Martin Buschmann
- Division of Medical Radiation Physics, Department of Radiation Oncology, Medical University of Vienna, and University Hospital Vienna, 1090 Vienna, Austria;
| | - Lara Breyer
- Department of Biomedical Imaging and Image-Guided Therapy, Medical Imaging Cluster (MIC), Medical University of Vienna, 1090 Vienna, Austria; (L.B.); (C.K.)
| | - Claudia Kuntner
- Department of Biomedical Imaging and Image-Guided Therapy, Medical Imaging Cluster (MIC), Medical University of Vienna, 1090 Vienna, Austria; (L.B.); (C.K.)
| | - Peter Homolka
- Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, 1090 Vienna, Austria
| |
Collapse
|
5
|
Zabala-Travers S, García-Bayce A. Setting up a biomodeling, virtual planning, and three-dimensional printing service in Uruguay. Pediatr Radiol 2024; 54:438-449. [PMID: 38324089 DOI: 10.1007/s00247-024-05864-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 01/19/2024] [Accepted: 01/22/2024] [Indexed: 02/08/2024]
Abstract
Virtual surgical planning and three-dimensional (D) printing are rapidly becoming essential for challenging and complex surgeries around the world. An Ibero-American survey reported a lack of awareness of technology benefits and scarce financial resources as the two main barriers to widespread adoption of 3-D technologies. The Pereira Rossell Hospital Center is a publicly funded maternal and pediatric academic clinical center in Uruguay, a low-resource Latin American country, that successfully created and has been running a 3-D unit for 4 years. The present work is a step-by-step review of the 3-D technology implementation process in a hospital with minimal financial investment. References to training, software, hardware, and the management of human resources are included. Difficulties throughout the process and future challenges are also discussed.
Collapse
Affiliation(s)
- Silvina Zabala-Travers
- Departamento de Imagenología, Centro Hospitalario Pereira Rossell, Bulevar Artigas 1550, 11300, Montevideo, Uruguay.
| | - Andrés García-Bayce
- Departamento de Imagenología, Centro Hospitalario Pereira Rossell, Bulevar Artigas 1550, 11300, Montevideo, Uruguay
| |
Collapse
|
6
|
Talebi AS, Bodaghi R, Bagherzadeh S. Lifetime attributable risks (LARs) of cancer in the fetus associated with maternal radiography examinations. Int J Radiat Biol 2024; 100:420-426. [PMID: 38193807 DOI: 10.1080/09553002.2023.2295294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 10/14/2023] [Indexed: 01/10/2024]
Abstract
PURPOSE For various reasons, pregnant women are occasionally exposed to ionizing radiation during radiology examinations. In these situations, it is essential to determine the radiation dose to the fetus and any associated risks. The present study attempts to calculate the mean dose for the fetus to estimate the possible cancer induction and cancer mortality risks resulting from maternal radiography exams. MATERIAL AND METHODS The GATE Monte Carlo platform and a standard voxelized pregnant phantom were employed to calculate fetal radiation dose during maternal radiography exams. The data published in Biological Effects of Ionizing Radiation VII were used to convert fetal dose to lifetime attributable risks (LARs) of cancer incidence and cancer-related mortality. RESULTS The fetal doses and LARs of cancer incidence and cancer-related mortality for the radiographs of the chest and skull were negligible. The maximum LAR values for the lateral view of the abdomen in computed and digital radiography are 5598.29 and 2238.95 per 100,000 individuals, respectively. The computed radiography of the lateral view of the abdomen revealed the highest LAR of cancer-related mortality (2074.30 deaths for every 100,000 people). CONCLUSION The radiation dose incurred by the fetus due to chest and skull radiographs was minimal and unlikely to cause any abnormalities in the fetus. The discernible elevation in the lifetime attributable risk associated with cancer incidence and mortality arising from lateral computed radiography examinations of the abdomen warrants careful consideration within the realm of maternal radiography examinations.
