1
|
Amaral DT, Kaplan RA, Takishita TKE, de Souza DR, Oliveira AG, Rosa SP. Glowing wonders: exploring the diversity and ecological significance of bioluminescent organisms in Brazil. Photochem Photobiol Sci 2024; 23:1373-1392. [PMID: 38733516 DOI: 10.1007/s43630-024-00590-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 04/27/2024] [Indexed: 05/13/2024]
Abstract
Bioluminescence, the emission of light by living organisms, is a captivating and widespread phenomenon with diverse ecological functions. This comprehensive review explores the biodiversity, mechanisms, ecological roles, and conservation challenges of bioluminescent organisms in Brazil, a country known for its vast and diverse ecosystems. From the enchanting glow of fireflies and glow-in-the-dark mushrooms to the mesmerizing displays of marine dinoflagellates and cnidarians, Brazil showcases a remarkable array of bioluminescent species. Understanding the biochemical mechanisms and enzymes involved in bioluminescence enhances our knowledge of their evolutionary adaptations and ecological functions. However, habitat loss, climate change, and photopollution pose significant threats to these bioluminescent organisms. Conservation measures, interdisciplinary collaborations, and responsible lighting practices are crucial for their survival. Future research should focus on identifying endemic species, studying environmental factors influencing bioluminescence, and developing effective conservation strategies. Through interdisciplinary collaborations, advanced technologies, and increased funding, Brazil can unravel the mysteries of its bioluminescent biodiversity, drive scientific advancements, and ensure the long-term preservation of these captivating organisms.
Collapse
Affiliation(s)
- Danilo T Amaral
- Centro de Ciências Naturais E Humanas, Universidade Federal Do ABC (UFABC), Santo André, São Paulo, Brazil.
- Programa de Pós Graduação Em Biotecnociência, Universidade Federal Do ABC (UFABC), Avenida Dos Estados, Bloco A, Room 504-3. ZIP 09210-580, Santo André, São Paulo, 5001, Brazil.
| | - Rachel A Kaplan
- Department of Chemistry and Biochemistry, Yeshiva University, 245 Lexington Avenue, New York, NY, 10016, USA
| | | | - Daniel R de Souza
- Laboratório de Estudos Avançados Em Jornalismo, Universidade Estadual de Campinas (Unicamp), Campinas, São Paulo, Brazil
| | - Anderson G Oliveira
- Department of Chemistry and Biochemistry, Yeshiva University, 245 Lexington Avenue, New York, NY, 10016, USA
| | - Simone Policena Rosa
- Instituto de Recursos Naturais (IRN), Universidade Federal de Itajubá (UNIFEI), Itajubá, MG, Brazil
| |
Collapse
|
2
|
DeLeo DM, Bessho-Uehara M, Haddock SH, McFadden CS, Quattrini AM. Evolution of bioluminescence in Anthozoa with emphasis on Octocorallia. Proc Biol Sci 2024; 291:20232626. [PMID: 38654652 PMCID: PMC11040251 DOI: 10.1098/rspb.2023.2626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 02/26/2024] [Indexed: 04/26/2024] Open
Abstract
Bioluminescence is a widespread phenomenon that has evolved multiple times across the tree of life, converging among diverse fauna and habitat types. The ubiquity of bioluminescence, particularly in marine environments where it is commonly used for communication and defense, highlights the adaptive value of this trait, though the evolutionary origins and timing of emergence remain elusive for a majority of luminous organisms. Anthozoan cnidarians are a diverse group of animals with numerous bioluminescent species found throughout the world's oceans, from shallow waters to the light-limited deep sea where bioluminescence is particularly prominent. This study documents the presence of bioluminescent Anthozoa across depth and explores the diversity and evolutionary origins of bioluminescence among Octocorallia-a major anthozoan group of marine luminous organisms. Using a phylogenomic approach and ancestral state reconstruction, we provide evidence for a single origin of bioluminescence in Octocorallia and infer the age of occurrence to around the Cambrian era, approximately 540 Ma-setting a new record for the earliest timing of emergence of bioluminescence in the marine environment. Our results further suggest this trait was largely maintained in descendants of a deep-water ancestor and bioluminescent capabilities may have facilitated anthozoan diversification in the deep sea.
