1
|
Zhou J, Luo S, Yao X, Li H, Wen Y. Analysis of changes in the chemokine CXC ligand 13 in serum and cerebrospinal fluid of patients with neuromyelitis optica. Sci Rep 2025; 15:2113. [PMID: 39814995 PMCID: PMC11735840 DOI: 10.1038/s41598-025-85650-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Accepted: 01/06/2025] [Indexed: 01/18/2025] Open
Abstract
To determine correlation between the Extended Disability Status Scale(EDSS) grade and the progression of neuromyelitis optica(NMO) patients' levels of the chemokine CXC ligand 13 (CXCL13) in their serum and cerebrospinal fluid. This research included forty-one patients diagnosed with neuromyelitis optica(NMO) and forty-three patients diagnosed with multiple sclerosis(MS). The control group consisted of forty-three non-inflammatory neurological disease(NND) patients. The patients' serum and cerebrospinal fluid CXCL13 levels were measured. Patients in NMO group and MS group had serum and cerebrospinal fluid with CXCL13 levels that were substantially greater than those in the NND group. When comparing the CXCL13 levels of blood and cerebrospinal fluid between patients in the EDSS ≥ 3.5 group and the EDSS<3.5 group, with the EDSS ≥ 3.5 group's CXCL13 levels being greater(P<0.05). There was a positive correlation between the serum CXCL13 and the EDSS grades of both the NMO and MS groups(r = 0.884, P < 0.001); The cerebrospinal fluid CXCL13 of the NMO and MS groups showed a positive correlation with their EDSS grades(r = 0.681, P < 0.001). EDSS scores of NMO patients were positively correlated with their serum BLC-1 (r = 0.896, P < 0.001); EDSS scores of NMO patients were positively correlated with their cerebrospinal fluid BLC-1 (r = 0.678, P < 0.001).EDSS scores of MS patients were positively correlated with their serum BLC-1 (r = 0.852, P < 0.001); EDSS scores of MS patients were positively correlated with their cerebrospinal fluid BLC-1 (r = 0.613, P < 0.001). Serum and cerebrospinal fluid levels of CXCL13 may serve as an important biomarker for the presumptive assessment of the degree of disability in NMO and MS disease, providing a basis for the treatment and control of the disease.
Collapse
Affiliation(s)
- Juan Zhou
- Department of Neurology, Chenzhou First People's Hospital, Chenzhou City, 423000, Hunan Province, China
| | - Shalin Luo
- Department of Neurology, Chenzhou First People's Hospital, Chenzhou City, 423000, Hunan Province, China
| | - Xiaoxi Yao
- Department of Neurology, Chenzhou First People's Hospital, Chenzhou City, 423000, Hunan Province, China
| | - Haipeng Li
- Department of Neurology, Chenzhou First People's Hospital, Chenzhou City, 423000, Hunan Province, China
| | - Ying Wen
- Department of Neurology, Chenzhou First People's Hospital, Chenzhou City, 423000, Hunan Province, China.
- Institute of Neuromedicine, Chenzhou First People's Hospital, Chenzhou First People's Hospital, No. 102 Luojiajing, Chenzhou City, 423000, Hunan Province, China.
| |
Collapse
|
2
|
Palma-Rojo E, Barquinero JF, Pérez-Alija J, González JR, Armengol G. Differential biological effect of low doses of ionizing radiation depending on the radiosensitivity in a cell line model. Int J Radiat Biol 2024; 100:1527-1540. [PMID: 39288264 DOI: 10.1080/09553002.2024.2400514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 07/18/2024] [Accepted: 08/22/2024] [Indexed: 09/19/2024]
Abstract
PURPOSE Exposure to low doses (LD) of ionizing radiation (IR), such as the ones employed in computed tomography (CT) examination, can be associated with cancer risk. However, cancer development could depend on individual radiosensitivity. In the present study, we evaluated the differences in the response to a CT-scan radiation dose of 20 mGy in two lymphoblastoid cell lines with different radiosensitivity. MATERIALS AND METHODS Several parameters were studied: gene expression, DNA damage, and its repair, as well as cell viability, proliferation, and death. Results were compared with those after a medium dose of 500 mGy. RESULTS After 20 mGy of IR, the radiosensitive (RS) cell line showed an increase in DNA damage, and higher cell proliferation and apoptosis, whereas the radioresistant (RR) cell line was insensitive to this LD. Interestingly, the RR cell line showed a higher expression of an antioxidant gene, which could be used by the cells as a protective mechanism. After a dose of 500 mGy, both cell lines were affected by IR but with significant differences. The RS cells presented an increase in DNA damage and apoptosis, but a decrease in cell proliferation and cell viability, as well as less antioxidant response. CONCLUSIONS A differential biological effect was observed between two cell lines with different radiosensitivity, and these differences are especially interesting after a CT scan dose. If this is confirmed by further studies, one could think that individuals with radiosensitivity-related genetic variants may be more vulnerable to long-term effects of IR, potentially increasing cancer risk after LD exposure.