Collapse
Affiliation(s)
- Asra Sadat Talebi
- Department of Medical Physics, Tarbiat Modares University, Tehran, Iran
| | - Roghiyeh Bodaghi
- Department of Medical Physics, Tarbiat Modares University, Tehran, Iran
| | - Saeed Bagherzadeh
- Department of Medical Physics, Tarbiat Modares University, Tehran, Iran
| |
Collapse
|
7
|
Jusufbegović M, Pandžić A, Busuladžić M, Čiva LM, Gazibegović-Busuladžić A, Šehić A, Vegar-Zubović S, Jašić R, Beganović A. Utilisation of 3D Printing in the Manufacturing of an Anthropomorphic Paediatric Head Phantom for the Optimisation of Scanning Parameters in CT. Diagnostics (Basel) 2023; 13:328. [PMID: 36673137 PMCID: PMC9858362 DOI: 10.3390/diagnostics13020328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Revised: 11/27/2022] [Accepted: 11/29/2022] [Indexed: 01/18/2023] Open
Abstract
Computed tomography (CT) is a diagnostic imaging process that uses ionising radiation to obtain information about the interior anatomic structure of the human body. Considering that the medical use of ionising radiation implies exposing patients to radiation that may lead to unwanted stochastic effects and that those effects are less probable at lower doses, optimising imaging protocols is of great importance. In this paper, we used an assembled 3D-printed infant head phantom and matched its image quality parameters with those obtained for a commercially available adult head phantom using the imaging protocol dedicated for adult patients. In accordance with the results, an optimised scanning protocol was designed which resulted in dose reductions for paediatric patients while keeping image quality at an adequate level.
Collapse
Affiliation(s)
- Merim Jusufbegović
- Radiology Clinic, Sarajevo University Clinical Center, 71000 Sarajevo, Bosnia and Herzegovina
- Department of Radiological Technologies, Faculty of Health Studies, University of Sarajevo, 71000 Sarajevo, Bosnia and Herzegovina
| | - Adi Pandžić
- Department of Mechanical Production Engineering, Faculty of Mechanical Engineering Sarajevo, 71000 Sarajevo, Bosnia and Herzegovina
| | - Mustafa Busuladžić
- Faculty of Medicine, University of Sarajevo, 71000 Sarajevo, Bosnia and Herzegovina
| | - Lejla M. Čiva
- Sarajevo Medical School, University Sarajevo School of Science and Technology, 71210 Ilidža, Bosnia and Herzegovina
| | | | - Adnan Šehić
- Department of Radiological Technologies, Faculty of Health Studies, University of Sarajevo, 71000 Sarajevo, Bosnia and Herzegovina
| | - Sandra Vegar-Zubović
- Radiology Clinic, Sarajevo University Clinical Center, 71000 Sarajevo, Bosnia and Herzegovina
- Faculty of Medicine, University of Sarajevo, 71000 Sarajevo, Bosnia and Herzegovina
| | - Rahima Jašić
- Department of Radiation Protection and Medical Physics, Sarajevo University Clinical Center, 71000 Sarajevo, Bosnia and Herzegovina
| | - Adnan Beganović
- Faculty of Science, University of Sarajevo, 71000 Sarajevo, Bosnia and Herzegovina
- Department of Radiation Protection and Medical Physics, Sarajevo University Clinical Center, 71000 Sarajevo, Bosnia and Herzegovina
| |
Collapse
|
8
|
X-ray attenuation of bone, soft and adipose tissue in CT from 70 to 140 kV and comparison with 3D printable additive manufacturing materials. Sci Rep 2022; 12:14580. [PMID: 36028638 PMCID: PMC9418162 DOI: 10.1038/s41598-022-18741-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Accepted: 08/18/2022] [Indexed: 11/17/2022] Open
Abstract
Additive manufacturing and 3D printing are widely used in medical imaging to produce phantoms for image quality optimization, imaging protocol definition, comparison of image quality between different imaging systems, dosimetry, and quality control. Anthropomorphic phantoms mimic tissues and contrasts in real patients with regard to X-ray attenuation, as well as dependence on X-ray spectra. If used with different X-ray energies, or to optimize the spectrum for a certain procedure, the energy dependence of the attenuation must replicate the corresponding energy dependence of the tissues mimicked, or at least be similar. In the latter case the materials’ Hounsfield values need to be known exactly to allow to correct contrast and contrast to noise ratios accordingly for different beam energies. Fresh bovine and porcine tissues including soft and adipose tissues, and hard tissues from soft spongious bone to cortical bone were scanned at different energies, and reference values of attenuation in Hounsfield units (HU) determined. Mathematical model equations describing CT number dependence on kV for bones of arbitrary density, and for adipose tissues are derived. These data can be used to select appropriate phantom constituents, compare CT values with arbitrary phantom materials, and calculate correction factors for phantoms consisting of materials with an energy dependence different to the tissues. Using data on a wide number of additive manufacturing and 3D printing materials, CT numbers and their energy dependence were compared to those of the tissues. Two commercially available printing filaments containing calcium carbonate powder imitate bone tissues with high accuracy at all kV values. Average adipose tissue can be duplicated by several off-the-shelf printing polymers. Since suitable printing materials typically exhibit a too high density for the desired attenuation of especially soft tissues, controlled density reduction by underfilling might improve tissue equivalence.
