1
|
Šimon M, Kaić A, Potočnik K. Unveiling Genetic Potential for Equine Meat Production: A Bioinformatics Approach. Animals (Basel) 2024; 14:2441. [PMID: 39199974 PMCID: PMC11350750 DOI: 10.3390/ani14162441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 07/27/2024] [Accepted: 08/15/2024] [Indexed: 09/01/2024] Open
Abstract
In view of the predicted significant increase in global meat production, alternative sources such as horsemeat are becoming increasingly important due to their lower environmental impact and high nutritional value. This study aimed to identify SNP markers on the GeneSeek® Genomic Profiler™ Equine (Neogen, Lansing, MI, USA) that are important for horsemeat production traits. First, orthologous genes related to meat yield in cattle and common genes between horses and cattle within QTLs for body size and weight were identified. Markers for these genes were then evaluated based on predicted variant consequences, GERP scores, and positions within constrained elements and orthologous regulatory regions in pigs. A total of 268 markers in 57 genes related to meat production were analyzed. This resulted in 27 prioritized SNP markers in 22 genes, including notable markers in LCORL, LASP1, IGF1R, and MSTN. These results will benefit smallholder farmers by providing genetic insights for selective breeding that could improve meat yield. This study also supports future large-scale genetic analyses such as GWAS and Genomic Best Linear Unbiased Prediction (GBLUP). The results of this study may be helpful in improving the accuracy of genomic breeding values. However, limitations include reliance on bioinformatics without experimental validation. Future research can validate these markers and consider a wider range of traits to ensure accuracy in equine breeding.
Collapse
Affiliation(s)
- Martin Šimon
- Department of Animal Science, Biotechnical Faculty, University of Ljubljana, Groblje 3, 1230 Domžale, Slovenia; (M.Š.); (K.P.)
| | - Ana Kaić
- Department of Animal Science and Technology, Faculty of Agriculture, University of Zagreb, Svetošimunska 25, 10000 Zagreb, Croatia
| | - Klemen Potočnik
- Department of Animal Science, Biotechnical Faculty, University of Ljubljana, Groblje 3, 1230 Domžale, Slovenia; (M.Š.); (K.P.)
| |
Collapse
|
2
|
Bastos MS, Solar Diaz IDP, Alves JS, de Oliveira LSM, de Araújo de Oliveira CA, de Godói FN, de Camargo GMF, Costa RB. Genomic association using principal components of morphometric traits in horses: identification of genes related to bone growth. Anim Biotechnol 2023; 34:4921-4926. [PMID: 37184429 DOI: 10.1080/10495398.2023.2209795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
The measurement of morphometric traits in horses is important for determining breed qualification and is one of the main selection criteria for the species. The development of an index (HPC) that consists of principal components weighted by additive genetic values allows to explore the most relevant relationships using a reduced number of variables that explain the greatest amount of variation in the data. Genome-wide association studies (GWAS) using HPC are a relatively new approach that permits to identify regions related to a set of traits. The aim of this study was to perform GWAS using HPC for 15 linear measurements as the explanatory variable in order to identify associated genomic regions and to elucidate the biological mechanisms linked to this index in Campolina horses. For GWAS, weighted single-step GBLUP was applied to HPC. The eight genomic windows that explained the highest proportion of additive genetic variance were identified. The sum of the additive variance explained by the eight windows was 95.89%. Genes involved in bone and cartilage development were identified (SPRY2, COL9A2, MIR30C, HEYL, BMP8B, LTBP1, FAM98A, and CRIM1). They represent potential positional candidates for the HPC of the linear measurements evaluated. The HPC is an efficient alternative to reduce the 15 usually measured traits in Campolina horses. Moreover, candidate genes inserted in region that explained high additive variance of the HPC were identified and might be fine-mapped for searching putative mutation/markers.