Collapse
Affiliation(s)
- Elia Palma-Rojo
- Unitat d'Antropologia Biològica, Departament de Biologia Animal, Biologia Vegetal i Ecologia, Universitat Autònoma de Barcelona, Bellaterra, Catalonia, Spain
| | - Joan-Francesc Barquinero
- Unitat d'Antropologia Biològica, Departament de Biologia Animal, Biologia Vegetal i Ecologia, Universitat Autònoma de Barcelona, Bellaterra, Catalonia, Spain
| | - Jaime Pérez-Alija
- Servei de Radiofísica i Radioprotecció, Hospital de la Santa Creu i Sant Pau, Barcelona, Catalonia, Spain
| | - Juan R González
- Barcelona Institute for Global Health (ISGlobal), Barcelona, Spain
| | - Gemma Armengol
- Unitat d'Antropologia Biològica, Departament de Biologia Animal, Biologia Vegetal i Ecologia, Universitat Autònoma de Barcelona, Bellaterra, Catalonia, Spain
| |
Collapse
|
3
|
Li Q, Peng G, Liu H, Wang L, Lu R, Li L. Molecular mechanisms of secretory autophagy and its potential role in diseases. Life Sci 2024; 347:122653. [PMID: 38663839 DOI: 10.1016/j.lfs.2024.122653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 04/17/2024] [Indexed: 04/29/2024]
Abstract
Autophagy is a cellular degradation system that recycles or degrades damaged organelles, viral particles, and aggregated proteins through the lysosomal pathway. Autophagy plays an indispensable role in cellular homeostasis and communication processes. An interesting aspect is that autophagy also mediates the secretion of cellular contents, a process known as secretory autophagy. Secretory autophagy differs from macroautophagy, which sequesters recruited proteins, organelles, or viral particles into autophagosomes and degrades these sequesters in lysosomes, while the secretory autophagy pathway participates in the extracellular export of cellular contents sequestered by autophagosomes through autophagy and endosomal modulators. Recent evidence reveals that secretory autophagy is pivotal in the occurrence and progression of diseases. In this review, we summarize the molecular mechanisms of secretory autophagy. Furthermore, we review the impact of secretory autophagy on diseases, including cancer, viral infectious diseases, neurodegenerative diseases, and cardiovascular diseases. Considering the pleiotropic actions of secretory autophagy on diseases, studying the mechanism of secretory autophagy may help to understand the relevant pathophysiological processes.
Collapse
Affiliation(s)
- Qin Li
- Institute of Pharmacy and Pharmacology, University of South China, Hengyang 421001, Hunan, China
| | - Guolong Peng
- Institute of Pharmacy and Pharmacology, University of South China, Hengyang 421001, Hunan, China
| | - Huimei Liu
- Institute of Pharmacy and Pharmacology, University of South China, Hengyang 421001, Hunan, China
| | - Liwen Wang
- Institute of Pharmacy and Pharmacology, University of South China, Hengyang 421001, Hunan, China
| | - Ruirui Lu
- Institute of Pharmacy and Pharmacology, University of South China, Hengyang 421001, Hunan, China.
| | - Lanfang Li
- Institute of Pharmacy and Pharmacology, University of South China, Hengyang 421001, Hunan, China.