Collapse
|
9
|
Okkalidis N. 3D printing methods for radiological anthropomorphic phantoms. Phys Med Biol 2022; 67. [PMID: 35830787 DOI: 10.1088/1361-6560/ac80e7] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Accepted: 07/13/2022] [Indexed: 01/06/2023]
Abstract
Three dimensional (3D) printing technology has been widely evaluated for the fabrication of various anthropomorphic phantoms during the last couple of decades. The demand for such high quality phantoms is constantly rising and gaining an ever-increasing interest. Although, in a short time 3D printing technology provided phantoms with more realistic features when compared to the previous conventional methods, there are still several aspects to be explored. One of these aspects is the further development of the current 3D printing methods and software devoted to radiological applications. The current 3D printing software and methods usually employ 3D models, while the direct association of medical images with the 3D printing process is needed in order to provide results of higher accuracy and closer to the actual tissues' texture. Another aspect of high importance is the development of suitable printing materials. Ideally, those materials should be able to emulate the entire range of soft and bone tissues, while still matching the human's anatomy. Five types of 3D printing methods have been mainly investigated so far: (a) solidification of photo-curing materials; (b) deposition of melted plastic materials; (c) printing paper-based phantoms with radiopaque ink; (d) melting or binding plastic powder; and (e) bio-printing. From the first and second category, polymer jetting technology and fused filament fabrication (FFF), also known as fused deposition modelling (FDM), are the most promising technologies for the fulfilment of the requirements of realistic and radiologically equivalent anthropomorphic phantoms. Another interesting approach is the fabrication of radiopaque paper-based phantoms using inkjet printers. Although, this may provide phantoms of high accuracy, the utilized materials during the fabrication process are restricted to inks doped with various contrast materials. A similar condition applies to the polymer jetting technology, which despite being quite fast and very accurate, the utilized materials are restricted to those capable of polymerization. The situation is better for FFF/FDM 3D printers, since various compositions of plastic filaments with external substances can be produced conveniently. Although, the speed and accuracy of this 3D printing method are lower compared to the others, the relatively low-cost, constantly improving resolution, sufficient printing volume and plethora of materials are quite promising for the creation of human size heterogeneous phantoms and their adaptation to the treatment procedures of patients in the current health systems.
Collapse
Affiliation(s)
- Nikiforos Okkalidis
- Research Institute, Medical University of Varna, Bulgaria.,Morphé, Praxitelous 1, Thessaloniki, Greece
| |
Collapse
|
10
|
Additively manufactured test phantoms for mimicking soft tissue radiation attenuation in CBCT using Polyjet technology. Z Med Phys 2022:S0939-3889(22)00063-0. [PMID: 35792011 DOI: 10.1016/j.zemedi.2022.05.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 04/27/2022] [Accepted: 05/27/2022] [Indexed: 01/14/2023]
Abstract
OBJECTIVES To develop and validate a simple approach for building cost-effective imaging phantoms for Cone Beam Computed Tomography (CBCT) using a modified Polyjet additive manufacturing technology where a single material can mimic a range of human soft-tissue radiation attenuation. MATERIALS AND METHODS Single material test phantoms using a cubic lattice were designed in 3-Matic 15.0 software . Keeping the individual cubic lattice volume constant, eight different percentage ratio (R) of air: material from 0% to 70% with a 10% increment were assigned to each sample. The phantoms were printed in three materials, namely Vero PureWhite, VeroClear and TangoPlus using Polyjet technology. The CT value analysis, non-contact profile measurement and microCT-based volumetric analysis was performed for all the samples. RESULTS The printed test phantoms produced a grey value spectrum equivalent to the radiation attenuation of human soft tissues in the range of -757 to +286 HU on CT. The results from dimensional comparison analysis of the printed phantoms with the digital test phantoms using non-contact profile measurement showed a mean accuracy of 99.07 % and that of micro-CT volumetric analysis showed mean volumetric accuracy of 84.80-94.91%. The material and printing costs of developing 24 test phantoms was 83.00 Euro. CONCLUSIONS The study shows that additive manufacturing-guided macrostructure manipulation modifies successfully the radiographic visibility of a material in CBCT imaging with 1 mm3 resolution, helping customization of imaging phantoms.
