1
|
Verschut TA, Ng R, Doubovetzky NP, Le Calvez G, Sneep JL, Minnaard AJ, Su CY, Carlsson MA, Wertheim B, Billeter JC. Aggregation pheromones have a non-linear effect on oviposition behavior in Drosophila melanogaster. Nat Commun 2023; 14:1544. [PMID: 36941252 PMCID: PMC10027874 DOI: 10.1038/s41467-023-37046-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Accepted: 02/28/2023] [Indexed: 03/23/2023] Open
Abstract
Female fruit flies (Drosophila melanogaster) oviposit at communal sites where the larvae may cooperate or compete for resources depending on group size. This offers a model system to determine how females assess quantitative social information. We show that the concentration of pheromones found on a substrate increases linearly with the number of adult flies that have visited that site. Females prefer oviposition sites with pheromone concentrations corresponding to an intermediate number of previous visitors, whereas sites with low or high concentrations are unattractive. This dose-dependent decision is based on a blend of 11-cis-Vaccenyl Acetate (cVA) indicating the number of previous visitors and heptanal (a novel pheromone deriving from the oxidation of 7-Tricosene), which acts as a dose-independent co-factor. This response is mediated by detection of cVA by odorant receptor neurons Or67d and Or65a, and at least five different odorant receptor neurons for heptanal. Our results identify a mechanism allowing individuals to transform a linear increase of pheromones into a non-linear behavioral response.
Collapse
Affiliation(s)
- Thomas A Verschut
- Groningen Institute for Evolutionary Life Sciences, University of Groningen, Nijenborgh 7, 9747 AG, Groningen, The Netherlands
- Department of Zoology, Stockholm University, 106 91, Stockholm, Sweden
| | - Renny Ng
- Neurobiology Section, Division of Biological Sciences, University of California, San Diego, La Jolla, CA, 92093, USA
| | - Nicolas P Doubovetzky
- Groningen Institute for Evolutionary Life Sciences, University of Groningen, Nijenborgh 7, 9747 AG, Groningen, The Netherlands
| | - Guillaume Le Calvez
- Stratingh Institute for Chemistry, University of Groningen, Nijenborgh 7, 9747 AG, Groningen, The Netherlands
| | - Jan L Sneep
- Stratingh Institute for Chemistry, University of Groningen, Nijenborgh 7, 9747 AG, Groningen, The Netherlands
| | - Adriaan J Minnaard
- Stratingh Institute for Chemistry, University of Groningen, Nijenborgh 7, 9747 AG, Groningen, The Netherlands
| | - Chih-Ying Su
- Neurobiology Section, Division of Biological Sciences, University of California, San Diego, La Jolla, CA, 92093, USA
| | - Mikael A Carlsson
- Department of Zoology, Stockholm University, 106 91, Stockholm, Sweden
| | - Bregje Wertheim
- Groningen Institute for Evolutionary Life Sciences, University of Groningen, Nijenborgh 7, 9747 AG, Groningen, The Netherlands
| | - Jean-Christophe Billeter
- Groningen Institute for Evolutionary Life Sciences, University of Groningen, Nijenborgh 7, 9747 AG, Groningen, The Netherlands.
| |
Collapse
|
2
|
Tolassy V, Cazalé-Debat L, Houot B, Reynaud R, Heydel JM, Ferveur JF, Everaerts C. Drosophila Free-Flight Odor Tracking is Altered in a Sex-Specific Manner By Preimaginal Sensory Exposure. J Chem Ecol 2023; 49:179-194. [PMID: 36881326 DOI: 10.1007/s10886-023-01416-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 02/20/2023] [Accepted: 02/24/2023] [Indexed: 03/08/2023]
Abstract
In insects such as Drosophila melanogaster, flight guidance is based on converging sensory information provided by several modalities, including chemoperception. Drosophila flies are particularly attracted by complex odors constituting volatile molecules from yeast, pheromones and microbe-metabolized food. Based on a recent study revealing that adult male courtship behavior can be affected by early preimaginal exposure to maternally transmitted egg factors, we wondered whether a similar exposure could affect free-flight odor tracking in flies of both sexes. Our main experiment consisted of testing flies differently conditioned during preimaginal development in a wind tunnel. Each fly was presented with a dual choice of food labeled by groups of each sex of D. melanogaster or D. simulans flies. The combined effect of food with the cis-vaccenyl acetate pheromone (cVA), which is involved in aggregation behavior, was also measured. Moreover, we used the headspace method to determine the "odorant" identity of the different labeled foods tested. We also measured the antennal electrophysiological response to cVA in females and males resulting from the different preimaginal conditioning procedures. Our data indicate that flies differentially modulated their flight response (take off, flight duration, food landing and preference) according to sex, conditioning and food choice. Our headspace analysis revealed that many food-derived volatile molecules diverged between sexes and species. Antennal responses to cVA showed clear sex-specific variation for conditioned flies but not for control flies. In summary, our study indicates that preimaginal conditioning can affect Drosophila free flight behavior in a sex-specific manner.
