1
|
Adeyemi D, Arokoyo D, Hamed M, Dare A, Oyedokun P, Akhigbe R. Cardiometabolic Disorder and Erectile Dysfunction. Cell Biochem Biophys 2024; 82:1751-1762. [PMID: 38907942 DOI: 10.1007/s12013-024-01361-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Accepted: 06/12/2024] [Indexed: 06/24/2024]
Abstract
Erectile dysfunction (ED), which is defined as the inability to attain and maintain a satisfactory penile erection to sufficiently permit sexual intercourse, is a consequence and also a cause of cardiometabolic disorders like diabetes mellitus, systemic hypertension, central obesity, and dyslipidemia. Although there are mounting and convincing pieces of evidence in the literature linking ED and cardiometabolic disorders, impairment of nitric oxide-dependent vasodilatation seems to be the primary signaling pathway. Studies have also implicated the suppression of circulating testosterone, increased endothelin-1, and hyperactivation of Ang II/ATIr in the pathogenesis of ED and cardiometabolic disorders. This study provides comprehensive details of the association between cardiometabolic disorders and ED and highlights the mechanisms involved. This would open areas to be explored as therapeutic targets in the management of ED and cardiometabolic disorders. It also provides sufficient evidence establishing the need for the management of cardiometabolic disorders as an adjunct therapy in the management of ED.
Collapse
Affiliation(s)
- Damilare Adeyemi
- Department of Physiology, Faculty of Basic Medical Sciences, College of Health Sciences, Osun State University, Osogbo, Osun State, Nigeria
| | - Dennis Arokoyo
- Department of Physiology, Federal University of Technology, Akure, Ondo State, Nigeria
| | - Moses Hamed
- Department of Medical Laboratory Sciences, Afe Babalola University, Ado Ekiti, Ekiti State, Nigeria
- The Brainwill Laboratories, Osogbo, Osun State, Nigeria
- Reproductive Biology and Toxicology Research Laboratory, Oasis of Grace Hospital, Osogbo, Osun State, Nigeria
| | - Ayobami Dare
- School of Medicine, University of Missouri, Columbia, MO, 65201, USA
| | - Precious Oyedokun
- Reproductive Biology and Toxicology Research Laboratory, Oasis of Grace Hospital, Osogbo, Osun State, Nigeria
- Department of Physiology, Ladoke Akintola University of Technology, Ogbomoso, Oyo State, Nigeria
| | - Roland Akhigbe
- Reproductive Biology and Toxicology Research Laboratory, Oasis of Grace Hospital, Osogbo, Osun State, Nigeria.
- Department of Physiology, Ladoke Akintola University of Technology, Ogbomoso, Oyo State, Nigeria.
| |
Collapse
|
2
|
Zhu B, Niu Y, Guo H, Jin X, Liu F. Pyroptosis and inflammation‑mediated endothelial dysfunction may act as key factors in the development of erectile dysfunction (Review). Mol Med Rep 2023; 28:165. [PMID: 37449500 PMCID: PMC10407613 DOI: 10.3892/mmr.2023.13052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Accepted: 05/12/2023] [Indexed: 07/18/2023] Open
Abstract
Erectile dysfunction (ED) is a prevalent disease that causes sexual dysfunction in males. Inflammation‑induced endothelial dysfunction is a fundamental pathophysiological symptom of ED, which is impacted by cell death. Pyroptosis is a type of programmed cell death mediated by the inflammasome that was discovered in inflammatory disorders. The activation of nucleotide‑binding oligomerization domain‑like receptors, particularly downstream inflammatory factors, such as IL‑1β and IL‑18, is indicative of caspase‑dependent pyroptosis. Although the underlying mechanisms of pyroptosis have been investigated in several disorders, the role of pyroptosis in ED remains to be fully elucidated. At present, studies on pyroptosis have focused on improving the understanding of ED pathogenesis and promoting the development of novel therapeutic options. The present review article aimed to discuss the literature surrounding the mechanisms underlying pyroptosis, and summarize the role of pyroptosis in the development and progression of inflammation‑mediated ED.