Collapse
|
11
|
Assessing radiomics feature stability with simulated CT acquisitions. Sci Rep 2022; 12:4732. [PMID: 35304508 PMCID: PMC8933485 DOI: 10.1038/s41598-022-08301-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Accepted: 03/03/2022] [Indexed: 11/29/2022] Open
Abstract
Medical imaging quantitative features had once disputable usefulness in clinical studies. Nowadays, advancements in analysis techniques, for instance through machine learning, have enabled quantitative features to be progressively useful in diagnosis and research. Tissue characterisation is improved via the “radiomics” features, whose extraction can be automated. Despite the advances, stability of quantitative features remains an important open problem. As features can be highly sensitive to variations of acquisition details, it is not trivial to quantify stability and efficiently select stable features. In this work, we develop and validate a Computed Tomography (CT) simulator environment based on the publicly available ASTRA toolbox (www.astra-toolbox.com). We show that the variability, stability and discriminative power of the radiomics features extracted from the virtual phantom images generated by the simulator are similar to those observed in a tandem phantom study. Additionally, we show that the variability is matched between a multi-center phantom study and simulated results. Consequently, we demonstrate that the simulator can be utilised to assess radiomics features’ stability and discriminative power.
Collapse
|
12
|
Ma X, Buschmann M, Unger E, Homolka P. Classification of X-Ray Attenuation Properties of Additive Manufacturing and 3D Printing Materials Using Computed Tomography From 70 to 140 kVp. Front Bioeng Biotechnol 2021; 9:763960. [PMID: 34912790 PMCID: PMC8666890 DOI: 10.3389/fbioe.2021.763960] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Accepted: 10/25/2021] [Indexed: 11/16/2022] Open
Abstract
Additive manufacturing and 3D printing is particularly useful in the production of phantoms for medical imaging applications including determination and optimization of (diagnostic) image quality and dosimetry. Additive manufacturing allows the leap from simple slab and stylized to (pseudo)-anthropomorphic phantoms. This necessitates the use of materials with x-ray attenuation as close as possible to that of the tissues or organs mimicked. X-ray attenuation properties including their energy dependence were determined for 35 printing materials comprising photocured resins and thermoplastic polymers. Prior to measuring x-ray attenuation in CT from 70 to 140 kVp, printing parameters were thoroughly optimized to ensure maximum density avoiding too low attenuation due to microscopic or macroscopic voids. These optimized parameters are made available. CT scanning was performed in a water filled phantom to guarantee defined scan conditions and accurate HU value determination. The spectrum of HU values covered by polymers printed using fused deposition modeling reached from −258 to +1,063 at 120 kVp (−197 to +1,804 at 70 kVp, to −266 to +985 at 140 kVp, respectively). Photocured resins covered 43 to 175 HU at 120 kVp (16–156 at 70, and 57–178 at 140 kVp). At 120 kVp, ASA mimics water almost perfectly (+2 HU). HIPS (−40 HU) is found close to adipose tissue. In all photocurable resins, and 17 printing filaments HU values decreased with increasing beam hardness contrary to soft tissues except adipose tissue making it difficult to mimic water or average soft tissue in phantoms correctly over a range of energies with one single printing material. Filled filaments provided both, the HU range, and an appropriate energy dependence mimicking bone tissues. A filled material with almost constant HU values was identified potentially allowing mimicking soft tissues by reducing density using controlled under-filling. The measurements performed in this study can be used to design phantoms with a wide range of x-ray contrasts, and energy dependence of these contrasts by combining appropriate materials. Data provided on the energy dependence can also be used to correct contrast or contrast to noise ratios from phantom measurements to real tissue contrasts or CNRs.
Collapse
Affiliation(s)
- Xiangjie Ma
- Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, Vienna, Austria
| | - Martin Buschmann
- Division of Medical Radiation Physics, Department of Radiation Oncology, Medical University of Vienna, Vienna, Austria
| | - Ewald Unger
- Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, Vienna, Austria
| | - Peter Homolka
- Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
13
|
Membrive Conejo I, Pera Cegarra O, Foro Arnalot P, Reig Castillejo A, Rodríguez de Dios N, Sanz Latiesas X, Pujol Vallverdú RM, Quera Jordana J, Fernandez-Velilla Cepria E, Algara Muñoz V, Algara López M. Custom 3D-printed applicators for high dose-rate brachytherapy in skin cancer. Brachytherapy 2021; 20:1257-1264. [PMID: 34384694 DOI: 10.1016/j.brachy.2021.05.164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 05/20/2021] [Accepted: 05/27/2021] [Indexed: 11/28/2022]
Abstract
PURPOSE This paper describes the protocol for the development of 3D-printed custom applicators in treating skin carcinoma, the evaluation of the materials used, and the methods for segmentation and rendering of the applicators. MATERIAL AND METHODS The segmentation and rendering process for the applicator had six phases: (i) determination of the volume of the lesion using a computed tomography (CT) scan; (ii) delineation of the patient surface, using the same CT images; (iii) creation of the applicator in the planner and segmentation of the mold; (iv) preliminary dosimetry and establishment of the route of the catheter from the brachytherapy unit; (v) creation of the 3D applicator using specialized software; and (vi) applicator printing. Following this process, the patient returned for a second CT to undergo the definitive dosimetry with the applicator in place. Radiation therapy was then administered. RESULTS We made a total of 16 applicators. Only three applicators had to be remade, two due to an error in the infill and the other due to incorrect catheter geometry. In all cases, correct coverage of the planning target volume was achieved with the prescribed isodose. CONCLUSIONS The creation of custom molds in plesiotherapy for skin cancer with 3D printing is feasible. Compared to manual methods, 3D printing increases precision in applicator geometry and optimization of the dosimetry.