Collapse
Affiliation(s)
- Danielle M. DeLeo
- Department of Invertebrate Zoology, National Museum of Natural History, Smithsonian Institution, Washington, DC, USA
- Department of Biological Sciences, Institute of Environment, Florida International University, Miami, FL, USA
| | - Manabu Bessho-Uehara
- Institute for Advanced Research, Nagoya University, Nagoya, Japan
- Graduate School of Science, Nagoya University, Nagoya, Japan
| | - Steven H.D. Haddock
- Monterey Bay Aquarium Research Institute, Moss Landing, CA, USA
- Dept of Ecology and Evolutionary Biology, University of California, Santa Cruz, CA, USA
| | | | - Andrea M. Quattrini
- Department of Invertebrate Zoology, National Museum of Natural History, Smithsonian Institution, Washington, DC, USA
| |
Collapse
|
3
|
Claes JM, Haddock SHD, Coubris C, Mallefet J. Systematic Distribution of Bioluminescence in Marine Animals: A Species-Level Inventory. Life (Basel) 2024; 14:432. [PMID: 38672704 PMCID: PMC11051050 DOI: 10.3390/life14040432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 03/20/2024] [Accepted: 03/22/2024] [Indexed: 04/28/2024] Open
Abstract
Bioluminescence is the production of visible light by an organism. This phenomenon is particularly widespread in marine animals, especially in the deep sea. While the luminescent status of numerous marine animals has been recently clarified thanks to advancements in deep-sea exploration technologies and phylogenetics, that of others has become more obscure due to dramatic changes in systematics (themselves triggered by molecular phylogenies). Here, we combined a comprehensive literature review with unpublished data to establish a catalogue of marine luminescent animals. Inventoried animals were identified to species level in over 97% of the cases and were associated with a score reflecting the robustness of their luminescence record. While luminescence capability has been established in 695 genera of marine animals, luminescence reports from 99 additional genera need further confirmation. Altogether, these luminescent and potentially luminescent genera encompass 9405 species, of which 2781 are luminescent, 136 are potentially luminescent (e.g., suggested luminescence in those species needs further confirmation), 99 are non-luminescent, and 6389 have an unknown luminescent status. Comparative analyses reveal new insights into the occurrence of luminescence among marine animal groups and highlight promising research areas. This work will provide a solid foundation for future studies related to the field of marine bioluminescence.
Collapse
Affiliation(s)
- Julien M. Claes
- Marine Biology Laboratory, Earth and Life Institute, Université catholique de Louvain, 1348 Louvain-la-Neuve, Belgium; (C.C.); (J.M.)
| | - Steven H. D. Haddock
- Monterey Bay Aquarium Research Institute, 7700 Sandholdt Road, Moss Landing, CA 95039, USA
| | - Constance Coubris
- Marine Biology Laboratory, Earth and Life Institute, Université catholique de Louvain, 1348 Louvain-la-Neuve, Belgium; (C.C.); (J.M.)
| | - Jérôme Mallefet
- Marine Biology Laboratory, Earth and Life Institute, Université catholique de Louvain, 1348 Louvain-la-Neuve, Belgium; (C.C.); (J.M.)
| |
Collapse
|
4
|
Coubris C, Duchatelet L, Dupont S, Mallefet J. A brittle star is born: Ontogeny of luminous capabilities in Amphiura filiformis. PLoS One 2024; 19:e0298185. [PMID: 38466680 PMCID: PMC10927081 DOI: 10.1371/journal.pone.0298185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 01/20/2024] [Indexed: 03/13/2024] Open
Abstract
Bioluminescence is the production of visible light by living organisms thanks to a chemical reaction, implying the oxidation of a substrate called luciferin catalyzed by an enzyme, the luciferase. The luminous brittle star Amphiura filiformis depends on coelenterazine (i.e., the most widespread luciferin in marine ecosystems) and a luciferase homologous to the cnidarian Renilla luciferase to produce blue flashes in the arm's spine. Only a few studies have focused on the ontogenic apparitions of bioluminescence in marine organisms. Like most ophiuroids, A. filiformis displays planktonic ophiopluteus larvae for which the ability to produce light was not investigated. This study aims to document the apparition of the luminous capabilities of this species during its ontogenic development, from the egg to settlement. Through biochemical assays, pharmacological stimulation, and Renilla-like luciferase immunohistological detection across different developing stages, we pointed out the emergence of the luminous capabilities after the ophiopluteus larval metamorphosis into a juvenile. In conclusion, we demonstrated that the larval pelagic stage of A. filiformis is not bioluminescent compared to juveniles and adults.