| |
Collapse
|
4
|
Cheng Y, Chen Y, Li K, Liu S, Pang C, Gao L, Xie J, Wenjing LV, Yu H, Deng B. How inflammation dictates diabetic peripheral neuropathy: An enlightening review. CNS Neurosci Ther 2024; 30:e14477. [PMID: 37795833 PMCID: PMC11017439 DOI: 10.1111/cns.14477] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 08/28/2023] [Accepted: 09/08/2023] [Indexed: 10/06/2023] Open
Abstract
BACKGROUND Diabetic peripheral neuropathy (DPN) constitutes a debilitating complication associated with diabetes. Although, the past decade has seen rapid developments in understanding the complex etiology of DPN, there are no approved therapies that can halt the development of DPN, or target the damaged nerve. Therefore, clarifying the pathogenesis of DPN and finding effective treatment are the crucial issues for the clinical management of DPN. AIMS This review is aiming to summary the current knowledge on the pathogenesis of DPN, especially the mechanism and application of inflammatory response. METHODS We systematically summarized the latest studies on the pathogenesis and therapeutic strategies of diabetic neuropathy in PubMed. RESULTS In this seminal review, the underappreciated role of immune activation in the progression of DPN is scrutinized. Novel insights into the inflammatory regulatory mechanisms of DPN have been unearthed, illuminating potential therapeutic strategies of notable clinical significance. Additionally, a nuanced examination of DPN's complex etiology, including aberrations in glycemic control and insulin signaling pathways, is presented. Crucially, an emphasis has been placed on translating these novel understandings into tangible clinical interventions to ameliorate patient outcomes. CONCLUSIONS This review is distinguished by synthesizing cutting-edge mechanisms linking inflammation to DPN and identifying innovative, inflammation-targeted therapeutic approaches.
Collapse
Affiliation(s)
- Yifan Cheng
- Center for Rehabilitation Medicine, Department of Neurology, Zhejiang Provincial People's HospitalAffiliated People's Hospital, Hangzhou Medical CollegeHangzhouChina
| | - Yinuo Chen
- Department of NeurologyFirst Affiliated Hospital of Wenzhou Medical UniversityWenzhouZhejiang ProvinceChina
- First School of Clinical MedicineWenzhou Medical UniversityWenzhouZhejiang ProvinceChina
| | - Kezheng Li
- Department of NeurologyFirst Affiliated Hospital of Wenzhou Medical UniversityWenzhouZhejiang ProvinceChina
- First School of Clinical MedicineWenzhou Medical UniversityWenzhouZhejiang ProvinceChina
| | - Shuwei Liu
- First School of Clinical MedicineWenzhou Medical UniversityWenzhouZhejiang ProvinceChina
| | - Chunyang Pang
- Department of NeurologyFirst Affiliated Hospital of Wenzhou Medical UniversityWenzhouZhejiang ProvinceChina
| | - Lingfei Gao
- Department of NeurologyFirst Affiliated Hospital of Wenzhou Medical UniversityWenzhouZhejiang ProvinceChina
| | - Jiali Xie
- Department of Neurology, Shanghai East HospitalTongji UniversityShanghaiP.R. China
| | - L. V. Wenjing
- Department of GeriatricsThe Affiliated Hospital of Qingdao UniversityQingdaoShandong ProvinceChina
| | - Huan Yu
- Department of PediatricsSecond Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical UniversityWenzhouChina
| | - Binbin Deng
- Department of NeurologyFirst Affiliated Hospital of Wenzhou Medical UniversityWenzhouZhejiang ProvinceChina
- First School of Clinical MedicineWenzhou Medical UniversityWenzhouZhejiang ProvinceChina
| |
Collapse
|
5
|
Miyazawa R, Fujimori J, Atobe Y, Nakashima I. CSF CXCL13 is elevated in patients with CIDP and may reflect higher disease activity. J Neuroimmunol 2023; 385:578238. [PMID: 37925900 DOI: 10.1016/j.jneuroim.2023.578238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 09/29/2023] [Accepted: 10/30/2023] [Indexed: 11/07/2023]
Abstract
To evaluate B-cell involvement in chronic inflammatory demyelinating polyradiculoneuropathy (CIDP), 11 patients with CIDP, 8 patients with Guillain-Barré syndrome and 13 patients with idiopathic normal pressure hydrocephalus (iNPH) were studied. CSF cytokine and chemokine (IL-10, IL-15, TNF-α, TGF-β1, GM-CSF, BAFF, CXCL10, and CXCL13) levels were measured by ELISA. The CSF CXCL13 level was significantly higher in patients with CIDP than in those with iNPH. The CSF CXCL13 level was significantly higher in CIDP patients with higher annualized relapse rates and higher modified Rankin scale scores. The CSF CXCL13 level is elevated in CIDP, especially in those with higher disease activity.