Collapse
Affiliation(s)
- Ismael Membrive Conejo
- Radiation Oncology Department, Hospital del Mar, Parc de Salut Mar, Barcelona, Spain; Institut Hospital del Mar d'Investigacions Mèdiques Barcelona, Spain.
| | - Oscar Pera Cegarra
- Radiation Oncology Department, Hospital del Mar, Parc de Salut Mar, Barcelona, Spain; Institut Hospital del Mar d'Investigacions Mèdiques Barcelona, Spain
| | - Palmira Foro Arnalot
- Radiation Oncology Department, Hospital del Mar, Parc de Salut Mar, Barcelona, Spain; Institut Hospital del Mar d'Investigacions Mèdiques Barcelona, Spain; Pompeu Fabra University, Barcelona, Spain
| | - Ana Reig Castillejo
- Radiation Oncology Department, Hospital del Mar, Parc de Salut Mar, Barcelona, Spain; Institut Hospital del Mar d'Investigacions Mèdiques Barcelona, Spain
| | - Nuria Rodríguez de Dios
- Radiation Oncology Department, Hospital del Mar, Parc de Salut Mar, Barcelona, Spain; Institut Hospital del Mar d'Investigacions Mèdiques Barcelona, Spain; Pompeu Fabra University, Barcelona, Spain
| | - Xavier Sanz Latiesas
- Radiation Oncology Department, Hospital del Mar, Parc de Salut Mar, Barcelona, Spain; Institut Hospital del Mar d'Investigacions Mèdiques Barcelona, Spain; Pompeu Fabra University, Barcelona, Spain
| | - Ramón M Pujol Vallverdú
- Institut Hospital del Mar d'Investigacions Mèdiques Barcelona, Spain; Dermatology Department, Hospital del Mar, Parc de Salut Mar, Barcelona, Spain; Universitat Autónoma de Barcelona Barcelona, Spain
| | - Jaume Quera Jordana
- Radiation Oncology Department, Hospital del Mar, Parc de Salut Mar, Barcelona, Spain; Institut Hospital del Mar d'Investigacions Mèdiques Barcelona, Spain; Pompeu Fabra University, Barcelona, Spain
| | - Enric Fernandez-Velilla Cepria
- Radiation Oncology Department, Hospital del Mar, Parc de Salut Mar, Barcelona, Spain; Institut Hospital del Mar d'Investigacions Mèdiques Barcelona, Spain
| | | | - Manuel Algara López
- Radiation Oncology Department, Hospital del Mar, Parc de Salut Mar, Barcelona, Spain; Institut Hospital del Mar d'Investigacions Mèdiques Barcelona, Spain; Universitat Autónoma de Barcelona Barcelona, Spain
| |
Collapse
|
14
|
Kariyawasam LN, Ng CKC, Sun Z, Kealley CS. Use of Three-Dimensional Printing in Modelling an Anatomical Structure with a High Computed Tomography Attenuation Value: A Feasibility Study. JOURNAL OF MEDICAL IMAGING AND HEALTH INFORMATICS 2021. [DOI: 10.1166/jmihi.2021.3664] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Introduction: Three-dimensional (3D) printing provides an opportunity to develop anthropomorphic computed tomography (CT) phantoms with anatomical and radiological features mimicking a range of patients’ conditions, thus allowing development of individualised, low dose
scanning protocols. However, previous studies of 3D printing in CT phantom development could only create anatomical structures using potassium iodide with attenuation values up to 1200 HU which is insufficient to mimic the radiological features of some high attenuation structures such as cortical
bone. This study aimed at investigating the feasibility of using 3D printing in modelling cortical bone with a non-iodinated material. Methods: This study had 2 stages. Stage 1 involved a vat photopolymerisation 3D printer to directly print cube phantoms with different percentage compositions
of calcium phosphate (CP) and resin (approach 1), and approach 2 using a material extrusion 3D printer to develop a cube mould for infilling of the CP with hardener as the phantom. The approach able to create the cube phantom with the CT attenuation value close to that of a tibial mid-diaphysis
cortex of a real patient, 1475±205 HU was employed to develop a tibial mid-diaphysis phantom. The mean CT numbers of the cube and tibia phantoms were measured and compared with that of the original CT dataset through unpaired t-test. Results: All phantoms were scanned by CT using
a lower extremity scanning protocol. The moulding approach was selected to develop the tibia middiaphysis phantom with CT attenuation value, 1434±184 HU which was not statistically significantly different from the one of the original dataset (p = 0.721). Conclusion: This
study demonstrates the feasibility to use the material extrusion 3D printer to create a tibial mid-diaphysis mould for infilling of the CP as an anthropomorphic CT phantom and the attenuation value of its cortex matches the real patient’s one.