Collapse
Affiliation(s)
- Bingbing Zhu
- Department of Human Anatomy, School of Basic Medical Science, Xinjiang Medical University, Urumqi, Xinjiang Uygur Autonomous Region 830011, P.R. China
- Xinjiang Key Laboratory of Molecular Biology of Endemic Diseases, Urumqi, Xinjiang Uygur Autonomous Region 830011, P.R. China
| | - Yangjiu Niu
- Department of Human Anatomy, School of Basic Medical Science, Xinjiang Medical University, Urumqi, Xinjiang Uygur Autonomous Region 830011, P.R. China
- Xinjiang Key Laboratory of Molecular Biology of Endemic Diseases, Urumqi, Xinjiang Uygur Autonomous Region 830011, P.R. China
| | - Haoqiang Guo
- Department of Human Anatomy, School of Basic Medical Science, Xinjiang Medical University, Urumqi, Xinjiang Uygur Autonomous Region 830011, P.R. China
- Xinjiang Key Laboratory of Molecular Biology of Endemic Diseases, Urumqi, Xinjiang Uygur Autonomous Region 830011, P.R. China
| | - Xiufang Jin
- Department of Human Anatomy, School of Basic Medical Science, Xinjiang Medical University, Urumqi, Xinjiang Uygur Autonomous Region 830011, P.R. China
- Xinjiang Key Laboratory of Molecular Biology of Endemic Diseases, Urumqi, Xinjiang Uygur Autonomous Region 830011, P.R. China
| | - Fengxia Liu
- Department of Human Anatomy, School of Basic Medical Science, Xinjiang Medical University, Urumqi, Xinjiang Uygur Autonomous Region 830011, P.R. China
- Xinjiang Key Laboratory of Molecular Biology of Endemic Diseases, Urumqi, Xinjiang Uygur Autonomous Region 830011, P.R. China
| |
Collapse
|
3
|
Zhu B, Niu Y, Niu L, Zhang X, Liu F. Exploring the application of sildenafil for high-fat diet-induced erectile dysfunction based on interleukin-18-mediated NLRP3/Caspase-1 signaling pathway. Sex Med 2023; 11:qfad044. [PMID: 37636019 PMCID: PMC10460117 DOI: 10.1093/sexmed/qfad044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 07/10/2023] [Accepted: 07/11/2023] [Indexed: 08/29/2023] Open
Abstract
Background Inflammation is a key risk factor for heart disease and has also been linked to erectile dysfunction (ED). Sildenafil is a phosphodiesterase type 5 inhibitor with a strong antioxidant effect. Interleukin (IL)-18 is a proinflammatory factor. Excessive production and release of IL-18 disrupt the balance between IL-18 and IL-18 binding proteins in certain inflammatory diseases, leading to the occurrence of pathological inflammation. Aim We evaluated the effects of sildenafil on erectile function in a rat model of high-fat diet-induced ED. Methods Male Sprague Dawley rats (6 weeks old) were divided into 5 groups: control, ED, sildenafil, IL-18, and IL-18 + sildenafil. Subsequently, intracavernous pressure and mean arterial pressure were used to assess the erectile function of these rats. The expression of endothelial nitric oxide synthase, pyroptosis factors, and the ratio of smooth muscle cells and collagen fibers were evaluated in the serum and corpora tissue. Outcomes Exploring the role and mechanism of sildenafil in ED through NLRP3-mediated pyroptosis pathway. Results In comparison to the ED and IL-18 groups, there were statistically significant increases in the ratio of intracavernous pressure to mean arterial pressure, endothelial nitric oxide synthase expression, and the ratio of smooth muscle cells to collagen fibers following sildenafil intervention (P < .05). The sildenafil group and IL-18 + sildenafil group also showed statistically significant decreases the expression of NLRP3, caspase-1, and gasdermin D (P < .05). Clinical Implications Sildenafil can improve erectile dysfunction by inhibiting inflammation. Strengths and Limitations Strengths are that the relationship between pyroptosis and ED has been verified through in vitro and in vivo experiments. The limitation is that the conclusions drawn from animal and cells experiments need to be confirmed in clinical research. Conclusion Sildenafil may reduce the effect of IL-18-induced inflammation in high-fat diet-induced ED rats through NLRP3/caspase-1 pyroptosis pathway.