Collapse
Affiliation(s)
- Constance Coubris
- Marine Biology Laboratory, Earth and Life Institute, Université catholique de Louvain, Louvain-La-Neuve, Belgium
| | - Laurent Duchatelet
- Marine Biology Laboratory, Earth and Life Institute, Université catholique de Louvain, Louvain-La-Neuve, Belgium
| | - Sam Dupont
- Department of Biological & Environmental Sciences, University of Gothenburg, Fiskebäckskil, Sweden
- IAEA Marine Environment Laboratories, Radioecology Laboratory, Monaco City, Monaco
| | - Jérôme Mallefet
- Marine Biology Laboratory, Earth and Life Institute, Université catholique de Louvain, Louvain-La-Neuve, Belgium
| |
Collapse
|
5
|
Haddock SHD, Choy CA. Life in the Midwater: The Ecology of Deep Pelagic Animals. ANNUAL REVIEW OF MARINE SCIENCE 2024; 16:383-416. [PMID: 38231738 DOI: 10.1146/annurev-marine-031623-095435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2024]
Abstract
The water column of the deep ocean is dark, cold, low in food, and under crushing pressures, yet it is full of diverse life. Due to its enormous volume, this mesopelagic zone is home to some of the most abundant animals on the planet. Rather than struggling to survive, they thrive-owing to a broad set of adaptations for feeding, behavior, and physiology. Our understanding of these adaptations is constrained by the tools available for exploring the deep sea, but this tool kit is expanding along with technological advances. Each time we apply a new method to the depths, we gain surprising insights about genetics, ecology, behavior, physiology, diversity, and the dynamics of change. These discoveries show structure within the seemingly uniform habitat, limits to the seemingly inexhaustible resources, and vulnerability in the seemingly impervious environment. To understand midwater ecology, we need to reimagine the rules that govern terrestrial ecosystems. By spending more time at depth-with whatever tools are available-we can fill the knowledge gaps and better link ecology to the environment throughout the water column.
Collapse
Affiliation(s)
- Steven H D Haddock
- Monterey Bay Aquarium Research Institute, Moss Landing, California, USA;
| | - C Anela Choy
- Scripps Institution of Oceanography, University of California San Diego, La Jolla, California, USA;
| |
Collapse
|
6
|
Cai R, He W, Zhang J, Liu R, Yin Z, Zhang X, Sun C. Blue light promotes zero-valent sulfur production in a deep-sea bacterium. EMBO J 2023; 42:e112514. [PMID: 36946144 PMCID: PMC10267690 DOI: 10.15252/embj.2022112514] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 02/17/2023] [Accepted: 02/28/2023] [Indexed: 03/23/2023] Open
Abstract
Increasing evidence has shown that light exists in a diverse range of deep-sea environments. We unexpectedly found that blue light is necessary to produce excess zero-valent sulfur (ZVS) in Erythrobacter flavus 21-3, a bacterium that has been recently isolated from a deep-sea cold seep. E. flavus 21-3 is able to convert thiosulfate to ZVS using a novel thiosulfate oxidation pathway comprising a thiosulfate dehydrogenase (TsdA) and a thiosulfohydrolase (SoxB). Using proteomic, bacterial two-hybrid and heterologous expression assays, we found that the light-oxygen-voltage histidine kinase LOV-1477 responds to blue light and activates the diguanylate cyclase DGC-2902 to produce c-di-GMP. Subsequently, the PilZ domain-containing protein mPilZ-1753 binds to c-di-GMP and activates TsdA through direct interaction. Finally, Raman spectroscopy and gene knockout results verified that TsdA and two SoxB homologs cooperate to regulate ZVS production. As ZVS is an energy source for E. flavus 21-3, we propose that deep-sea blue light provides E. flavus 21-3 with a selective advantage in the cold seep, suggesting a previously unappreciated relationship between light-sensing pathways and sulfur metabolism in a deep-sea microorganism.
