1
|
Yang Z, Krammer S, Mitländer H, Grund JC, Zirlik S, Wirtz S, Rauh M, Shermeh AS, Finotto S. NFATc1 in CD4 + T cells and CD11c + dendritic cells drives T H2-mediated eosinophilic inflammation in allergic asthma. THE JOURNAL OF ALLERGY AND CLINICAL IMMUNOLOGY. GLOBAL 2025; 4:100355. [PMID: 39629220 PMCID: PMC11613943 DOI: 10.1016/j.jacig.2024.100355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 08/30/2024] [Accepted: 09/03/2024] [Indexed: 12/07/2024]
Abstract
Background Asthma, a chronic lung disease, is a significant public health problem worldwide. It is marked by increased TH2 response resulting in eosinophil accumulation. The pathophysiology of asthma involves various cell types, including epithelial cells, dendritic cells (DCs), innate lymphoid cells, B cells, and effector cells. Nuclear factor of activated T cells, cytoplasmic 1 (NFATc1), a critical transcription factor for immune regulation, is known for its role in T cells and, more recently, in myeloid cells. However, the specific contributions of NFATc1 in T cells and DCs in the context of asthma are not well understood. Objective We explored NFATc1's role in T cells and DCs in modulating TH2 immune responses within the pathophysiology of allergic asthma. Methods We induced asthma in mice lacking Nfatc1 in CD4+ T cells or CD11c+ DCs using house dust mite, thereby enabling investigation into NFATc1's role in both cell types in experimental allergic asthma. Additionally, we examined NFATc1 expression in these cell types and its correlation with blood eosinophil levels in an adult asthma cohort. Results In a house dust mite-induced asthma model, we found that Nfatc1 deficiency either in CD4+ T cells or CD11c+ DCs resulted in reduced TH2-driven eosinophilic inflammation, IgE levels, and mast cell presence in the lung of asthmatic mice. Nfatc1's absence in CD4+ T cells directly hampered TH2 cell polarization and functionality, whereas in CD11c+ DCs, it affected DC differentiation and maturation, thereby weakening T-cell priming, proliferation, and subsequent TH2 differentiation. Correspondingly, translational research indicated significant correlations between CD4+NFATc1+ and CD11c+NFATc1+ cell populations and eosinophil levels in asthmatic patients, but not in healthy controls. Conclusion NFATc1 in T cells and DCs modulates TH2-mediated eosinophilic inflammation in allergic asthma, thus offering insight into asthma pathogenesis and identifying NFATc1 as a potential target for therapeutic intervention.
Collapse
Affiliation(s)
- Zuqin Yang
- Department of Molecular Pneumology, Friedrich-Alexander-University Erlangen-Nürnberg, Universitätsklinikum Erlangen, Erlangen, Germany
| | - Susanne Krammer
- Department of Molecular Pneumology, Friedrich-Alexander-University Erlangen-Nürnberg, Universitätsklinikum Erlangen, Erlangen, Germany
| | - Hannah Mitländer
- Department of Molecular Pneumology, Friedrich-Alexander-University Erlangen-Nürnberg, Universitätsklinikum Erlangen, Erlangen, Germany
| | - Janina C. Grund
- Department of Molecular Pneumology, Friedrich-Alexander-University Erlangen-Nürnberg, Universitätsklinikum Erlangen, Erlangen, Germany