Collapse
Affiliation(s)
- Bingbing Zhu
- Department of Human Anatomy, School of Basic Medical Science, Xinjiang Medical University, Urumqi, Xinjiang Uygur Autonomous Region, 830011, China
| | - Yangjiu Niu
- Department of Human Anatomy, School of Basic Medical Science, Xinjiang Medical University, Urumqi, Xinjiang Uygur Autonomous Region, 830011, China
| | - Lipan Niu
- Department of Human Anatomy, School of Basic Medical Science, Xinjiang Medical University, Urumqi, Xinjiang Uygur Autonomous Region, 830011, China
| | - Xijia Zhang
- Department of Human Anatomy, School of Basic Medical Science, Xinjiang Medical University, Urumqi, Xinjiang Uygur Autonomous Region, 830011, China
| | - Fengxia Liu
- Department of Human Anatomy, School of Basic Medical Science, Xinjiang Medical University, Urumqi, Xinjiang Uygur Autonomous Region, 830011, China
| |
Collapse
|
4
|
Sun T, Xu W, Wang J, Song J, Wang T, Wang S, Liu K, Liu J. Paeonol ameliorates diabetic erectile dysfunction by inhibiting HMGB1/RAGE/NF-kB pathway. Andrology 2023; 11:344-357. [PMID: 35678254 DOI: 10.1111/andr.13203] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Revised: 04/29/2022] [Accepted: 06/02/2022] [Indexed: 01/18/2023]
Abstract
BACKGROUND The management of diabetes mellitus-induced erectile dysfunction (DMED) is progressively becoming tricky due to the surge in the number of patients and the poor efficiency of phosphodiesterase type 5 inhibitors in DMED. Paeonol (Pae), as a traditional Chinese medicine, has been more and more widely used in the treatment of diabetic complications. However, whether Pae could be a potential therapeutic drug of DMED needs to be further evaluated. OBJECTIVES To investigate the pharmacological effect and possible mechanism of Pae in the treatment of DMED. METHODS Intraperitoneal streptozotocin injection and an apomorphine test were used to construct the model of DMED. Seventeen DMED rats were divided into two groups: DMED group (n = 8) and DMED+Pae group (Pae; 100 mg/kg/d; oral administration; n = 9). In addition, there were still 10 normal age-matched male rats as control group. Four weeks later, the cavernous nerve electric stimulation was carried out to measure the erectile response. Moreover, the corpus cavernosum smooth muscle cells (CCSMCs) were primarily isolated and exposed to high glucose (HG) stimulation, Pae treatment and glycyrrhizin (GL; the selective inhibitor of HMGB1). After an incubation for 1 week, the CCSMCs were harvested for detection. RESULTS The impairment of erectile function was observed in DMED rats compared with control samples, accompanied by the upregulation of HMGB1/RAGE/NF-κB Pathway. The lower nitric oxide and cGMP level and the higher level of inflammation, fibrosis, and apoptosis were also observed in DMED rats. It showed contrast that Pae treatment could improve the erectile function, as well as histologic alteration and related molecular changes. In addition, Pae could downregulate the HMGB1/RAGE/NF-κB pathway to regulate the apoptosis and inflammation levels of CCSMCs in high-glucose conditions, which is similar to the results of GL treatment. CONCLUSION Pae alleviated ED in DMED rats, likely by inhibiting HMGB1/RAGE/NF-κB Pathway, inflammatory, apoptosis, and fibrotic activity, and moderating endothelial dysfunction. Our study provide evidence for a potential new therapy for DMED.