Collapse
Affiliation(s)
- Ruining Cai
- CAS Key Laboratory of Experimental Marine Biology & Center of Deep Sea Research, Institute of OceanologyChinese Academy of SciencesQingdaoChina
- Laboratory for Marine Biology and BiotechnologyQingdao National Laboratory for Marine Science and TechnologyQingdaoChina
- College of Earth ScienceUniversity of Chinese Academy of SciencesBeijingChina
- Center of Ocean Mega‐ScienceChinese Academy of SciencesQingdaoChina
| | - Wanying He
- College of Earth ScienceUniversity of Chinese Academy of SciencesBeijingChina
- Center of Ocean Mega‐ScienceChinese Academy of SciencesQingdaoChina
- CAS Key Laboratory of Marine Geology and Environment & Center of Deep Sea Research, Institute of OceanologyChinese Academy of SciencesQingdaoChina
| | - Jing Zhang
- School of Life SciencesHebei UniversityBaodingChina
| | - Rui Liu
- CAS Key Laboratory of Experimental Marine Biology & Center of Deep Sea Research, Institute of OceanologyChinese Academy of SciencesQingdaoChina
- Laboratory for Marine Biology and BiotechnologyQingdao National Laboratory for Marine Science and TechnologyQingdaoChina
- Center of Ocean Mega‐ScienceChinese Academy of SciencesQingdaoChina
| | - Ziyu Yin
- College of Earth ScienceUniversity of Chinese Academy of SciencesBeijingChina
- Center of Ocean Mega‐ScienceChinese Academy of SciencesQingdaoChina
- CAS Key Laboratory of Marine Geology and Environment & Center of Deep Sea Research, Institute of OceanologyChinese Academy of SciencesQingdaoChina
| | - Xin Zhang
- College of Earth ScienceUniversity of Chinese Academy of SciencesBeijingChina
- Center of Ocean Mega‐ScienceChinese Academy of SciencesQingdaoChina
- CAS Key Laboratory of Marine Geology and Environment & Center of Deep Sea Research, Institute of OceanologyChinese Academy of SciencesQingdaoChina
| | - Chaomin Sun
- CAS Key Laboratory of Experimental Marine Biology & Center of Deep Sea Research, Institute of OceanologyChinese Academy of SciencesQingdaoChina
- Laboratory for Marine Biology and BiotechnologyQingdao National Laboratory for Marine Science and TechnologyQingdaoChina
- College of Earth ScienceUniversity of Chinese Academy of SciencesBeijingChina
- Center of Ocean Mega‐ScienceChinese Academy of SciencesQingdaoChina
| |
Collapse
|
7
|
Acquisition of bioluminescent trait by non-luminous organisms from luminous organisms through various origins. Photochem Photobiol Sci 2021; 20:1547-1562. [PMID: 34714534 DOI: 10.1007/s43630-021-00124-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Accepted: 10/20/2021] [Indexed: 12/20/2022]
Abstract
Bioluminescence is a natural light emitting phenomenon that occurs due to a chemical reaction between luciferin and luciferase. It is primarily an innate and inherited trait in most terrestrial luminous organisms. However, most luminous organisms produce light in the ocean by acquiring luminous symbionts, luciferin (substrate), and/or luciferase (enzyme) through various transmission pathways. For instance, coelenterazine, a well-known luciferin, is obtained by cnidarians, crustaceans, and deep-sea fish through multi-level dietary linkages from coelenterazine producers such as ctenophores, decapods, and copepods. In contrast, some non-luminous Vibrio bacteria became bioluminescent by obtaining lux genes from luminous Vibrio species by horizontal gene transfer. Various examples detailed in this review show how non-luminescent organisms became luminescent by acquiring symbionts, dietary luciferins and luciferases, and genes. This review highlights three modes (symbiosis, ingestion, and horizontal gene transfer) that allow organisms lacking genes for autonomous bioluminescent systems to obtain the ability to produce light. In addition to bioluminescence, this manuscript discusses the acquisition of other traits such as pigments, fluorescence, toxins, and others, to infer the potential processes of acquisition.