| | - Sabine Zirlik
- Department of Internal Medicine 1, Friedrich-Alexander-University Erlangen-Nürnberg, Universitätsklinikum Erlangen, Erlangen, Germany
| | - Stefan Wirtz
- Department of Internal Medicine 1, Friedrich-Alexander-University Erlangen-Nürnberg, Universitätsklinikum Erlangen, Erlangen, Germany
| | - Manfred Rauh
- Department of Pediatrics, Friedrich-Alexander-University Erlangen-Nürnberg, Universitätsklinikum Erlangen, Erlangen, Germany
| | - Atefeh Sadeghi Shermeh
- Department of Immune Modulation, Friedrich-Alexander-University Erlangen-Nürnberg, Universitätsklinikum Erlangen, Erlangen, Germany
| | - Susetta Finotto
- Department of Molecular Pneumology, Friedrich-Alexander-University Erlangen-Nürnberg, Universitätsklinikum Erlangen, Erlangen, Germany
- Bavarian Cancer Research Center, Erlangen, Germany
- Comprehensive Cancer Center Erlangen-EMN, Erlangen, Germany
| |
Collapse
|
2
|
Malik B, Bartlett NW, Upham JW, Nichol KS, Harrington J, Wark PAB. Severe asthma ILC2s demonstrate enhanced proliferation that is modified by biologics. Respirology 2023; 28:758-766. [PMID: 37114915 PMCID: PMC10946917 DOI: 10.1111/resp.14506] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 03/22/2023] [Indexed: 04/29/2023]
Abstract
BACKGROUND AND OBJECTIVE Type 2 (T2) innate lymphoid cells (ILC2s) contribute to airway inflammation and disease in asthma. We hypothesize that ILC2s isolated from people with severe allergic and eosinophilic asthma would exhibit an enhanced T2 inflammatory activity that would be altered following treatment with mepolizumab and omalizumab. We compare peripheral blood (PB) isolated ILC2's proliferative capacity, IL-5 and IL-13 secretion and phenotype between healthy without asthma (HC), non-asthma allergic (NAA), mild asthma (MA) and severe allergic and eosinophilic asthma (SA) subjects. We then determined the impact of 6 months treatment with either mepolizumab or omalizumab on ILC2s physiology of SA subjects. METHODS ILC2s were sorted and cultured in the presence of IL-2, IL-25, IL-33 and thymic stromal lymphopoietin (TSLP) for 14 days. ILC2s proliferation, phenotypes and functions were assessed using flowcytometry. The ILC2s response was then reassessed following clinically successful treatment of SA subjects with mepolizumab and omalizumab. RESULTS SA ILC2s demonstrated increased proliferative capacity, TSLP receptor (TSLPR), GATA3 and NFATc1 protein expressions and increased IL-5 and IL-13 release. ILC2s were also capable of releasing IL-6 in response to stimulation. Mepolizumab treatment reduced ILC2s proliferative capacity and expression of TSLPR, GATA3 and NFATc1. Both mepolizumab and omalizumab were associated with reduced ILC2s release of IL-5 and IL-13, only mepolizumab reduced IL-6. CONCLUSION ILC2s from severe allergic and eosinophilic asthma demonstrated an active phenotype typified by increased proliferation, TSLPR, GATA3 and NFATc1 expression and increased IL-5, IL-13 and IL-6 release. Mepolizumab reduced markers of ILC2s activation.