Collapse
Affiliation(s)
- Marisa Silva Bastos
- Escola de Medicina Veterinária e Zootecnia, Universidade Federal da Bahia (UFBA), Salvador, Brazil
| | | | - Jackeline Santos Alves
- Escola de Medicina Veterinária e Zootecnia, Universidade Federal da Bahia (UFBA), Salvador, Brazil
| | | | | | | | | | - Raphael Bermal Costa
- Escola de Medicina Veterinária e Zootecnia, Universidade Federal da Bahia (UFBA), Salvador, Brazil
| |
Collapse
|
3
|
Reißmann M, Rajavel A, Kokov ZA, Schmitt AO. Identification of Differentially Expressed Genes after Endurance Runs in Karbadian Horses to Determine Candidates for Stress Indicators and Performance Capability. Genes (Basel) 2023; 14:1982. [PMID: 38002925 PMCID: PMC10671444 DOI: 10.3390/genes14111982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 10/13/2023] [Accepted: 10/18/2023] [Indexed: 11/26/2023] Open
Abstract
RNA sequencing makes it possible to uncover genetic mechanisms that underlie certain performance traits. In order to gain a deeper insight into the genetic background and biological processes involved in endurance performance in horses, the changes in the gene expression profiles induced by endurance runs over long (70 km) and short (15 km) distances in the blood of Kabardian horses (Equus caballus) were analyzed. For the long-distance runs, we identified 1484 up- and 691 downregulated genes, while after short-distance runs, only 13 up- and 8 downregulated genes (FC > |1.5|; p < 0.05) were found. These differentially expressed genes (DEGs) are involved in processes and pathways that are primarily related to stress response (interleukin production, activation of inflammatory system) but also to metabolism (carbohydrate catabolic process, lipid biosynthesis, NADP metabolic process). The most important genes involved in these processes therefore represent good candidates for the monitoring and evaluation of the performance of horses in order to avoid excessive demands when endurance performance is required, like ACOD1, CCL5, CD40LG, FOS, IL1R2, IL20RA, and IL22RA2, on the one hand, and, on the other hand, for assessing the suitability of a horse for endurance races, like GATA2, GYG1, HIF1A, MOGAT1, PFKFB3, PLIN5, SIK1, and STBD1.
Collapse
Affiliation(s)
- Monika Reißmann
- Thaer-Institute of Agricultural and Horticultural Sciences, Humboldt-Universität zu Berlin, Unter den Linden 6, 10099 Berlin, Germany;
| | - Abirami Rajavel
- Breeding Informatics Group, Department of Animal Sciences, Georg-August University, Margarethe von Wrangell-Weg 7, 37075 Göttingen, Germany
| | - Zaur A. Kokov
- Institute of Physics and Mathematics, Kabardino-Balkarian State University, Chernyshevsky 173, Nalchik 360004, Russia;
| | - Armin O. Schmitt
- Breeding Informatics Group, Department of Animal Sciences, Georg-August University, Margarethe von Wrangell-Weg 7, 37075 Göttingen, Germany
- Center for Integrated Breeding Research (CiBreed), Georg-August University, Carl-Sprengel-Weg 1, 37075 Göttingen, Germany
| |
Collapse
|
4
|
Batcher K, Varney S, Raudsepp T, Jevit M, Dickinson P, Jagannathan V, Leeb T, Bannasch D. Ancient segmentally duplicated LCORL retrocopies in equids. PLoS One 2023; 18:e0286861. [PMID: 37289743 PMCID: PMC10249811 DOI: 10.1371/journal.pone.0286861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 05/25/2023] [Indexed: 06/10/2023] Open
Abstract
LINE-1 is an active transposable element encoding proteins capable of inserting host gene retrocopies, resulting in retro-copy number variants (retroCNVs) between individuals. Here, we performed retroCNV discovery using 86 equids and identified 437 retrocopy insertions. Only 5 retroCNVs were shared between horses and other equids, indicating that the majority of retroCNVs inserted after the species diverged. A large number (17-35 copies) of segmentally duplicated Ligand Dependent Nuclear Receptor Corepressor Like (LCORL) retrocopies were present in all equids but absent from other extant perissodactyls. The majority of LCORL transcripts in horses and donkeys originate from the retrocopies. The initial LCORL retrotransposition occurred 18 million years ago (17-19 95% CI), which is coincident with the increase in body size, reduction in digit number, and changes in dentition that characterized equid evolution. Evolutionary conservation of the LCORL retrocopy segmental amplification in the Equidae family, high expression levels and the ancient timeline for LCORL retrotransposition support a functional role for this structural variant.