Collapse
Affiliation(s)
- Taotao Sun
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wenchao Xu
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jiaxin Wang
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jingyu Song
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Tao Wang
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shaogang Wang
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Kang Liu
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jihong Liu
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
5
|
Sobrano Fais R, Menezes da Costa R, Carvalho Mendes A, Mestriner F, Comerma‐Steffensen SG, Tostes RC, Simonsen U, Silva Carneiro F. NLRP3 activation contributes to endothelin-1-induced erectile dysfunction. J Cell Mol Med 2022; 27:1-14. [PMID: 36515571 PMCID: PMC9806301 DOI: 10.1111/jcmm.17463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2021] [Revised: 05/30/2022] [Accepted: 06/04/2022] [Indexed: 12/15/2022] Open
Abstract
In the present study, we hypothesized that endothelin (ET) receptors (ETA and ETB ) stimulation, through increased calcium and ROS formation, leads to Nucleotide Oligomerization Domain-Like Receptor Family, Pyrin Domain Containing 3 (NLRP3) activation. Intracavernosal pressure (ICP/MAP) was measured in C57BL/6 (WT) mice. Functional and immunoblotting assays were performed in corpora cavernosa (CC) strips from WT, NLRP3-/- and caspase-/- mice in the presence of ET-1 (100 nM) and vehicle, MCC950, tiron, BAPTA AM, BQ123, or BQ788. ET-1 reduced the ICP/MAP in WT mice, and MCC950 prevented the ET-1 effect. ET-1 decreased CC ACh-, sodium nitroprusside (SNP)-induced relaxation, and increased caspase-1 expression. BQ123 an ETA receptor antagonist reversed the effect. The ETB receptor antagonist BQ788 also reversed ET-1 inhibition of ACh and SNP relaxation. Additionally, tiron, BAPTA AM, and NLRP3 genetic deletion prevented the ET-1-induced loss of ACh and SNP relaxation. Moreover, BQ123 diminished CC caspase-1 expression, while BQ788 increased caspase-1 and IL-1β levels in a concentration-dependent manner (100 nM-10 μM). Furthermore, tiron and BAPTA AM prevented ET-1-induced increase in caspase-1. In addition, BAPTA AM blocked ET-1-induced ROS generation. In conclusion, ET-1-induced erectile dysfunction depends on ETA - and ETB -mediated activation of NLRP3 in mouse CC via Ca2+ -dependent ROS generation.
Collapse
Affiliation(s)
- Rafael Sobrano Fais
- Department of Pharmacology, Ribeirao Preto Medical SchoolUniversity of Sao PauloRibeirao PretoBrazil,Division of Pulmonary, Critical Care, and Sleep MedicineNational Jewish HealthDenverColoradoUSA
| | | | - Allan Carvalho Mendes
- Department of Pharmacology, Ribeirao Preto Medical SchoolUniversity of Sao PauloRibeirao PretoBrazil
| | - Fabíola Mestriner
- Department of Pharmacology, Ribeirao Preto Medical SchoolUniversity of Sao PauloRibeirao PretoBrazil
| | | | - Rita C. Tostes
- Department of Pharmacology, Ribeirao Preto Medical SchoolUniversity of Sao PauloRibeirao PretoBrazil
| | - Ulf Simonsen
- Department of Biomedicine, Pulmonary and Cardiovascular PharmacologyAarhus UniversityAarhusDenmark
| | - Fernando Silva Carneiro
- Department of Pharmacology, Ribeirao Preto Medical SchoolUniversity of Sao PauloRibeirao PretoBrazil
| |
Collapse
|
6
|
Zhao W, Sun J, Yao LY, Hang D, Li YQ, Chen CP, Zhou YW, Chen X, Tao T, Wei LS, Zheng YY, Ge X, Li CJ, Xin ZC, Pan Y, Wang XZ, He WQ, Zhang XN, Yao B, Zhu MS. MYPT1 reduction is a pathogenic factor of erectile dysfunction. Commun Biol 2022; 5:744. [PMID: 35879418 PMCID: PMC9314386 DOI: 10.1038/s42003-022-03716-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Accepted: 07/14/2022] [Indexed: 11/09/2022] Open
Abstract
Erectile dysfunction (ED) is closely associated with smooth muscle dysfunction, but its underlying mechanisms remains incompletely understood. We here reported that the reduced expression of myosin phosphatase target subunit 1 (MYPT1), the main regulatory unit of myosin light chain phosphatase, was critical for the development of vasculogenic ED. Male MYPT1 knockout mice had reduced fertility and the penises displayed impaired erections as evidenced by reduced intracavernous pressure (ICP). The penile smooth muscles of the knockout mice displayed enhanced response to G-Protein Couple Receptor agonism and depolarization contractility and resistant relaxation. We further identified a natural compound lotusine that increased the MYPT1 expression by inhibiting SIAH1/2 E3 ligases-mediated protein degradation. This compound sufficiently restored the ICP and improved histological characters of the penile artery of Mypt1 haploinsufficiency mice. In diabetic ED mice (db/db), the decreased expression of MYPT1 was measured, and ICP was improved by lotusine treatment. We conclude that the reduction of MYPT1 is the major pathogenic factor of vasculogenic ED. The restoration of MYPT1 by lotusine improved the function of injured penile smooth muscles, and could be a novel strategy for ED therapy.