Collapse
|
8
|
Burakova LP, Lyakhovich MS, Mineev KS, Petushkov VN, Zagitova RI, Tsarkova AS, Kovalchuk SI, Yampolsky IV, Vysotski ES, Kaskova ZM. Unexpected Coelenterazine Degradation Products of Beroe abyssicola Photoprotein Photoinactivation. Org Lett 2021; 23:6846-6849. [PMID: 34416112 DOI: 10.1021/acs.orglett.1c02410] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Ca2+-regulated photoproteins of ctenophores lose bioluminescence activity when exposed to visible light. Little is known about the chemical nature of chromophore photoinactivation. Using a total synthesis strategy, we have established the structures of two unusual coelenterazine products, isolated from recombinant berovin of the ctenophore Beroe abyssicola, which are Z/E isomers. We propose that during light irradiation, these derivatives are formed from 2-hydroperoxycoelenterazine via the intermediate 8a-peroxide by a mechanism reminiscent of that previously described for the auto-oxidation of green-fluorescent-protein-like chromophores.
Collapse
Affiliation(s)
- Ludmila P Burakova
- Photobiology Laboratory, Institute of Biophysics SB RAS, Federal Research Center "Krasnoyarsk Science Center SB RAS", Krasnoyarsk 660036, Russia
| | - Maria S Lyakhovich
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Moscow 117997, Russia
| | - Konstantin S Mineev
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Moscow 117997, Russia.,Moscow Institute of Physics and Technology, Dolgoprudny 141701, Russia
| | - Valentin N Petushkov
- Photobiology Laboratory, Institute of Biophysics SB RAS, Federal Research Center "Krasnoyarsk Science Center SB RAS", Krasnoyarsk 660036, Russia
| | - Renata I Zagitova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Moscow 117997, Russia
| | - Aleksandra S Tsarkova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Moscow 117997, Russia.,Pirogov Russian National Research Medical University, 117997 Moscow, Russia
| | - Sergey I Kovalchuk
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Moscow 117997, Russia
| | - Ilia V Yampolsky
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Moscow 117997, Russia.,Pirogov Russian National Research Medical University, 117997 Moscow, Russia
| | - Eugene S Vysotski
- Photobiology Laboratory, Institute of Biophysics SB RAS, Federal Research Center "Krasnoyarsk Science Center SB RAS", Krasnoyarsk 660036, Russia
| | - Zinaida M Kaskova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Moscow 117997, Russia.,Pirogov Russian National Research Medical University, 117997 Moscow, Russia
| |
Collapse
|
9
|
Evidence for de novo Biosynthesis of the Luminous Substrate Coelenterazine in Ctenophores. iScience 2020; 23:101859. [PMID: 33376974 PMCID: PMC7756133 DOI: 10.1016/j.isci.2020.101859] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 10/02/2020] [Accepted: 11/20/2020] [Indexed: 11/22/2022] Open
Abstract
Coelenterazine is a key substrate involved in marine bioluminescence which is used for light-production by at least nine phyla. Some luminous animals, such as the hydromedusa Aequorea, lack the ability to produce coelenterazine endogenously and instead depend on dietary sources. Little is known about the source organisms or the metabolic process of coelenterazine biosynthesis. Here, we present evidence that ctenophores are both producers and suppliers of coelenterazine in marine ecosystems. Using biochemical assays and mass spectrometry analyses, we detected coelenterazine from cultured ctenophores fed with a non-luminous coelenterazine-free diet. We propose that ctenophores are an emerging model organism to study coelenterazine biosynthesis and the origins of bioluminescence.