Collapse
Affiliation(s)
- Lakna N. Kariyawasam
- Discipline of Medical Radiation Science, School of Molecular and Life Sciences, Curtin University, Perth, Western Australia 6845, Australia
| | - Curtise K. C. Ng
- Discipline of Medical Radiation Science, School of Molecular and Life Sciences, Curtin University, Perth, Western Australia 6845, Australia
| | - Zhonghua Sun
- Discipline of Medical Radiation Science, School of Molecular and Life Sciences, Curtin University, Perth, Western Australia 6845, Australia
| | - Catherine S. Kealley
- Discipline of Medical Radiation Science, School of Molecular and Life Sciences, Curtin University, Perth, Western Australia 6845, Australia
| |
Collapse
|
15
|
Buytaert D, Taeymans Y, De Wolf D, Bacher K. Evaluation of a no-reference image quality metric for projection X-ray imaging using a 3D printed patient-specific phantom. Phys Med 2021; 89:29-40. [PMID: 34343764 DOI: 10.1016/j.ejmp.2021.07.011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 07/06/2021] [Accepted: 07/13/2021] [Indexed: 11/19/2022] Open
Abstract
PURPOSE Feasability of a no-reference image quality metric was assessed on patient-like images using a patient-specific phantom simulating a frame of a coronary angiogram. METHODS One background and one contrast-filled frame of a coronary angiogram, acquired using a clinical imaging protocol, were selected from a Philips Integris Allura FD (Philips Healthcare, Best, The Netherlands). The background frame's pixels were extruded to a thickness proportional to their grey value. One phantom was 3D printed using composite 80% bronze filament (max. thickness of 5.1 mm), the other was a custom PMMA cast (max thickness of 8.5 cm). A vessel mold was created from the contrast-filled frame and injected with a solution of 320 mg I/ml contrast fluid (75%), water and gelatin. Still X-ray frames of the vessel mold + background phantom + 16 cm PMMA were acquired at manually selected different exposure settings using a Philips Azurion (Philips Healthcare, Best, The Netherlands) in User Quality Control Mode and were exported as RAW images. The signal-difference-to-noise-ratio-squared (SDNR2) and a spatial-domain-equivalent of the noise equivalent quanta (NEQSDE) were calculated. The Spearman's correlation of the latter parameters with a no-reference perceptual image quality metric (NIQE) was investigated. RESULTS The bronze phantom showed better resemblance to the original patient frame selected from a coronary angiogram of an actual patient, with better contrast and less blur than the PMMA phantom. Both phantoms were imaged using a comparable imaging protocol to the one used to acquire the original frame. The bronze phantom was hence used together with the vessel mold for image quality measurements on the 165 still phantom frames. A strong correlation was noted between NEQSDE and NIQE (SROCC = -0.99, p < 0.0005) and between SDNR2 and NIQE (SROCC = -0.97, p < 0.0005). CONCLUSION Using a cost-effective and easy to realize patient-specific phantom we were able to generate patient-like X-ray frames. NIQE as a no-reference image quality model has the potential to predict physical image quality from patient images.
Collapse
Affiliation(s)
- Dimitri Buytaert
- Department of Human Structure and Repair, Ghent University, Ghent, Belgium.
| | - Yves Taeymans
- Heart Center, Ghent University Hospital, Ghent, Belgium.
| | - Daniël De Wolf
- Department of Paediatric Cardiology, Ghent University Hospital, Ghent, Belgium.
| | - Klaus Bacher
- Department of Human Structure and Repair, Ghent University, Ghent, Belgium.