Collapse
Affiliation(s)
- Wei Zhao
- Jinling Hospital Department of Reproductive Medical Center affiliated Sch Med, State Key Laboratory of Pharmaceutical Biotechnology and Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, Nanjing, China
| | - Jie Sun
- Jinling Hospital Department of Reproductive Medical Center affiliated Sch Med, State Key Laboratory of Pharmaceutical Biotechnology and Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, Nanjing, China
| | - Liang-Yu Yao
- Department of Urology, the First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Dong Hang
- Department of Epidemiology and Biostatistics, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Ye-Qiong Li
- Jinling Hospital Department of Reproductive Medical Center affiliated Sch Med, State Key Laboratory of Pharmaceutical Biotechnology and Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, Nanjing, China
| | - Cai-Ping Chen
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China
| | - Yu-Wei Zhou
- Jinling Hospital Department of Reproductive Medical Center affiliated Sch Med, State Key Laboratory of Pharmaceutical Biotechnology and Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, Nanjing, China
| | - Xin Chen
- Jinling Hospital Department of Reproductive Medical Center affiliated Sch Med, State Key Laboratory of Pharmaceutical Biotechnology and Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, Nanjing, China
| | - Tao Tao
- Jinling Hospital Department of Reproductive Medical Center affiliated Sch Med, State Key Laboratory of Pharmaceutical Biotechnology and Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, Nanjing, China
| | - Li-Sha Wei
- Jinling Hospital Department of Reproductive Medical Center affiliated Sch Med, State Key Laboratory of Pharmaceutical Biotechnology and Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, Nanjing, China
| | - Yan-Yan Zheng
- Jinling Hospital Department of Reproductive Medical Center affiliated Sch Med, State Key Laboratory of Pharmaceutical Biotechnology and Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, Nanjing, China
| | - Xie Ge
- Jinling Hospital Department of Reproductive Medical Center affiliated Sch Med, State Key Laboratory of Pharmaceutical Biotechnology and Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, Nanjing, China
| | - Chao-Jun Li
- Jinling Hospital Department of Reproductive Medical Center affiliated Sch Med, State Key Laboratory of Pharmaceutical Biotechnology and Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, Nanjing, China
| | - Zhong-Cheng Xin
- Andrology Center, Peking University First Hospital, Peking University, Beijing, China
| | - Yang Pan
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Xin-Zhu Wang
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Wei-Qi He
- Cambridge-Suda (CAM-SU) Genomic Resource Center, Soochow University, Suzhou, China
| | - Xue-Na Zhang
- Jinling Hospital Department of Reproductive Medical Center affiliated Sch Med, State Key Laboratory of Pharmaceutical Biotechnology and Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, Nanjing, China.
| | - Bing Yao
- Jinling Hospital Department of Reproductive Medical Center affiliated Sch Med, State Key Laboratory of Pharmaceutical Biotechnology and Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, Nanjing, China.
| | - Min-Sheng Zhu
- Jinling Hospital Department of Reproductive Medical Center affiliated Sch Med, State Key Laboratory of Pharmaceutical Biotechnology and Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, Nanjing, China.
| |
Collapse
|
7
|
Xu X, Huang X, Zhang L, Huang X, Qin Z, Hua F. Adiponectin protects obesity-related glomerulopathy by inhibiting ROS/NF-κB/NLRP3 inflammation pathway. BMC Nephrol 2021; 22:218. [PMID: 34107901 PMCID: PMC8191043 DOI: 10.1186/s12882-021-02391-1] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2020] [Accepted: 05/05/2021] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Adiponectin is an adipocytokine that plays a key regulatory role in glucose and lipid metabolism in obesity. The prevalence of obesity has led to an increase in the incidence of obesity-related glomerulopathy (ORG). This study aimed to identify the protective role of adiponectin in ORG. METHODS Small-interfering RNA (siRNA) against the gene encoding adiponectin was transfected into podocytes. The oxidative stress level was determined using a fluorometric assay. Apoptosis was analyzed by flow cytometry. The expressions of podocyte markers and pyrin domain containing protein 3 (NLRP3) inflammasome-related proteins were measured by qRT-PCR, immunohistochemistry, and Western blot. RESULTS Podocytes treated with palmitic acid (PA) showed downregulated expressions of podocyte markers, increased apoptosis, upregulated levels of NLRP3 inflammasome-related proteins, increased production of inflammatory cytokines (IL-18 and IL-1β), and induced activation of NF-κB as compared to the vehicle-treated controls. Decreased adiponectin expression was observed in the serum samples from high fat diet (HFD)-fed mice. Decreased podocin expression and upregulated NLRP3 expression were observed in the kidney samples from high fat diet (HFD)-fed mice. Treatment with adiponectin or the NLRP3 inflammasome inhibitor, MCC950, protected cultured podocytes against podocyte apoptosis and inflammation. Treatment with adiponectin protected mouse kidney tissues against decreased podocin expression and upregulated NLRP3 expression. The knockout of adiponectin gene by siRNA increased ROS production, resulting in the activation of NLRP3 inflammasome and the phosphorylation of NF-κB in podocytes. Pyrrolidine dithiocarbamate, an NF-κB inhibitor, prevented adiponectin from ameliorating FFA-induced podocyte injury and NLRP3 activation. CONCLUSIONS Our study showed that adiponectin ameliorated PA-induced podocyte injury in vitro and HFD-induced injury in vivo via inhibiting the ROS/NF-κB/NLRP3 pathway. These data suggest the potential use of adiponectin for the prevention and treatment of ORG.