Collapse
|
10
|
Chatragadda R. Terrestrial and marine bioluminescent organisms from the Indian subcontinent: a review. ENVIRONMENTAL MONITORING AND ASSESSMENT 2020; 192:747. [PMID: 33150454 DOI: 10.1007/s10661-020-08685-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Accepted: 10/15/2020] [Indexed: 06/11/2023]
Abstract
The inception of bioluminescence by Harvey (1952) has led to a Nobel Prize to Osamu Shimomura (Chemistry, 2008) in biological research. Consequently, in recent years, bioluminescence-based assays to monitor toxic pollutants as a real-time marker, to study various diseases and their propagation in plants and animals, are developed in many countries. The emission ability of bioluminescence is improved by gene modification, and also, search for novel bioluminescent systems is underway. Over 100 species of organisms belonging to different taxa are known to be luminous in India. However, the diversity and distribution of luminous organisms and their applications are studied scarcely in the Indian scenario. In this context, the present review provides an overview of the current understanding of various bioluminescent organisms, functions, and applications. A detailed checklist of known bioluminescent organisms from India's marine, terrestrial, and freshwater ecosystems is detailed. This review infers that Indian scientists are needed to extend their research on various aspects of luminescent organisms such as biodiversity, genomics, and chemical mechanisms for conservation, ecological, and biomedical applications.
Collapse
Affiliation(s)
- Ramesh Chatragadda
- Biological Oceanography Division (BOD), CSIR-National Institute of Oceanography (CSIR-NIO), Dona Paula, Goa, 403004, India.
| |
Collapse
|
11
|
Phylogenomic analysis and morphological data suggest left-right swimming behavior evolved prior to the origin of the pelagic Phylliroidae (Gastropoda: Nudibranchia). ORG DIVERS EVOL 2020. [DOI: 10.1007/s13127-020-00458-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
12
|
Aguzzi J, Flexas MM, Flögel S, Lo Iacono C, Tangherlini M, Costa C, Marini S, Bahamon N, Martini S, Fanelli E, Danovaro R, Stefanni S, Thomsen L, Riccobene G, Hildebrandt M, Masmitja I, Del Rio J, Clark EB, Branch A, Weiss P, Klesh AT, Schodlok MP. Exo-Ocean Exploration with Deep-Sea Sensor and Platform Technologies. ASTROBIOLOGY 2020; 20:897-915. [PMID: 32267735 DOI: 10.1089/ast.2019.2129] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
One of Saturn's largest moons, Enceladus, possesses a vast extraterrestrial ocean (i.e., exo-ocean) that is increasingly becoming the hotspot of future research initiatives dedicated to the exploration of putative life. Here, a new bio-exploration concept design for Enceladus' exo-ocean is proposed, focusing on the potential presence of organisms across a wide range of sizes (i.e., from uni- to multicellular and animal-like), according to state-of-the-art sensor and robotic platform technologies used in terrestrial deep-sea research. In particular, we focus on combined direct and indirect life-detection capabilities, based on optoacoustic imaging and passive acoustics, as well as molecular approaches. Such biologically oriented sampling can be accompanied by concomitant geochemical and oceanographic measurements to provide data relevant to exo-ocean exploration and understanding. Finally, we describe how this multidisciplinary monitoring approach is currently enabled in terrestrial oceans through cabled (fixed) observatories and their related mobile multiparametric platforms (i.e., Autonomous Underwater and Remotely Operated Vehicles, as well as crawlers, rovers, and biomimetic robots) and how their modified design can be used for exo-ocean exploration.