Collapse
Affiliation(s)
- Rin Miyazawa
- School of Medicine, Tohoku Medical and Pharmaceutical University, Sendai, Japan
| | - Juichi Fujimori
- Division of Neurology, Tohoku Medical and Pharmaceutical University, Sendai, Japan.
| | - Yuri Atobe
- Division of Neurology, Tohoku Medical and Pharmaceutical University, Sendai, Japan
| | - Ichiro Nakashima
- Division of Neurology, Tohoku Medical and Pharmaceutical University, Sendai, Japan
| |
Collapse
|
6
|
Jo YR, Oh Y, Kim YH, Shin YK, Kim HR, Go H, Shin J, Park HJ, Koh H, Kim JK, Shin JE, Lee KE, Park HT. Adaptive autophagy reprogramming in Schwann cells during peripheral demyelination. Cell Mol Life Sci 2023; 80:34. [PMID: 36622429 PMCID: PMC9829575 DOI: 10.1007/s00018-022-04683-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 12/23/2022] [Accepted: 12/26/2022] [Indexed: 01/10/2023]
Abstract
The myelin sheath is an essential structure for the rapid transmission of electrical impulses through axons, and peripheral myelination is a well-programmed postnatal process of Schwann cells (SCs), the myelin-forming peripheral glia. SCs transdifferentiate into demyelinating SCs (DSCs) to remove the myelin sheath during Wallerian degeneration after axonal injury and demyelinating neuropathies, and macrophages are responsible for the degradation of myelin under both conditions. In this study, the mechanism by which DSCs acquire the ability of myelin exocytosis was investigated. Using serial ultrastructural evaluation, we found that autophagy-related gene 7-dependent formation of a "secretory phagophore (SP)" and tubular phagophore was necessary for exocytosis of large myelin chambers by DSCs. DSCs seemed to utilize myelin membranes for SP formation and employed p62/sequestosome-1 (p62) as an autophagy receptor for myelin excretion. In addition, the acquisition of the myelin exocytosis ability of DSCs was associated with the decrease in canonical autolysosomal flux and was demonstrated by p62 secretion. Finally, this SC demyelination mechanism appeared to also function in inflammatory demyelinating neuropathies. Our findings show a novel autophagy-mediated myelin clearance mechanism by DSCs in response to nerve damage.
Collapse
Affiliation(s)
- Young Rae Jo
- Peripheral Neuropathy Research Center (PNRC), Department of Molecular Neuroscience, College of Medicine, Department of Translational Biomedical Sciences, Graduate School of Dong-A University, Dong-A University, Busan, 49201 Republic of Korea
| | - Yuna Oh
- Advanced Analysis Center, Korea Institute of Science and Technology (KIST), Hwarang-ro 14-gil, Seongbuk-gu, Seoul, 02792 Republic of Korea
| | - Young Hee Kim
- Peripheral Neuropathy Research Center (PNRC), Department of Molecular Neuroscience, College of Medicine, Department of Translational Biomedical Sciences, Graduate School of Dong-A University, Dong-A University, Busan, 49201 Republic of Korea
| | - Yoon Kyung Shin
- Peripheral Neuropathy Research Center (PNRC), Department of Molecular Neuroscience, College of Medicine, Department of Translational Biomedical Sciences, Graduate School of Dong-A University, Dong-A University, Busan, 49201 Republic of Korea
| | - Hye Ran Kim
- Peripheral Neuropathy Research Center (PNRC), Department of Molecular Neuroscience, College of Medicine, Department of Translational Biomedical Sciences, Graduate School of Dong-A University, Dong-A University, Busan, 49201 Republic of Korea
| | - Hana Go
- Peripheral Neuropathy Research Center (PNRC), Department of Molecular Neuroscience, College of Medicine, Department of Translational Biomedical Sciences, Graduate School of Dong-A University, Dong-A University, Busan, 49201 Republic of Korea
| | - Jaekyoon Shin
- Department of Molecular and Cellular Biology, College of Medicine, Sungkyunkwan University, Suwon-Si, 16419 Republic of Korea
| | - Hye Ji Park
- Department of Pharmacology, College of Medicine, Dong-A University, Busan, 49201 Republic of Korea
| | - Hyongjong Koh
- Department of Pharmacology, College of Medicine, Dong-A University, Busan, 49201 Republic of Korea
| | - Jong Kuk Kim
- Department of Neurology, College of Medicine, Dong-A University, Busan, 49201 Republic of Korea
| | - Jung Eun Shin
- Peripheral Neuropathy Research Center (PNRC), Department of Molecular Neuroscience, College of Medicine, Department of Translational Biomedical Sciences, Graduate School of Dong-A University, Dong-A University, Busan, 49201 Republic of Korea
