1
|
Matricardi PM, Potapova E, Panetta V, Lidholm J, Mattsson L, Scala E, Bernardini R, Caffarelli C, Casani A, Cervone R, Chini L, Comberiati P, De Castro G, Miraglia Del Giudice M, Dello Iacono I, Di Rienzo Businco A, Gallucci M, Giannetti A, Moschese V, Varin E, Bianchi A, Calvani M, Frediani T, Macrì F, Maiello N, Paravati F, Pelosi U, Peroni D, Pingitore G, Tosca M, Zicari AM, Ricci G, Asero R, Tripodi S. IgE to cyclophilins in pollen-allergic children: Epidemiologic, clinical, and diagnostic relevance of a neglected panallergen. J Allergy Clin Immunol 2024; 153:1586-1596.e2. [PMID: 38513837 DOI: 10.1016/j.jaci.2024.01.030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 12/25/2023] [Accepted: 01/26/2024] [Indexed: 03/23/2024]
Abstract
BACKGROUND Cyclophilins are ubiquitous panallergens whose epidemiologic, diagnostic, and clinical relevance is largely unknown and whose sensitization is rarely examined in routine allergy practice. OBJECTIVE We investigated the epidemiologic, diagnostic, and clinical relevance of cyclophilins in seasonal allergic rhinitis and its comorbidities. METHODS We examined a random sample of 253 (25%) of 1263 Italian children with seasonal allergic rhinitis from the Panallergens in Pediatrics (PAN-PED) cohort with characterized disease phenotypes. Nested studies of sensitization prevalence, correlation, and allergen extract inhibition were performed in patients sensitized to birch pollen extract but lacking IgE to Bet v 1/2/4 (74/1263) or with highest serum level of IgE to Bet v 1 (26/1263); and in patients with sensitization to various extracts (ragweed, mugwort, pellitory, Plantago, and plane tree), but not to their respective major allergenic molecule, profilins, and polcalcins. IgE to cyclophilin was detected with recombinant Bet v 7, and extract inhibition tests were performed with the same rBet v 7. RESULTS IgE to rBet v 7 was detected in 43 (17%) of 253 patients. It was associated with asthma (P < .028) and oral allergy syndrome (P < .017) in univariate but not multivariate analysis adjusted for IgE to profilins (Phl p 12), PR-10s (Bet v 1), and lipid transfer proteins (Pru p 3). IgE to rBet v 7 was also highly prevalent (47/74, 63%) among patients with unexplained sensitization to birch pollen extract. In patients with unexplained sensitization to ragweed, mugwort, pellitory, Plantago and plane tree pollen, the levels of IgE to those extracts correlated with the levels of IgE to rBet v 7, and they were also significantly inhibited by rBet v 7 (inhibition range 45%-74%). CONCLUSIONS IgE sensitization to cyclophilin is frequent in pollen-allergic patients living in temperate areas and can produce "false" positive outcomes in skin prick and IgE tests to pollen extracts. Molecular diagnostic guidelines should include this panallergen family.
Collapse
MESH Headings
- Humans
- Immunoglobulin E/immunology
- Immunoglobulin E/blood
- Child
- Rhinitis, Allergic, Seasonal/immunology
- Rhinitis, Allergic, Seasonal/epidemiology
- Rhinitis, Allergic, Seasonal/diagnosis
- Rhinitis, Allergic, Seasonal/blood
- Male
- Female
- Cyclophilins/immunology
- Allergens/immunology
- Pollen/immunology
- Adolescent
- Child, Preschool
- Antigens, Plant/immunology
- Italy/epidemiology
- Prevalence
Collapse
Affiliation(s)
- Paolo Maria Matricardi
- Charité-Universitätsmedizin Berlin, a corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, the Department of Pediatric Respiratory Medicine, Immunology and Critical Care Medicine, Berlin, Germany; Institute of Allergology, Charité-Universitätsmedizin Berlin, Berlin, Germany; Department of Allergology and Immunology, Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Berlin, Germany.