Collapse
Affiliation(s)
- J Aguzzi
- Instituto de Ciencias del Mar (ICM-CSIC), Barcelona, Spain
- Stazione Zoologica Anton Dohrn, Naples, Italy
| | - M M Flexas
- California Institute of Technology, Pasadena, California, USA
| | - S Flögel
- GEOMAR Helmholtz Centre for Ocean Research Kiel, Kiel, Germany
| | - C Lo Iacono
- Instituto de Ciencias del Mar (ICM-CSIC), Barcelona, Spain
- National Oceanographic Center (NOC), University of Southampton, Southampton, United Kingdom
| | | | - C Costa
- Consiglio per la ricerca in agricoltura e l'analisi dell'economia agraria (CREA)-Centro di ricerca Ingegneria e Trasformazioni agroalimentari - Monterotondo, Rome, Italy
| | - S Marini
- Stazione Zoologica Anton Dohrn, Naples, Italy
- National Research Council of Italy (CNR), Institute of Marine Sciences, La Spezia, Italy
| | - N Bahamon
- Instituto de Ciencias del Mar (ICM-CSIC), Barcelona, Spain
- Centro de Estudios Avanzados de Blanes (CEAB-CSIC), Blanes, Spain
| | - S Martini
- Sorbonne Université, CNRS, Laboratoire d'Océanographie de Villefranche, Villefranche-sur-mer, France
| | - E Fanelli
- Stazione Zoologica Anton Dohrn, Naples, Italy
- Department of Life and Environmental Sciences, Polytechnic University of Marche, Ancona, Italy
| | - R Danovaro
- Stazione Zoologica Anton Dohrn, Naples, Italy
- Department of Life and Environmental Sciences, Polytechnic University of Marche, Ancona, Italy
| | - S Stefanni
- Stazione Zoologica Anton Dohrn, Naples, Italy
| | | | - G Riccobene
- Istituto Nazionale di Fisica Nucleare (INFN), Laboratori Nazionali del Sud, Catania, Italy
| | - M Hildebrandt
- German Research Center for Artificial Intelligence (DFKI), Bremen, Germany
| | - I Masmitja
- SARTI, Universitat Politècnica de Catalunya (UPC), Barcelona, Spain
| | - J Del Rio
- SARTI, Universitat Politècnica de Catalunya (UPC), Barcelona, Spain
| | - E B Clark
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California, USA
| | - A Branch
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California, USA
| | | | - A T Klesh
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California, USA
| | - M P Schodlok
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California, USA
| |
Collapse
|
13
|
Mallefet J, Duchatelet L, Coubris C. Bioluminescence induction in the ophiuroid Amphiura filiformis (Echinodermata). J Exp Biol 2020; 223:jeb218719. [PMID: 31974222 DOI: 10.1242/jeb.218719] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Accepted: 01/16/2020] [Indexed: 08/26/2023]
Abstract
Bioluminescence is a widespread phenomenon in the marine environment. Among luminous substrates, coelenterazine is the most widespread luciferin, found in eight phyla. The wide phylogenetic coverage of this light-emitting molecule has led to the hypothesis of its dietary acquisition, which has so far been demonstrated in one cnidarian and one lophogastrid shrimp species. Within Ophiuroidea, the dominant class of luminous echinoderms, Amphiura filiformis is a model species known to use coelenterazine as substrate of a luciferin/luciferase luminous system. The aim of this study was to perform long-term monitoring of A. filiformis luminescent capabilities during captivity. Our results show (i) depletion of luminescent capabilities within 5 months when the ophiuroid was fed a coelenterazine-free diet and (ii) a quick recovery of luminescent capabilities when the ophiuroid was fed coelenterazine-supplemented food. The present work demonstrates for the first time a trophic acquisition of coelenterazine in A. filiformis to maintain light emission capabilities.
Collapse
Affiliation(s)
- Jerome Mallefet
- Marine Biology Laboratory, Earth and Life Institute, Université Catholique de Louvain, Croix du Sud 3, 1348 Louvain-La-Neuve, Belgium
| | - Laurent Duchatelet
- Marine Biology Laboratory, Earth and Life Institute, Université Catholique de Louvain, Croix du Sud 3, 1348 Louvain-La-Neuve, Belgium
| | - Constance Coubris
- Marine Biology Laboratory, Earth and Life Institute, Université Catholique de Louvain, Croix du Sud 3, 1348 Louvain-La-Neuve, Belgium
| |
Collapse
|