Collapse
Affiliation(s)
- Xiaohong Xu
- Department of Endocrinology, The Third Affiliated Hospital of Soochow University, No.185 Bureau Front Street, 213003, Changzhou City, China
- Department of Nephrology, The Affiliated Suqian Hospital of Xuzhou Medical University, Suqian City, China
- Department of Nephrology, Suqian People's Hospital, Nanjing Drum Tower Hospital Group, Suqian City, China
| | - Xiaolin Huang
- Department of Endocrinology, The Third Affiliated Hospital of Soochow University, No.185 Bureau Front Street, 213003, Changzhou City, China
| | - Liexiang Zhang
- Department of Neurosurgery, The Affiliated Suqian Hospital of Xuzhou Medical University, Suqian City, China
- Department of Neurosurgery, Suqian People's Hospital, Nanjing Drum Tower Hospital Group, Suqian City, China
| | - Xiaoli Huang
- Department of Endocrinology, The Third Affiliated Hospital of Soochow University, No.185 Bureau Front Street, 213003, Changzhou City, China
| | - Zihan Qin
- Department of Endocrinology, The Third Affiliated Hospital of Soochow University, No.185 Bureau Front Street, 213003, Changzhou City, China
| | - Fei Hua
- Department of Endocrinology, The Third Affiliated Hospital of Soochow University, No.185 Bureau Front Street, 213003, Changzhou City, China.
| |
Collapse
|
8
|
Chen ZB, Li G, Lin H, Jiang J, Jiang R. Low androgen status inhibits erectile function by increasing pyroptosis in rat corpus cavernosum. Andrology 2021; 9:1264-1274. [PMID: 33657666 DOI: 10.1111/andr.12995] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2020] [Revised: 02/01/2021] [Accepted: 02/26/2021] [Indexed: 12/12/2022]
Abstract
BACKGROUND The mechanism of erectile dysfunction (ED) caused by low androgen status is not fully understood. OBJECTIVES To investigate whether low androgen status inhibits erectile function of rats by inducing pyroptosis in the corpus cavernosum (CC). MATERIALS AND METHODS Thirty-six eight-weeks-old healthy male Sprague-Dawley rats were equally divided into six groups: sham-operated group (4w sham, 8w sham), castration group (4w cast, 8w cast), and castration + testosterone (T) group (4w cast + T, 8w cast + T). The rats in castration + T groups were injected with testosterone propionate subcutaneously every other day. After 4 and 8 weeks, the ratio of maximum intracavernous pressure (ICPmax)/mean arterial pressure (MAP), the level of serum T, the concentration of nitric oxide (NO) and interleukin-1β (IL-1β), the expression of NOD-like receptor pyrin domain containing 3 (NLRP3), apoptosis-associated speck-like protein containing a caspase activation and recruitment domain (ASC), Caspase-1 p20, gasdermin D-N (GSDMD-N), transforming growth factor β1 (TGF-β1), collagen-I, and collagen-III, the ratio of smooth muscle/collagen (SM/C), and the proportion of pyroptotic cells in the CC were analyzed. RESULTS The ratio of ICPmax/MAP (3/5 V) and SM/C, the level of NO and serum T was significantly decreased in castration groups when compared to other groups (p < 0.01). NLRP3, ASC, Caspase-1, and GSDMD were mainly expressed in the cytoplasm of smooth muscle cells (SMCs) and endothelial cells (ECs) in the CC. The expression of NLRP3, ASC, Caspase-1p20, GSDMD-N, IL-1β, TGF-β1, collagen-I, and collagen-III was significantly increased in castration groups when compared with other groups (p < 0.01). The proportion of pyroptotic cells in the CC was increased significantly in castration groups when compared with other groups (p < 0.05). DISCUSSION AND CONCLUSION Low androgen status inhibits erectile function of rats by promoting CC fibrosis and reducing NO synthesis through pyroptosis of SMCs and ECs in the CC.