Collapse
Affiliation(s)
- Bilal Malik
- Immune Health Program, Hunter Medical Research InstituteUniversity of NewcastleCallaghanNew South WalesAustralia
| | - Nathan W. Bartlett
- Immune Health Program, Hunter Medical Research InstituteUniversity of NewcastleCallaghanNew South WalesAustralia
| | - John W. Upham
- Department of Respiratory MedicinePrincess Alexandra HospitalBrisbaneQueenslandAustralia
| | - Kristy S. Nichol
- Immune Health Program, Hunter Medical Research InstituteUniversity of NewcastleCallaghanNew South WalesAustralia
| | - John Harrington
- Department of Respiratory and Sleep MedicineJohn Hunter HospitalNew Lambton HeightsNew South WalesAustralia
| | - Peter A. B. Wark
- Immune Health Program, Hunter Medical Research InstituteUniversity of NewcastleCallaghanNew South WalesAustralia
- Department of Respiratory and Sleep MedicineJohn Hunter HospitalNew Lambton HeightsNew South WalesAustralia
| |
Collapse
|
3
|
Grund JC, Krammer S, Yang Z, Mitländer H, Rauh M, Zirlik S, Kiefer A, Zimmermann T, Rieker RJ, Geppert CI, Papadopoulos NG, Finotto S. Vitamin D 3 resolved human and experimental asthma via B lymphocyte-induced maturation protein 1 in T cells and innate lymphoid cells. THE JOURNAL OF ALLERGY AND CLINICAL IMMUNOLOGY. GLOBAL 2023; 2:100099. [PMID: 37779516 PMCID: PMC10510005 DOI: 10.1016/j.jacig.2023.100099] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 02/15/2023] [Accepted: 03/04/2023] [Indexed: 10/03/2023]
Abstract
Background Vitamin D3 (VitD3) is known to have immunomodulatory functions, and VitD3 deficiency is associated with more severe asthma. Objective We aimed to assess the immunoregulatory effects of VitD3 food supplementation on asthma manifestation, with particular focus on T cells and type 2 innate lymphoid cells. Methods Preschool children and adult asthmatic cohorts were analyzed in the context of VitD3 supplementation and serum levels. In a murine model of ovalbumin-induced asthma, effects of diet VitD3 sufficiency and deficiency on T cells and type 2 innate lymphoid cells immune mechanisms were investigated. Results We found less severe and better-controlled asthma phenotypes along with reduced need for steroid medication in preschool children and asthmatic adults with VitD3 supplementation. VitD3 serum levels correlated with B lymphocyte-induced maturation protein 1 (Blimp-1) expression in blood peripheral mononuclear cells. VitD3-supplement-fed mice showed decreased asthmatic traits, with a decrease in IgE serum levels, reduced airway mucus, and increased IL-10 production by lung cells. Furthermore, we discovered an upregulation of effector T cells and Blimp-1+ lung tissue-resident memory T cells as well as induction of anti-inflammatory Blimp-1+ lung innate lymphoid cells producing IL-10. Conclusion Supplementing VitD3 resulted in amelioration of clinical asthma manifestations in human studies as well as in experimental allergic asthma, indicating that VitD3 shifts proinflammatory immune responses to anti-inflammatory immune responses via upregulating Blimp-1 in lung innate lymphoid cells and tissue-resident memory cells.
Collapse
Affiliation(s)
- Janina C. Grund
- Department of Molecular Pneumology, Universitätsklinikum Erlangen, Erlangen, Germany
| | - Susanne Krammer
- Department of Molecular Pneumology, Universitätsklinikum Erlangen, Erlangen, Germany
| | - Zuqin Yang
- Department of Molecular Pneumology, Universitätsklinikum Erlangen, Erlangen, Germany
| | - Hannah Mitländer
- Department of Molecular Pneumology, Universitätsklinikum Erlangen, Erlangen, Germany
| | - Manfred Rauh
- Department of Clinical Laboratories, Universitätsklinikum Erlangen, Erlangen, Germany
| | - Sabine Zirlik
- I Medical Clinic, Universitätsklinikum Erlangen, Erlangen, Germany
| | - Alexander Kiefer
- Department of Allergy and Pneumology of the Children’s Hospital, Universitätsklinikum Erlangen, Erlangen, Germany
| | - Theodor Zimmermann
- Department of Allergy and Pneumology of the Children’s Hospital, Universitätsklinikum Erlangen, Erlangen, Germany
| | - Ralf J. Rieker
- Institute of Pathology, Friedrich-Alexander-University Erlangen-Nürnberg, Universitätsklinikum Erlangen, Erlangen, Germany