Collapse
Affiliation(s)
- Kevin Batcher
- Department of Population Health and Reproduction, University of California Davis, Davis, CA, United States of America
| | - Scarlett Varney
- Department of Population Health and Reproduction, University of California Davis, Davis, CA, United States of America
| | - Terje Raudsepp
- Veterinary Integrative Biosciences, School of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas, United States of America
| | - Matthew Jevit
- Veterinary Integrative Biosciences, School of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas, United States of America
| | - Peter Dickinson
- Department of Surgical and Radiological Sciences, University of California Davis, Davis, CA, United States of America
| | - Vidhya Jagannathan
- Institute of Genetics, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Tosso Leeb
- Institute of Genetics, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Danika Bannasch
- Department of Population Health and Reproduction, University of California Davis, Davis, CA, United States of America
| |
Collapse
|
5
|
Biogeographic origin and genetic characteristics of the peopling of Jeju Island based on lineage markers. Genes Genomics 2023; 45:307-318. [PMID: 36607592 DOI: 10.1007/s13258-022-01363-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Accepted: 12/26/2022] [Indexed: 01/07/2023]
Abstract
BACKGROUND Jeju Island is the largest island of South Korea, located southwest far from the mainland of Korea, and has a unique history and its own cultures that are distinguished from those of the other regions of the Korean mainland. However, the Jeju population has not been deeply investigated to date to understand their genetic structure, which may reflect their historical and geographical background. OBJECTIVE To identify the genetic characteristics and biogeographic origin of people of Jeju Island based on the statistical analysis of genetic data using lineage markers. METHODS 17 Y-STRs data for 615 unrelated males and mitochondrial DNA haplogroup data for 799 unrelated individuals residing on Jeju Island were generated, and analyzed to investigate genetic diversity and genetic characteristics using statistical methods including pairwise Fst or Rst, Analysis of molecular variance (AMOVA) and Multidimensional scaling (MDS). RESULTS For male individuals of Jeju Island, unique genetic characteristics were observed in the analysis of Y-STRs, including low haplotype diversity, strong association with surnames, genetic difference from other regions of Korea, and common genetic variation of the Y-STR loci known to be predominant in Northern populations, such as Mongolians. Statistical analysis of the mitochondrial DNA haplogroups also revealed similar results that showed low haplogroup diversity and high frequency of haplogroup Y prevalent mostly in ethnic populations around the Sea of Okhotsk in Northeastern Asia. All these results suggest that Jeju Island is genetically distinct from other regions of Korea, possibly being a subpopulation in Korea, and related closely to Northern Asian populations. CONCLUSION The findings in the genetic approach could support understanding of the historical background of Jeju Island that is consistent with evidence from other multidisciplinary studies.
Collapse
|
6
|
Kerry RG, Montalbo FJP, Das R, Patra S, Mahapatra GP, Maurya GK, Nayak V, Jena AB, Ukhurebor KE, Jena RC, Gouda S, Majhi S, Rout JR. An overview of remote monitoring methods in biodiversity conservation. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:80179-80221. [PMID: 36197618 PMCID: PMC9534007 DOI: 10.1007/s11356-022-23242-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Accepted: 09/20/2022] [Indexed: 06/16/2023]
Abstract
Conservation of biodiversity is critical for the coexistence of humans and the sustenance of other living organisms within the ecosystem. Identification and prioritization of specific regions to be conserved are impossible without proper information about the sites. Advanced monitoring agencies like the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services (IPBES) had accredited that the sum total of species that are now threatened with extinction is higher than ever before in the past and are progressing toward extinct at an alarming rate. Besides this, the conceptualized global responses to these crises are still inadequate and entail drastic changes. Therefore, more sophisticated monitoring and conservation techniques are required which can simultaneously cover a larger surface area within a stipulated time frame and gather a large pool of data. Hence, this study is an overview of remote monitoring methods in biodiversity conservation via a survey of evidence-based reviews and related studies, wherein the description of the application of some technology for biodiversity conservation and monitoring is highlighted. Finally, the paper also describes various transformative smart technologies like artificial intelligence (AI) and/or machine learning algorithms for enhanced working efficiency of currently available techniques that will aid remote monitoring methods in biodiversity conservation.