Collapse
Affiliation(s)
- Vincent Tolassy
- Centre des Sciences du Goût et de l'Alimentation, CNRS UMR6265, INRAE, UMR1324, Université de Bourgogne, 6, Bd Gabriel, 21000, Dijon, France
| | - Laurie Cazalé-Debat
- Centre des Sciences du Goût et de l'Alimentation, CNRS UMR6265, INRAE, UMR1324, Université de Bourgogne, 6, Bd Gabriel, 21000, Dijon, France.,School of Biosciences, University of Birmingham, Edgbaston Park Road, B15 2TT, Birmingham, UK
| | - Benjamin Houot
- Centre des Sciences du Goût et de l'Alimentation, CNRS UMR6265, INRAE, UMR1324, Université de Bourgogne, 6, Bd Gabriel, 21000, Dijon, France.,Institut Gustave Roussel, 114, rue Edouard Vaillant, 94805, Villejuif Cedex, France
| | - Rémy Reynaud
- Centre des Sciences du Goût et de l'Alimentation, CNRS UMR6265, INRAE, UMR1324, Université de Bourgogne, 6, Bd Gabriel, 21000, Dijon, France
| | - Jean-Marie Heydel
- Centre des Sciences du Goût et de l'Alimentation, CNRS UMR6265, INRAE, UMR1324, Université de Bourgogne, 6, Bd Gabriel, 21000, Dijon, France
| | - Jean-François Ferveur
- Centre des Sciences du Goût et de l'Alimentation, CNRS UMR6265, INRAE, UMR1324, Université de Bourgogne, 6, Bd Gabriel, 21000, Dijon, France
| | - Claude Everaerts
- Centre des Sciences du Goût et de l'Alimentation, CNRS UMR6265, INRAE, UMR1324, Université de Bourgogne, 6, Bd Gabriel, 21000, Dijon, France.
| |
Collapse
|
3
|
Kohatsu S, Tanabe N, Yamamoto D, Isono K. Which Sugar to Take and How Much to Take? Two Distinct Decisions Mediated by Separate Sensory Channels. Front Mol Neurosci 2022; 15:895395. [PMID: 35726300 PMCID: PMC9206540 DOI: 10.3389/fnmol.2022.895395] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Accepted: 05/09/2022] [Indexed: 11/13/2022] Open
Abstract
In Drosophila melanogaster, gustatory receptor neurons (GRNs) for sugar taste coexpress various combinations of gustatory receptor (Gr) genes and are found in multiple sites in the body. To determine whether diverse sugar GRNs expressing different combinations of Grs have distinct behavioral roles, we examined the effects on feeding behavior of genetic manipulations which promote or suppress functions of GRNs that express either or both of the sugar receptor genesGr5a (Gr5a+ GRNs) and Gr61a (Gr61a+ GRNs). Cell-population-specific overexpression of the wild-type form of Gr5a (Gr5a+) in the Gr5a mutant background revealed that Gr61a+ GRNs localized on the legs and internal mouthpart critically contribute to food choice but not to meal size decisions, while Gr5a+ GRNs, which are broadly expressed in many sugar-responsive cells across the body with an enrichment in the labella, are involved in both food choice and meal size decisions. The legs harbor two classes of Gr61a expressing GRNs, one with Gr5a expression (Gr5a+/Gr61a+ GRNs) and the other without Gr5aexpression (Gr5a−/Gr61a+ GRNs). We found that blocking the Gr5a+ class in the entire body reduced the preference for trehalose and blocking the Gr5a- class reduced the preference for fructose. These two subsets of GRNsare also different in their central projections: axons of tarsal Gr5a+/Gr61a+ GRNs terminate exclusively in the ventral nerve cord, while some axons of tarsal Gr5a−/Gr61a+ GRNs ascend through the cervical connectives to terminate in the subesophageal ganglion. We propose that tarsal Gr5a+/Gr61a+ GRNs and Gr5a−/Gr61a+ GRNs represent functionally distinct sensory pathways that function differently in food preference and meal-size decisions.