Collapse
Affiliation(s)
- Zhi-Bin Chen
- Department of Urology, the Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
| | - Ge Li
- Department of Urology, the Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
| | - Haocheng Lin
- Department of Urology and Andrology, Peking University Third Hospital, Beijing, China
| | - Jun Jiang
- Department of Thyroid Surgery, the Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
| | - Rui Jiang
- Department of Urology, the Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China.,Nephropathy Clinical Medical Research Center of Sichuan Province, Luzhou, Sichuan, China
| |
Collapse
|
9
|
de Oliveira AA, Nunes KP. Hypertension and Erectile Dysfunction: Breaking Down the Challenges. Am J Hypertens 2021; 34:134-142. [PMID: 32866225 DOI: 10.1093/ajh/hpaa143] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2020] [Revised: 07/15/2020] [Accepted: 08/29/2020] [Indexed: 02/07/2023] Open
Abstract
A diagnostic of hypertension increases the risk of erectile dysfunction (ED); likewise, ED can be an early sign of hypertension. In both cases, there is evidence that endothelial dysfunction is a common link between the 2 conditions. During hypertension, the sustained and widespread release of procontractile factors (e.g., angiotensin II, endothelin 1, and aldosterone) impairs the balance between vasoconstrictors and vasodilators and, in turn, detrimentally impacts vascular and erectile structures. This prohypertensive state associates with an enhancement in the generation of reactive oxygen species, which is not compensated by internal antioxidant mechanisms. Recently, the innate immune system, mainly via Toll-like receptor 4, has also been shown to actively contribute to the pathophysiology of hypertension and ED not only by inducing oxidative stress but also by sustaining a low-grade inflammatory state. Furthermore, some drugs used to treat hypertension can cause ED and, consequently, reduce compliance with the prescribed pharmacotherapy. To break down these challenges, in this review, we focus on discussing the well-established as well as the emerging mechanisms linking hypertension and ED with an emphasis on the signaling network of the vasculature and corpora cavernosa, the vascular-like structure of the penis.
Collapse
Affiliation(s)
- Amanda Almeida de Oliveira
- Laboratory of Vascular Physiology, Department of Biomedical and Chemical Engineering and Sciences, Florida Institute of Technology, Melbourne, Florida, USA
| | - Kenia Pedrosa Nunes
- Laboratory of Vascular Physiology, Department of Biomedical and Chemical Engineering and Sciences, Florida Institute of Technology, Melbourne, Florida, USA
| |
Collapse
|
10
|
Piesche M, Roos J, Kühn B, Fettel J, Hellmuth N, Brat C, Maucher IV, Awad O, Matrone C, Comerma Steffensen SG, Manolikakes G, Heinicke U, Zacharowski KD, Steinhilber D, Maier TJ. The Emerging Therapeutic Potential of Nitro Fatty Acids and Other Michael Acceptor-Containing Drugs for the Treatment of Inflammation and Cancer. Front Pharmacol 2020; 11:1297. [PMID: 33013366 PMCID: PMC7495092 DOI: 10.3389/fphar.2020.01297] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Accepted: 08/05/2020] [Indexed: 12/13/2022] Open
Abstract
Nitro fatty acids (NFAs) are endogenously generated lipid mediators deriving from reactions of unsaturated electrophilic fatty acids with reactive nitrogen species. Furthermore, Mediterranean diets can be a source of NFA. These highly electrophilic fatty acids can undergo Michael addition reaction with cysteine residues, leading to post-translational modifications (PTM) of selected regulatory proteins. Such modifications are capable of changing target protein function during cell signaling or in biosynthetic pathways. NFA target proteins include the peroxisome proliferator-activated receptor γ (PPAR-γ), the pro-inflammatory and tumorigenic nuclear factor-κB (NF-κB) signaling pathway, the pro-inflammatory 5-lipoxygenases (5-LO) biosynthesis pathway as well as soluble epoxide hydrolase (sEH), which is essentially involved in the regulation of vascular tone. In several animal models of inflammation and cancer, the therapeutic efficacy of well-tolerated NFA has been demonstrated. This has already led to clinical phase II studies investigating possible therapeutic effects of NFA in subjects with pulmonary arterial hypertension. Albeit Michael acceptors feature a broad spectrum of bioactivity, they have for a rather long time been avoided as drug candidates owing to their presumed unselective reactivity and toxicity. However, targeted covalent modification of regulatory proteins by Michael acceptors became recognized as a promising approach to drug discovery with the recent FDA approvals of the cancer therapeutics, afatanib (2013), ibrutinib (2013), and osimertinib (2015). Furthermore, the Michael acceptor, neratinib, a dual inhibitor of the human epidermal growth factor receptor 2 and epidermal growth factor receptor, was recently approved by the FDA (2017) and by the EMA (2018) for the treatment of breast cancer. Finally, a number of further Michael acceptor drug candidates are currently under clinical investigation for pharmacotherapy of inflammation and cancer. In this review, we focus on the pharmacology of NFA and other Michael acceptor drugs, summarizing their potential as an emerging class of future antiphlogistics and adjuvant in tumor therapeutics.