- Comprehensive Cancer Center Erlangen-EMN (CCC ER-EMN), Erlangen
| | - Carol I. Geppert
- Institute of Pathology, Friedrich-Alexander-University Erlangen-Nürnberg, Universitätsklinikum Erlangen, Erlangen, Germany
- Comprehensive Cancer Center Erlangen-EMN (CCC ER-EMN), Erlangen
| | - Nikolaos G. Papadopoulos
- Allergy and Clinical Immunology Unit, 2nd Pediatric Clinic, National and Kapodistrian University of Athens, Athens, Greece
- Centre for Respiratory Medicine & Allergy, Division of Infection, Immunity & Respiratory Medicine, University of Manchester, Manchester, United Kingdom
| | - Susetta Finotto
- Department of Molecular Pneumology, Universitätsklinikum Erlangen, Erlangen, Germany
- Comprehensive Cancer Center Erlangen-EMN (CCC ER-EMN), Erlangen
| |
Collapse
|
4
|
Srour N, Khan S, Richard S. The Influence of Arginine Methylation in Immunity and Inflammation. J Inflamm Res 2022; 15:2939-2958. [PMID: 35602664 PMCID: PMC9114649 DOI: 10.2147/jir.s364190] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Accepted: 05/06/2022] [Indexed: 12/24/2022] Open
Abstract
Exploration in the field of epigenetics has revealed that protein arginine methyltransferases (PRMTs) contribute to disease, and this has given way to the development of specific small molecule compounds that inhibit arginine methylation. Protein arginine methylation is known to regulate fundamental cellular processes, such as transcription; pre-mRNA splicing and other RNA processing mechanisms; signal transduction, including the anti-viral response; and cellular metabolism. PRMTs are also implicated in the regulation of physiological processes, including embryonic development, myogenesis, and the immune system. Finally, the dysregulation of PRMTs is apparent in cancer, neurodegeneration, muscular disorders, and during inflammation. Herein, we review the functions of PRMTs in immunity and inflammation. We also discuss recent progress with PRMTs regarding the modulation of gene expression related to T and B lymphocyte differentiation, germinal center dynamics, and anti-viral signaling responses, as well as the clinical relevance of using PRMT inhibitors alone or in combination with other drugs to treat cancer, immune, and inflammatory-related diseases.
Collapse
Affiliation(s)
- Nivine Srour
- Segal Cancer Centre, Lady Davis Institute for Medical Research, Jewish General Hospital, Montréal, Québec, H3T 1E2, Canada
- Gerald Bronfman Department of Oncology, and Departments of Biochemistry, Human Genetics, and Medicine, McGill University, Montréal, Québec, H3T 1E2, Canada
| | - Sarah Khan
- Segal Cancer Centre, Lady Davis Institute for Medical Research, Jewish General Hospital, Montréal, Québec, H3T 1E2, Canada
- Gerald Bronfman Department of Oncology, and Departments of Biochemistry, Human Genetics, and Medicine, McGill University, Montréal, Québec, H3T 1E2, Canada
| | - Stephane Richard
- Segal Cancer Centre, Lady Davis Institute for Medical Research, Jewish General Hospital, Montréal, Québec, H3T 1E2, Canada
- Gerald Bronfman Department of Oncology, and Departments of Biochemistry, Human Genetics, and Medicine, McGill University, Montréal, Québec, H3T 1E2, Canada
- Correspondence: Stephane Richard, Email
| |
Collapse
|
5
|
Krammer S, Yang Z, Zimmermann T, Xepapadaki P, Geppert CI, Papadopoulos NG, Finotto S. An Immunoregulatory Role of Interleukin-3 in Allergic Asthma. Front Immunol 2022; 13:821658. [PMID: 35281014 PMCID: PMC8904351 DOI: 10.3389/fimmu.2022.821658] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Accepted: 01/24/2022] [Indexed: 01/31/2023] Open
Abstract
Background Allergic asthma is a chronic airway inflammatory disease associated with airway mucus hyper-production. ILC2 cells, which express the Th2 transcription factor GATA3, have been associated with allergic asthma. The cytokine IL-3 is known to support eosinophil, basophil and mucosal mast cell differentiation and survival; however, its role on T regulatory cells as well as on lung ILC2 and in pediatric asthma needs further investigation. Objectives To investigate the role of IL-3 in preschool children and to explore its therapeutic role in experimental asthma. Methods In a cohort of preschool children with and without