| | - Kyung Eun Lee
- Advanced Analysis Center, Korea Institute of Science and Technology (KIST), Hwarang-ro 14-gil, Seongbuk-gu, Seoul, 02792 Republic of Korea
| | - Hwan Tae Park
- Peripheral Neuropathy Research Center (PNRC), Department of Molecular Neuroscience, College of Medicine, Department of Translational Biomedical Sciences, Graduate School of Dong-A University, Dong-A University, Busan, 49201 Republic of Korea
| |
Collapse
|
7
|
Chatzis L, Goules AV, Stergiou IE, Voulgarelis M, Tzioufas AG, Kapsogeorgou EK. Serum, but Not Saliva, CXCL13 Levels Associate With Infiltrating CXCL13+ Cells in the Minor Salivary Gland Lesions and Other Histologic Parameters in Patients With Sjögren's Syndrome. Front Immunol 2021; 12:705079. [PMID: 34484201 PMCID: PMC8416055 DOI: 10.3389/fimmu.2021.705079] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Accepted: 08/03/2021] [Indexed: 11/23/2022] Open
Abstract
Recent studies suggest that elevated CXCL13 serum levels in patients with primary Sjögren’s syndrome (pSS) associate with minor salivary gland (MSG) histologic features, disease severity, as well as high-risk status for non-Hodgkin lymphoma (NHL) development and NHL itself. In contrast, limited discriminative value of CXCL13 saliva levels has been reported. Prompt by these reports, we sought to validate the clinical utility of CXCL13 by investigating potential correlations of serum and saliva levels with MSG histopathologic [including CXCL13+-cell number, severity of infiltrates and germinal center (GC) formation], serologic and clinical parameters, as well as NHL. CXCL13 levels were evaluated in paired serum and saliva specimens of 45 pSS patients (15 with NHL; pSS-associated NHL: SSL), 11 sicca-controls (sicca-complaining individuals with negative MSG biopsy and negative autoantibody profile), 10 healthy individuals (healthy-controls) and 6 non-SS-NHLs. CXCL13+-cells were measured in paired MSG-tissues of 22 of pSS patients studied (including 7 SSLs) and all sicca-controls. CXCL13 serum levels were significantly increased in pSS and SSL patients compared to sicca- and healthy-controls and were positively correlated with the CXCL13+-cell number and biopsy focus-score. Serum CXCL13 was significantly higher in pSS patients with GCs, rheumatoid factor, hypocomplementemia, high disease activity, NHL and in high-risk patients for NHL development. CXCL13 saliva levels were significantly increased in SSL patients (compared to non-SS-NHLs), patients with GCs and in high-risk for NHL patients. Univariate analysis revealed that CXCL13 serum, but not saliva, levels were associated with lymphoma, an association that did not survive multivariate analysis. Conclusively, our findings confirm that serum, but not saliva, levels of CXCL13 are associated with histologic, serologic and clinical features indicative of more severe pSS.
Collapse
Affiliation(s)
- Loukas Chatzis
- Department of Pathophysiology, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece.,Institute for Autoimmune Systemic and Neurological Diseases, Athens, Greece
| | - Andreas V Goules
- Department of Pathophysiology, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece.,Institute for Autoimmune Systemic and Neurological Diseases, Athens, Greece
| | - Ioanna E Stergiou
- Department of Pathophysiology, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece.,Institute for Autoimmune Systemic and Neurological Diseases, Athens, Greece
| | - Michael Voulgarelis
- Department of Pathophysiology, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece.,Institute for Autoimmune Systemic and Neurological Diseases, Athens, Greece
| | - Athanasios G Tzioufas
- Department of Pathophysiology, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece.,Institute for Autoimmune Systemic and Neurological Diseases, Athens, Greece
| | - Efstathia K Kapsogeorgou
- Department of Pathophysiology, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece.,Institute for Autoimmune Systemic and Neurological Diseases, Athens, Greece
| |
Collapse
|
8
|