Collapse
Affiliation(s)
- Matthias Piesche
- Biomedical Research Laboratories, Medicine Faculty, Catholic University of Maule, Talca, Chile.,Oncology Center, Medicine Faculty, Catholic University of Maule, Talca, Chile
| | - Jessica Roos
- Department of Safety of Medicinal Products and Medical Devices, Paul-Ehrlich-Institut (Federal Institute for Vaccines and Biomedicines), Langen, Germany.,Department of Anesthesiology, Intensive Care Medicine and Pain Therapy, University Hospital Frankfurt, Goethe University Frankfurt, Frankfurt, Germany
| | - Benjamin Kühn
- Institute of Pharmaceutical Chemistry, Goethe-University, Frankfurt am Main, Germany
| | - Jasmin Fettel
- Institute of Pharmaceutical Chemistry, Goethe-University, Frankfurt am Main, Germany
| | - Nadine Hellmuth
- Department of Anesthesiology, Intensive Care Medicine and Pain Therapy, University Hospital Frankfurt, Goethe University Frankfurt, Frankfurt, Germany
| | - Camilla Brat
- Department of Anesthesiology, Intensive Care Medicine and Pain Therapy, University Hospital Frankfurt, Goethe University Frankfurt, Frankfurt, Germany
| | - Isabelle V Maucher
- Institute of Pharmaceutical Chemistry, Goethe-University, Frankfurt am Main, Germany
| | - Omar Awad
- Department of Safety of Medicinal Products and Medical Devices, Paul-Ehrlich-Institut (Federal Institute for Vaccines and Biomedicines), Langen, Germany
| | - Carmela Matrone
- Division of Pharmacology, Department of Neuroscience, School of Medicine, University of Naples Federico II, Naples, Italy
| | - Simon Gabriel Comerma Steffensen
- Department of Biomedicine, Medicine Faculty, Aarhus University, Aarhus, Denmark.,Animal Physiology, Department of Biomedical Sciences, Veterinary Faculty, Central University of Venezuela, Maracay, Venezuela
| | - Georg Manolikakes
- Department of Organic Chemistry, Technical University Kaiserslautern, Kaiserslautern, Germany
| | - Ulrike Heinicke
- Department of Anesthesiology, Intensive Care Medicine and Pain Therapy, University Hospital Frankfurt, Goethe University Frankfurt, Frankfurt, Germany
| | - Kai D Zacharowski
- Department of Anesthesiology, Intensive Care Medicine and Pain Therapy, University Hospital Frankfurt, Goethe University Frankfurt, Frankfurt, Germany
| | - Dieter Steinhilber
- Institute of Pharmaceutical Chemistry, Goethe-University, Frankfurt am Main, Germany
| | - Thorsten J Maier
- Department of Safety of Medicinal Products and Medical Devices, Paul-Ehrlich-Institut (Federal Institute for Vaccines and Biomedicines), Langen, Germany.,Department of Anesthesiology, Intensive Care Medicine and Pain Therapy, University Hospital Frankfurt, Goethe University Frankfurt, Frankfurt, Germany
| |
Collapse
|