| | - Ekaterina Potapova
- Charité-Universitätsmedizin Berlin, a corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, the Department of Pediatric Respiratory Medicine, Immunology and Critical Care Medicine, Berlin, Germany
| | - Valentina Panetta
- Consultancy & Training, Biostatistics, L'altrastatistica, Rome, Italy
| | | | | | - Enrico Scala
- Clinical and Laboratory Molecular Allergy Unit, IDI-IRCCS, Rome, Italy
| | | | - Carlo Caffarelli
- Department of Medicine and Surgery, Clinica Pediatrica, University of Parma, Parma, Italy
| | | | - Rosa Cervone
- Pediatric Unit, San Giuseppe Hospital, Empoli, Italy
| | - Loredana Chini
- UOSD di Immunopatologia ed Allergologia Pediatrica, Policlinico Tor Vergata, Università di Roma Tor Vergata, Rome, Italy
| | - Pasquale Comberiati
- Department of Clinical and Experimental Medicine, Section of Paediatrics, University of Pisa, Pisa, Italy
| | | | - Michele Miraglia Del Giudice
- Dipartimento della Donna, del Bambino e di Chirurgia Generale e Specialistica, Università della Campania Luigi Vanvitelli, Naples, Italy
| | | | | | - Marcella Gallucci
- Pediatric Unit, IRCCS Azienda Ospedaliero, Universitaria di Bologna, Bologna, Italy
| | - Arianna Giannetti
- Pediatric Intermediate Care Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Viviana Moschese
- UOSD di Immunopatologia ed Allergologia Pediatrica, Policlinico Tor Vergata, Università di Roma Tor Vergata, Rome, Italy
| | - Elena Varin
- Allergology Service, San Carlo Clinic, Paderno Dugnano, Milan, Italy
| | | | - Mauro Calvani
- Pediatric Unit, San Camillo Forlanini Hospital, Rome, Italy
| | | | | | - Nunzia Maiello
- Dipartimento della Donna, del Bambino e di Chirurgia Generale e Specialistica, Università della Campania Luigi Vanvitelli, Naples, Italy
| | | | | | - Diego Peroni
- Pediatric Section, Department of Life and Reproduction Sciences, University of Verona, Verona, Italy
| | | | - Mariangela Tosca
- Pulmonary Disease and Allergy Unit, G. Gaslini Hospital, Genoa, Italy
| | | | - Giampaolo Ricci
- Pediatric Unit, IRCCS Azienda Ospedaliero, Universitaria di Bologna, Bologna, Italy
| | - Riccardo Asero
- Ambulatorio di Allergologia, Clinica San Carlo, Paderno Dugnano, Italy
| | - Salvatore Tripodi
- Pediatric Department and Pediatric Allergology Unit, Sandro Pertini Hospital, Rome, Italy
| |
Collapse
|
2
|
Sharma E, Vitte J. A systematic review of allergen cross-reactivity: Translating basic concepts into clinical relevance. THE JOURNAL OF ALLERGY AND CLINICAL IMMUNOLOGY. GLOBAL 2024; 3:100230. [PMID: 38524786 PMCID: PMC10959674 DOI: 10.1016/j.jacig.2024.100230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Revised: 10/29/2023] [Accepted: 01/03/2024] [Indexed: 03/26/2024]
Abstract
Access to the molecular culprits of allergic reactions allows for the leveraging of molecular allergology as a new precision medicine approach-one built on interdisciplinary, basic, and clinical knowledge. Molecular allergology relies on the use of allergen molecules as in vitro tools for the diagnosis and management of allergic patients. It complements the conventional approach based on skin and in vitro allergen extract testing. Major applications of molecular allergology comprise accurate identification of the offending allergen thanks to discrimination between genuine sensitization and allergen cross-reactivity, evaluation of potential severity, patient-tailored choice of the adequate allergen immunotherapy, and prediction of its expected efficacy and safety. Allergen cross-reactivity, defined as the recognition of 2 or more allergen molecules by antibodies or T cells of the same specificity, frequently interferes with allergen extract testing. At the mechanistic level, allergen cross-reactivity depends on the allergen, the host's immune response, and the context of their interaction. The multiplicity of allergen molecules and families adds further difficulty. Understanding allergen cross-reactivity at the immunologic level and translating it into a daily tool for the management of allergic patients is further complicated by the ever-increasing number of characterized allergenic molecules, the lack of dedicated resources, and the need for a personalized, patient-centered approach. Conversely, knowledge sharing paves the way for improved clinical use, innovative diagnostic tools, and further interdisciplinary research. Here, we aimed to provide a comprehensive and unbiased state-of-the art systematic review on allergen cross-reactivity. To optimize learning, we enhanced the review with basic, translational, and clinical definitions, clinical vignettes, and an overview of online allergen databases.