Trolese MC, Mariani A, Terao M, de Paola M, Fabbrizio P, Sironi F, Kurosaki M, Bonanno S, Marcuzzo S, Bernasconi P, Trojsi F, Aronica E, Bendotti C, Nardo G. CXCL13/CXCR5 signalling is pivotal to preserve motor neurons in amyotrophic lateral sclerosis. EBioMedicine 2020; 62:103097. [PMID: 33161233 PMCID: PMC7670099 DOI: 10.1016/j.ebiom.2020.103097] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 10/13/2020] [Accepted: 10/13/2020] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND CXCL13 is a B and T lymphocyte chemokine that mediates neuroinflammation through its receptor CXCR5. This chemokine is highly expressed by motoneurons (MNs) in Amyotrophic Lateral Sclerosis (ALS) SOD1G93A (mSOD1) mice during the disease, particularly in fast-progressing mice. Accordingly, in this study, we investigated the role of this chemokine in ALS. METHODS We used in vitro and in vivo experimental paradigms derived from ALS mice and patients to investigate the expression level and distribution of CXCL13/CXCR5 axis and its role in MN death and disease progression. Moreover, we compared the levels of CXCL13 in the CSF and serum of ALS patients and controls. FINDINGS CXCL13 and CXCR5 are overexpressed in the spinal MNs and peripheral axons in mSOD1 mice. CXCL13 inhibition in the CNS of ALS mice resulted in the exacerbation of motor impairment (n = 4/group;Mean_Diff.=27.81) and decrease survival (n = 14_Treated:19.2 ± 1.05wks, n = 17_Controls:20.2 ± 0.6wks; 95% CI: 0.4687-1.929). This was corroborated by evidence from primary spinal cultures where the inhibition or activation of CXCL13 exacerbated or prevented the MN loss. Besides, we found that CXCL13/CXCR5 axis is overexpressed in the spinal cord MNs of ALS patients, and CXCL13 levels in the CSF discriminate ALS (n = 30) from Multiple Sclerosis (n = 16) patients with a sensitivity of 97.56%. INTERPRETATION We hypothesise that MNs activate CXCL13 signalling to attenuate CNS inflammation and prevent the neuromuscular denervation. The low levels of CXCL13 in the CSF of ALS patients might reflect the MN dysfunction, suggesting this chemokine as a potential clinical adjunct to discriminate ALS from other neurological diseases. FUNDING Vaccinex, Inc.; Regione Lombardia (TRANS-ALS).
Collapse
Affiliation(s)
- Maria Chiara Trolese
- Laboratory of Molecular Neurobiology, Department of Neuroscience, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Via Mario Negri 2, Milan 20156, Italy
| | - Alessandro Mariani
- Laboratory of Biology of Neurodegenerative Disorders, Department of Neuroscience, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Via Mario Negri 2, Milan 20156, Italy
| | - Mineko Terao
- Laboratory of Molecular Biology, Department of Biochemistry and Molecular Pharmacology, Istituto di Ricerche Farmacologiche IRCCS, Via Mario Negri 2, Milan 20156, Italy
| | - Massimiliano de Paola
- Laboratory of Biology of Neurodegenerative Disorders, Department of Neuroscience, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Via Mario Negri 2, Milan 20156, Italy
| | - Paola Fabbrizio
- Laboratory of Molecular Neurobiology, Department of Neuroscience, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Via Mario Negri 2, Milan 20156, Italy
| | - Francesca Sironi
- Laboratory of Molecular Neurobiology, Department of Neuroscience, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Via Mario Negri 2, Milan 20156, Italy
| | - Mami Kurosaki
- Laboratory of Molecular Biology, Department of Biochemistry and Molecular Pharmacology, Istituto di Ricerche Farmacologiche IRCCS, Via Mario Negri 2, Milan 20156, Italy
| | - Silvia Bonanno
- Neurology IV-Neuroimmunology and Neuromuscular Diseases Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Via Celoria 11, Milan 20133, Italy
| | - Stefania Marcuzzo
- Neurology IV-Neuroimmunology and Neuromuscular Diseases Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Via Celoria 11, Milan 20133, Italy
| | - Pia Bernasconi
- Neurology IV-Neuroimmunology and Neuromuscular Diseases Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Via Celoria 11, Milan 20133, Italy
| | - Francesca Trojsi
- Department of Advanced Medical and Surgical Sciences, University of Campania "Luigi Vanvitelli", P.zza Miraglia 2, Naples 80138, Italy
| | - Eleonora Aronica
- Department of Pathology, Academic Medic\\\al Centre, University of Amsterdam, Meibergdreef 9, Amsterdam 1105 AZ, Netherlands
| | - Caterina Bendotti
- Laboratory of Molecular Neurobiology, Department of Neuroscience, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Via Mario Negri 2, Milan 20156, Italy.
| | - Giovanni Nardo
- Laboratory of Molecular Neurobiology, Department of Neuroscience, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Via Mario Negri 2, Milan 20156, Italy.
| |
Collapse
|