asthma, we analyzed the secretion of IL-3 in nasopharyngeal fluid (NPF) and IL-3 receptor (R) alpha chain mRNA expression in peripheral blood mononuclear cells (PBMCs). In a murine model of allergic asthma, we analyzed the phenotype of wild-type untreated and rIL-3 intranasally treated asthmatic mice. Results IL-3 was found downregulated in the nasopharyngeal fluid of children with partially controlled asthma, as compared to control children. Moreover, IL-3 was found induced in phytohemagglutinin (PHA)-stimulated PBMCs from children with asthma and treated with steroids. Finally, IL-3 in NPF directly correlated with the anti-inflammatory molecule sST2 in steroid-treated asthmatic children. Intranasal rIL-3 delivery in vivo during the challenge phase decreased airway mucus production and inflammatory eosinophils. Moreover, rIL-3 given during the challenge phase, reduced lung ST2intGATA3+ILC2, accompanied by an induction of T regulatory cells in the airways. Conclusions IL-3 was found associated with steroid-resolved asthma. Moreover, treatment with rIL-3 resulted in amelioration of airway eosinophilia and mucus production, two main pathophysiological conditions associated with asthma in a murine model of allergic asthma. Thus, rIL-3 opens new strategies for immunotherapy of this disease.
Collapse
Affiliation(s)
- Susanne Krammer
- Department of Molecular Pneumology, Friedrich-Alexander-University (FAU) Erlangen-Nürnberg, Universitätsklinikum Erlangen, Erlangen, Germany
| | - Zuqin Yang
- Department of Molecular Pneumology, Friedrich-Alexander-University (FAU) Erlangen-Nürnberg, Universitätsklinikum Erlangen, Erlangen, Germany
| | - Theodor Zimmermann
- Children's Hospital, Department of Allergy and Pneumology, Friedrich-Alexander-University (FAU) Erlangen-Nürnberg, Universitätsklinikum Erlangen, Erlangen, Germany
| | - Paraskevi Xepapadaki
- Allergy and Clinical Immunology Unit, 2nd Pediatric Clinic, National and Kapodistrian University of Athens, Athens, Greece
| | - Carol I Geppert
- Institute of Pathology, Friedrich-Alexander-University (FAU) Erlangen-Nürnberg, Universitätsklinikum Erlangen, Erlangen, Germany
| | - Nikolaos G Papadopoulos
- Allergy and Clinical Immunology Unit, 2nd Pediatric Clinic, National and Kapodistrian University of Athens, Athens, Greece.,Centre for Respiratory Medicine & Allergy, Division of Infection, Immunity & Respiratory Medicine, University of Manchester, Manchester, United Kingdom
| | - Susetta Finotto
- Department of Molecular Pneumology, Friedrich-Alexander-University (FAU) Erlangen-Nürnberg, Universitätsklinikum Erlangen, Erlangen, Germany
| |
Collapse
|
6
|
Li N, Mirzakhani H, Kiefer A, Koelle J, Vuorinen T, Rauh M, Yang Z, Krammer S, Xepapadaki P, Lewandowska-Polak A, Lukkarinen H, Zhang N, Stanic B, Zimmermann T, Kowalski ML, Jartti T, Bachert C, Akdis M, Papadopoulos NG, Raby BA, Weiss ST, Finotto S. Regulated on Activation, Normal T cell Expressed and Secreted (RANTES) drives the resolution of allergic asthma. iScience 2021; 24:103163. [PMID: 34693221 PMCID: PMC8511896 DOI: 10.1016/j.isci.2021.103163] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 05/25/2021] [Accepted: 09/21/2021] [Indexed: 11/04/2022] Open
Abstract
RANTES is implicated in allergic asthma and in T cell-dependent clearance of infection. RANTES receptor family comprises CCR1, CCR3, and CCR5, which are G-protein-coupled receptors consisting of seven transmembrane helices. Infections with respiratory viruses like Rhinovirus cause induction of RANTES production by epithelial cells. Here, we studied the role of RANTES in the peripheral blood mononuclear cells in cohorts of children with and without asthma and validated and extended this study to the airways of adults with and without asthma. We further translated these studies to a murine model of asthma induced by house dust mite allergen in wild-type RANTES and CCR5-deficient mice. Here we show an unpredicted therapeutic role of RANTES in the resolution of allergen-induced asthma by orchestrating the transition of effector GATA-3+CD4+ T cells into immune-regulatory-type T cells and inflammatory eosinophils into resident eosinophils as well as increased IL-10 production in the lung.