| |
Collapse
|
16
|
Cruz-Bastida JP, Marshall EL, Reiser N, George J, Pearson EA, Feinstein KA, Al-Hallaq HA, Burton CS, Beaulieu D, MacDougall RD, Reiser I. Development of a neonate X-ray phantom for 2D imaging applications using single-tone inkjet printing. Med Phys 2021; 48:4944-4954. [PMID: 34255871 DOI: 10.1002/mp.15086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2020] [Revised: 04/16/2021] [Accepted: 06/17/2021] [Indexed: 11/11/2022] Open
Abstract
PURPOSE Inkjet printers can be used to fabricate anthropomorphic phantoms by the use of iodine-doped ink. However, challenges persist in implementing this technique. The calibration from grayscale to ink density is complex and time-consuming. The purpose of this work is to develop a printing methodology that requires a simpler calibration and is less dependent on printer characteristics to produce the desired range of x-ray attenuation values. METHODS Conventional grayscale printing was substituted by single-tone printing; that is, the superposition of pure black layers of iodinated ink. Printing was performed with a consumer-grade inkjet printer using ink made of potassium-iodide (KI) dissolved in water at 1 g/ml. A calibration for the attenuation of ink was measured using a commercial x-ray system at 70 kVp. A neonate radiograph obtained at 70 kVp served as an anatomical model. The attenuation map of the neonate radiograph was processed into a series of single-tone images. Single-tone images were printed, stacked, and imaged at 70 kVp. The phantom was evaluated by comparing attenuation values between the printed phantom and the original radiograph; attenuation maps were compared using the structural similarity index measure (SSIM), while attenuation histograms were compared using the Kullback-Leibler (KL) divergence. A region of interest (ROI)-based analysis was also performed, where the attenuation distribution within given ROIs was compared between phantom and patient. The phantom sharpness was evaluated in terms of modulation transfer function (MTF) estimates and signal spread profiles of high spatial resolution features in the image. RESULTS The printed phantom required 36 pages. The printing queue was automated and it took about 2 h to print the phantom. The radiograph of the printed phantom demonstrated a close resemblance to the original neonate radiograph. The SSIM of the phantom with respect to that of the patient was 0.53. Both patient and phantom attenuation histograms followed similar distributions, and the KL divergence between such histograms was 0.20. The ROI-based analysis showed that the largest deviations from patient attenuation values were observed at the higher and lower ends of the attenuation range. The limiting resolution of the proposed methodology was about 1 mm. CONCLUSION A methodology to generate a neonate phantom for 2D imaging applications, using single-tone printing, was developed. This method only requires a single-value calibration and required less than 2 h to print a complete phantom.
Collapse
Affiliation(s)
| | - Emily L Marshall
- Department of Radiology, University of Chicago, Chicago, IL, 60637, USA
| | - Nikolaj Reiser
- Department of Radiology, University of Chicago, Chicago, IL, 60637, USA
| | - Jonathan George
- Department of Radiation and Cellular Oncology, University of Chicago, Chicago, IL, 60637, USA
| | - Erik A Pearson
- Department of Radiation and Cellular Oncology, University of Chicago, Chicago, IL, 60637, USA
| | - Kate A Feinstein
- Department of Radiology, University of Chicago, Chicago, IL, 60637, USA
| | - Hania A Al-Hallaq
- Department of Radiation and Cellular Oncology, University of Chicago, Chicago, IL, 60637, USA
| | - Christiane S Burton
- Department of Radiology, Boston Children's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Danielle Beaulieu
- Department of Radiology, Boston Children's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Robert D MacDougall
- Department of Radiology, Boston Children's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Ingrid Reiser
- Department of Radiology, University of Chicago, Chicago, IL, 60637, USA
| |
Collapse
|
17
|
Tsalafoutas IA, Tsapaki V, Triantopoulou I. Evaluation of image quality and patient exposure in fluoroscopy using a phantom: Is there any clinical relevance? Eur J Radiol 2021; 138:109607. [PMID: 33667936 DOI: 10.1016/j.ejrad.2021.109607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 02/02/2021] [Accepted: 02/15/2021] [Indexed: 10/22/2022]
Abstract
OBJECTIVE To investigate the impact of X-ray preset acquisition protocol settings on fluoroscopy image quality (IQ) and radiation exposure. MATERIALS & METHODS A quality control (QC) phantom was imaged with a modern digital C-arm system, using various preset fluoroscopy protocols. IQ was assessed using human observers and in-house software for automated evaluation, based on contrast-to-noise ratios of details and their background. Patient radiation exposure was evaluated using the displayed Incident Air-Kerma and Kerma-Area Product values. RESULTS Protocol selection affects radiation exposure by a factor of about 3. IQ evaluation showed that acquisition protocols produce images with quite different characteristics. The visual IQ evaluation method was time consuming and cumbersome. The automated method, utilized the visual IQ evaluation results for calibration of detection thresholds. However, it failed to reproduce these results for all images and details types. In some images, digital image processing created artifacts which affected the pixel value distributions around details in a way that could be handled only by the human vision. CONCLUSION Manufacturers provide many preset protocols designated for specific clinical uses, which have large impact on IQ characteristics and radiation exposure. However, protocol settings' selection rationale is essentially a "black box" for the end user. Though QC phantoms are currently used for IQ evaluation, they are not appropriate for drawing firm conclusions concerning the expected performance of each protocol in clinical practice. Currently, there is no consensus on the optimum technical characteristics of preset protocols for specific procedures. More work is needed in this area.