Collapse
Affiliation(s)
- Soh Kohatsu
- Neuro-ICT Laboratory, Advanced ICT Research Institute, National Institute of Information and Communications Technology, Kobe, Japan
- *Correspondence: Soh Kohatsu Kunio Isono
| | - Noriko Tanabe
- Fukuoka Junior College for Kindergarten Teachers, Fukuoka, Japan
| | - Daisuke Yamamoto
- Neuro-ICT Laboratory, Advanced ICT Research Institute, National Institute of Information and Communications Technology, Kobe, Japan
| | - Kunio Isono
- Graduate School of Life Sciences, Tohoku University, Sendai, Japan
- *Correspondence: Soh Kohatsu Kunio Isono
| |
Collapse
|
4
|
Borrero-Echeverry F, Solum M, Trona F, Becher PG, Wallin EA, Bengtsson M, Witzgall P, Lebreton S. The female sex pheromone (Z)-4-undecenal mediates flight attraction and courtship in Drosophila melanogaster. JOURNAL OF INSECT PHYSIOLOGY 2022; 137:104355. [PMID: 35007554 DOI: 10.1016/j.jinsphys.2022.104355] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 10/24/2021] [Accepted: 01/04/2022] [Indexed: 06/14/2023]
Abstract
Specific mate communication and recognition underlies reproduction and hence speciation. Our study provides new insights in Drosophila melanogaster premating olfactory communication. Mate communication evolves during adaptation to ecological niches and makes use of social signals and habitat cues. Female-produced, species-specific volatile pheromone (Z)-4-undecenal (Z4-11Al) and male pheromone (Z)-11-octadecenyl acetate (cVA) interact with food odour in a sex-specific manner. Furthermore, Z4-11Al, which mediates upwind flight attraction in both sexes, also elicits courtship in experienced males. Two isoforms of the olfactory receptor Or69a are co-expressed in the same olfactory sensory neurons. Z4-11Al is perceived via Or69aB, while the food odorant (R)-linalool is a main ligand for the other variant, Or69aA. However, only Z4-11Al mediates courtship in experienced males, not (R)-linalool. Behavioural discrimination is reflected by calcium imaging of the antennal lobe, showing distinct glomerular activation patterns by these two compounds. Male sex pheromone cVA is known to affect male and female courtship at close range, but does not elicit upwind flight attraction as a single compound, in contrast to Z4-11Al. A blend of the food odour vinegar and cVA attracted females, while a blend of vinegar and female pheromone Z4-11Al attracted males, instead. Sex-specific upwind flight attraction to blends of food volatiles and male and female pheromone, respectively, adds a new element to Drosophila olfactory premating communication and is an unambiguous paradigm for identifying the behaviourally active components, towards a more complete concept of food-pheromone odour objects.
Collapse
Affiliation(s)
- Felipe Borrero-Echeverry
- Chemical Ecology Unit, Department of Plant Protection Biology, Swedish University of Agricultural Sciences, 230 53 Alnarp, Sweden; Corporación Colombiana de Investgación Agropecuaria, Agrosavia, Mosquera, Colombia
| | - Marit Solum
- Chemical Ecology Unit, Department of Plant Protection Biology, Swedish University of Agricultural Sciences, 230 53 Alnarp, Sweden
| | - Federica Trona
- Chemical Ecology Unit, Department of Plant Protection Biology, Swedish University of Agricultural Sciences, 230 53 Alnarp, Sweden
| | - Paul G Becher
- Chemical Ecology Unit, Department of Plant Protection Biology, Swedish University of Agricultural Sciences, 230 53 Alnarp, Sweden
| | - Erika A Wallin
- Department of Chemical Engineering, Mid Sweden University, Holmgatan 10, 85170 Sundsvall, Sweden
| | - Marie Bengtsson
- Chemical Ecology Unit, Department of Plant Protection Biology, Swedish University of Agricultural Sciences, 230 53 Alnarp, Sweden
| | - Peter Witzgall
- Chemical Ecology Unit, Department of Plant Protection Biology, Swedish University of Agricultural Sciences, 230 53 Alnarp, Sweden.