Collapse
Affiliation(s)
- Nina Li
- Department of Molecular Pneumology, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Universitätsklinikum Erlangen, Erlangen, Germany
| | - Hoomann Mirzakhani
- Channing Division of Network Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Alexander Kiefer
- Department of Allergy and Pneumology, Children’s Hospital, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Universitätsklinikum Erlangen, Erlangen, Germany
| | - Julia Koelle
- Department of Molecular Pneumology, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Universitätsklinikum Erlangen, Erlangen, Germany
| | - Tytti Vuorinen
- Medical Microbiology, Turku University Hospital, Institut of Biomedicine, University of Turku, Turku, Finland
| | - Manfred Rauh
- Department of Allergy and Pneumology, Children’s Hospital, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Universitätsklinikum Erlangen, Erlangen, Germany
| | - Zuqin Yang
- Department of Molecular Pneumology, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Universitätsklinikum Erlangen, Erlangen, Germany
| | - Susanne Krammer
- Department of Molecular Pneumology, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Universitätsklinikum Erlangen, Erlangen, Germany
| | - Paraskevi Xepapadaki
- Department of Allergy, 2nd Pediatric Clinic, National and Kapodistrian University of Athens, Athens, Greece
| | | | - Heikki Lukkarinen
- Department of Pediatrics and Adolescent Medicine, Turku University Hospital and University of Turku, Turku, Finland
| | - Nan Zhang
- Upper Airways Research Laboratory, Otorhinolaryngology, University of Gent, Gent, Belgium
| | - Barbara Stanic
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Herman-Burchard-Strasse 9, Davos, Switzerland
| | - Theodor Zimmermann
- Department of Allergy and Pneumology, Children’s Hospital, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Universitätsklinikum Erlangen, Erlangen, Germany
| | - Marek L. Kowalski
- Department of Immunology and Allergy, Medical University of Lodz, Poland
| | - Tuomas Jartti
- Department of Pediatrics and Adolescent Medicine, Turku University Hospital and University of Turku, Turku, Finland
- PEDEGO Research Unit, Medical Research Center, University of Oulu, Oulu, Finland
- Department of Pediatrics and Adolescent Medicine, Oulu University Hospital, Oulu, Finland
| | - Claus Bachert
- Upper Airways Research Laboratory, Otorhinolaryngology, University of Gent, Gent, Belgium
| | - Mübeccel Akdis
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Herman-Burchard-Strasse 9, Davos, Switzerland
| | - Nikolaos G. Papadopoulos
- Department of Allergy, 2nd Pediatric Clinic, National and Kapodistrian University of Athens, Athens, Greece
- Centre for Respiratory Medicine & Allergy, University of Manchester, Manchester, UK
| | - Benjamin A. Raby
- Channing Division of Network Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Scott T. Weiss
- Channing Division of Network Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Susetta Finotto
- Department of Molecular Pneumology, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Universitätsklinikum Erlangen, Erlangen, Germany
| |
Collapse
|