Collapse
Affiliation(s)
| | - Joana Vitte
- Aix-Marseille University, MEPHI, IHU Méditerranée Infection, Marseille, France
- Desbrest Institute of Epidemiology and Public Health (IDESP), University of Montpellier, INSERM, Montpellier, France
- University of Reims Champagne-Ardenne, INSERM UMR-S 1250 P3CELL and University Hospital of Reims, Immunology Laboratory, Reims, France
| |
Collapse
|
3
|
Schmalz S, Mayr V, Shosherova A, Gepp B, Ackerbauer D, Sturm G, Bohle B, Breiteneder H, Radauer C. Isotype-specific binding patterns of serum antibodies to multiple conformational epitopes of Bet v 1. J Allergy Clin Immunol 2021; 149:1786-1794.e12. [PMID: 34740603 DOI: 10.1016/j.jaci.2021.10.026] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 09/27/2021] [Accepted: 10/08/2021] [Indexed: 12/26/2022]
Abstract
BACKGROUND Birch pollen is an important elicitor of respiratory allergy. The major allergen, Bet v 1, binds IgE exclusively via conformational epitopes. OBJECTIVE To identify Bet v 1-specific epitope repertoires of IgE and IgG from birch pollen-allergic and non-allergic subjects. METHODS Chimeric proteins were created by grafting individual epitope-sized, contiguous surface patches of Bet v 1 onto a non-allergenic structural homologue and expressed in Escherichia coli. Binding of IgE, IgG1 and IgG4 from sera of 30 birch pollen-allergic and 11 non-allergic subjects to Bet v 1, 13 chimeric proteins and four bacterial Bet v 1 homologues were measured by ELISA. The proportion of epitope-specific in total Bet v 1-specific IgE and the cross-reactivity of Bet v 1-specific IgE with bacterial homologues were determined by competitive ELISA. RESULTS Thirteen soluble, correctly folded chimeric proteins were produced. IgE from 27/30 birch pollen-allergic patients bound to 1-12 chimeric proteins (median 4.0) with patient-specific patterns. Three chimeras binding IgE from the majority of sera were identified, whose pgrafted patches overlapped with previously published epitopes. Patterns of IgG1 and IgG4 binding to the chimeric proteins did not correspond to the binding patterns of IgE. Sera of 19/30 birch pollen-allergic patients contained low amounts of IgE to bacterial homologues. Bacterial proteins were able to partially inhibit IgE binding to Bet v 1. CONCLUSION Epitopes recognized by Bet v 1-specific antibodies from birch pollen-allergic patients are specific to each patient and differ between IgE, IgG1 and IgG4.
Collapse
Affiliation(s)
- Stefanie Schmalz
- Department of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Vanessa Mayr
- Department of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Alexandra Shosherova
- Department of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Barbara Gepp
- Department of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria; Department Life Science Engineering, University of Applied Sciences Technikum Wien, Vienna Austria
| | - Daniela Ackerbauer
- Department of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Gunter Sturm
- Allergy Outpatient Clinic Reumannplatz, Vienna, Austria; Department of Dermatology, Medical University of Graz, Graz, Austria
| | - Barbara Bohle
- Department of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Heimo Breiteneder
- Department of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Christian Radauer
- Department of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria.
| |
Collapse
|
5
|
The clinical impact of cross-reactions between allergens on allergic skin diseases. Curr Opin Allergy Clin Immunol 2020; 20:374-380. [PMID: 32590506 DOI: 10.1097/aci.0000000000000650] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
PURPOSE OF REVIEW The route of allergen sensing via the skin appears to influence the immune system towards mounting a type 2 response, especially in genetically predisposed individuals. Allergens recognized this way may derive from microbial, animal, food, or other plant sources and trigger atopic dermatitis. Allergens can be grouped into families depending on their structure and function, harboring significant structural and sequence similarities. Cross-reactivity between allergens is believed to arise as a consequence, and to underlie the development of further atopic diseases. RECENT FINDINGS Especially for the plant allergens of the families of PR10-related proteins and profilins, immune cross-reactions have been described. Actual studies support that food and pollen allergens can aggravate skin lesions in patients suffering from atopic dermatitis. Further on, allergens derived from air-borne or skin-borne fungi belong to common allergen families and bear cross-reactivity potential. Cross-reactivity to human homologous proteins, so-called autoallergens, is discussed to contribute to the chronification of atopic dermatitis. SUMMARY Due to high evolutionary conservation, allergic reactions can be triggered by highly homologous members of allergen families on the humoral as well as on the cellular level.
Collapse
|