| | - Sebastien Lebreton
- Chemical Ecology Unit, Department of Plant Protection Biology, Swedish University of Agricultural Sciences, 230 53 Alnarp, Sweden; IRSEA, Research Institute for Semiochemistry and Applied Ethology, Quartier Salignan, 84400 Apt, France
| |
Collapse
|
5
|
Sleep contributes to preference for novel food odours in Drosophila melanogaster. Sci Rep 2021; 11:9395. [PMID: 33931708 PMCID: PMC8087676 DOI: 10.1038/s41598-021-88967-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Accepted: 04/20/2021] [Indexed: 11/21/2022] Open
Abstract
The importance of sleep in maintaining cognitive functions such as learning and memory has been reported in both vertebrates and invertebrates. Previous studies demonstrated that sleep deprivation impaired the olfactory memory retention of fruit flies as described in the classical conditioning paradigm. Here, we show that sleep deprivation leads to a preference for the odours of the rearing environment in Drosophila melanogaster. Flies whose sleep had been disturbed with periodic rotation stimuli during night-time preferred apple cider vinegar (ACV) to broth, while this preference was lower in flies without sleep deprivation and those rotated during daytime. Experiments using single odours showed an increase in responses to ACV due to sleep deprivation. These results suggest that sleep functions in food odour preference. Flies grown on medium supplemented with ACV showed greater preference for ACV, and those grown with broth supplementation showed a greater preference for broth under sleep-deprived conditions. These results suggest that flies with night-time sleep deprivation become attached to the environment on which they have developed, and that sleep contributes to preference for novel food odours. This study offers an approach to investigating the interaction between sleep and neural disorders concerning cognitive deficits towards novel stimuli.
Collapse
|
6
|
Sato K, Yamamoto D. Contact-Chemosensory Evolution Underlying Reproductive Isolation in Drosophila Species. Front Behav Neurosci 2020; 14:597428. [PMID: 33343311 PMCID: PMC7746553 DOI: 10.3389/fnbeh.2020.597428] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Accepted: 11/11/2020] [Indexed: 11/13/2022] Open
Abstract
The main theme of the review is how changes in pheromone biochemistry and the sensory circuits underlying pheromone detection contribute to mate choice and reproductive isolation. The review focuses primarily on gustatory and non-volatile signals in Drosophila. Premating isolation is prevalent among closely related species. In Drosophila, preference for conspecifics against other species in mate choice underlies premating isolation, and such preference relies on contact chemosensory communications between a female and male along with other biological factors. For example, although D. simulans and D. melanogaster are sibling species that yield hybrids, their premating isolation is maintained primarily by the contrasting effects of 7,11-heptacosadiene (7,11-HD), a predominant female pheromone in D. melanogaster, on males of the two species: it attracts D. melanogaster males and repels D. simulans males. The contrasting preference for 7,11-HD in males of these two species is mainly ascribed to opposite effects of 7,11-HD on neural activities in the courtship decision-making neurons in the male brain: 7,11-HD provokes both excitatory and inhibitory inputs in these neurons and differences in the balance between the two counteracting inputs result in the contrasting preference for 7,11-HD, i.e., attraction in D. melanogaster and repulsion in D. simulans. Introduction of two double bonds is a key step in 7,11-HD biosynthesis and is mediated by the desaturase desatF, which is active in D. melanogaster females but transcriptionally inactivated in D. simulans females. Thus, 7,11-HD biosynthesis diversified in females and 7,11-HD perception diversified in males, yet it remains elusive how concordance of the changes in the two sexes was attained in evolution.
Collapse
Affiliation(s)
| | - Daisuke Yamamoto
- Neuro-Network Evolution Project, Advanced ICT Research Institute, National Institute of Information and Communications Technology, Kobe, Japan
| |
Collapse
|