Collapse
Affiliation(s)
- I A Tsalafoutas
- OHS Department, Radiation Safety Section, Hamad Medical Corporation, Doha, Qatar
| | - V Tsapaki
- Medical Physics Unit, Konstantopoulio Hospital, Nea Ionia, Athens, 142 33, Greece.
| | - I Triantopoulou
- Medical Physics Unit, Konstantopoulio Hospital, Nea Ionia, Athens, 142 33, Greece
| |
Collapse
|
18
|
V S S, Panigrahy N, Rath SN. Recent approaches in clinical applications of 3D printing in neonates and pediatrics. Eur J Pediatr 2021; 180:323-332. [PMID: 33025224 DOI: 10.1007/s00431-020-03819-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 09/18/2020] [Accepted: 09/22/2020] [Indexed: 01/17/2023]
Abstract
Neonates and pediatric populations are vulnerable subjects in terms of health. Proper screening and early optimal treatment would reduce infant and child mortality, improving the quality of life. Researchers and clinicians all over the world are in pursuit of innovations to improve the medical care delivery system. Infant morphometrics changes drastically due to the rapid somatic growth in infancy and childhood, demanding for patient-specific customization of treatment intervention accordingly. 3D printing is a radical technology that allows the generation of physical 3D products from digital images and addresses the patient-specific requirement. The combination of cost-effective and on-demand customization offers a boundless opportunity for the enhancement of neonates and pediatric health.Conclusion: The advanced technology of 3D printing proposes a pioneering breakthrough in bringing physiologically and anatomically appropriate treatment strategies addressing the unmet needs of child health problems. What is Known: • The potential application of 3D printing is observed across a multitude of fields within medicine and surgery. • The unprecedented effect of this technology on pediatric healthcare is still very much a work in progress. What is New: • The recent clinical applications of 3D printing provide better treatment modalities to infants and children. • The review provides an overview of the comparison between conventional treatment methods and 3DP regarding specific applications.
Collapse
Affiliation(s)
- Sukanya V S
- Department of Biomedical Engineering, Indian Institute of Technology Hyderabad (IITH), Kandi , Sangareddy, Telangana, 502285, India
| | | | - Subha Narayan Rath
- Department of Biomedical Engineering, Indian Institute of Technology Hyderabad (IITH), Kandi , Sangareddy, Telangana, 502285, India.
| |
Collapse
|
19
|
O'Reilly M, Hoff M, Friedman SD, Jones JFX, Cross NM. Simulating Tissues with 3D-Printed and Castable Materials. J Digit Imaging 2020; 33:1280-1291. [PMID: 32556912 DOI: 10.1007/s10278-020-00358-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Manufacturing technologies continue to be developed and utilized in medical prototyping, simulations, and imaging phantom production. For radiologic image-guided simulation and instruction, models should ideally have similar imaging characteristics and physical properties to the tissues they replicate. Due to the proliferation of different printing technologies and materials, there is a diverse and broad range of approaches and materials to consider before embarking on a project. Although many printed materials' biomechanical parameters have been reported, no manufacturer includes medical imaging properties that are essential for realistic phantom production. We hypothesize that there are now ample materials available to create high-fidelity imaging anthropomorphic phantoms using 3D printing and casting of common commercially available materials. A material database of radiological, physical, manufacturing, and economic properties for 29 castable and 68 printable materials was generated from samples fabricated by the authors or obtained from the manufacturer and scanned with CT at multiple tube voltages. This is the largest study assessing multiple different parameters associated with 3D printing to date. These data are being made freely available on GitHub, thus affording medical simulation experts access to a database of relevant imaging characteristics of common printable and castable materials. Full data available at: https://github.com/nmcross/Material-Imaging-Characteristics .
Collapse
Affiliation(s)
| | - Michael Hoff
- University of Washington, 1959 NE Pacific St., Seattle, WA, USA
| | - Seth D Friedman
- Seattle Children's Hospital, 4800 Sand Point Way NE, Seattle, WA, USA
| | - James F X Jones
- School of Medicine, University College Dublin, Dublin, Ireland
| | - Nathan M Cross
- University of Washington, 1959 NE Pacific St., Seattle, WA, USA.
| |
Collapse
|