Collapse
Affiliation(s)
- Rout George Kerry
- Department of Biotechnology, Utkal University, Vani Vihar, Bhubaneswar, Odisha 751004 India
| | | | - Rajeswari Das
- Department of Soil Science and Agricultural Chemistry, School of Agriculture, GIET University, Gunupur, Rayagada, Odisha 765022 India
| | - Sushmita Patra
- Indian Council of Agricultural Research-Directorate of Foot and Mouth Disease-International Centre for Foot and Mouth Disease, Arugul, Bhubaneswar, Odisha 752050 India
| | | | - Ganesh Kumar Maurya
- Zoology Section, Mahila MahaVidyalya, Banaras Hindu University, Varanasi, 221005 India
| | - Vinayak Nayak
- Indian Council of Agricultural Research-Directorate of Foot and Mouth Disease-International Centre for Foot and Mouth Disease, Arugul, Bhubaneswar, Odisha 752050 India
| | - Atala Bihari Jena
- Department of Neurosurgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115 USA
| | | | - Ram Chandra Jena
- Department of Pharmaceutical Sciences, Utkal University, Vani Vihar, Bhubaneswar, Odisha 751004 India
| | - Sushanto Gouda
- Department of Zoology, Mizoram University, Aizawl, 796009 India
| | - Sanatan Majhi
- Department of Biotechnology, Utkal University, Vani Vihar, Bhubaneswar, Odisha 751004 India
| | - Jyoti Ranjan Rout
- School of Biological Sciences, AIPH University, Bhubaneswar, Odisha 752101 India
| |
Collapse
|
7
|
Srikanth K, von Pfeil DJF, Stanley BJ, Griffitts C, Huson HJ. Genome Wide Association Study with Imputed Whole Genome Sequence Data Identifies a 431 kb Risk Haplotype on CFA18 for Congenital Laryngeal Paralysis in Alaskan Sled Dogs. Genes (Basel) 2022; 13:genes13101808. [PMID: 36292693 PMCID: PMC9602090 DOI: 10.3390/genes13101808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 10/03/2022] [Accepted: 10/04/2022] [Indexed: 11/16/2022] Open
Abstract
Congenital laryngeal paralysis (CLP) is an inherited disorder that affects the ability of the dog to exercise and precludes it from functioning as a working sled dog. Though CLP is known to occur in Alaskan sled dogs (ASDs) since 1986, the genetic mutation underlying the disease has not been reported. Using a genome-wide association study (GWAS), we identified a 708 kb region on CFA 18 harboring 226 SNPs to be significantly associated with CLP. The significant SNPs explained 47.06% of the heritability of CLP. We narrowed the region to 431 kb through autozygosity mapping and found 18 of the 20 cases to be homozygous for the risk haplotype. Whole genome sequencing of two cases and a control ASD, and comparison with the genome of 657 dogs from various breeds, confirmed the homozygous status of the risk haplotype to be unique to the CLP cases. Most of the dogs that were homozygous for the risk allele had blue eyes. Gene annotation and a gene-based association study showed that the risk haplotype encompasses genes implicated in developmental and neurodegenerative disorders. Pathway analysis showed enrichment of glycoproteins and glycosaminoglycans biosynthesis, which play a key role in repairing damaged nerves. In conclusion, our results suggest an important role for the identified candidate region in CLP.
Collapse
Affiliation(s)
- Krishnamoorthy Srikanth
- Department of Animal Science, College of Agriculture and Life Science, Cornell University, Ithaca, NY 14850, USA
| | | | - Bryden J. Stanley
- Department of Small Animal Clinical Sciences, Michigan State University, East Lansing, MI 48824, USA
| | | | - Heather J. Huson
- Department of Animal Science, College of Agriculture and Life Science, Cornell University, Ithaca, NY 14850, USA
- Correspondence:
| |
Collapse
|
8
|
Wang X, Ran X, Niu X, Huang S, Li S, Wang J. Whole-genome sequence analysis reveals selection signatures for important economic traits in Xiang pigs. Sci Rep 2022; 12:11823. [PMID: 35821031 PMCID: PMC9276726 DOI: 10.1038/s41598-022-14686-w] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 06/10/2022] [Indexed: 11/30/2022] Open
Abstract
Xiang pig (XP) is one of the best-known indigenous pig breeds in China, which is characterized by its small body size, strong disease resistance, high adaptability, favorite meat quality, small litter sizes, and early sexual maturity. However, the genomic evidence that links these unique traits of XP is still poorly understood. To identify the genomic signatures of selection in XP, we performed whole-genome resequencing on 25 unrelated individual XPs. We obtained 876.70 Gb of raw data from the genomic libraries. The LD analysis showed that the lowest level of linkage disequilibrium was observed in Xiang pig. Comparative genomic analysis between XPs and other breeds including Tibetan, Meishan, Duroc and Landrace revealed 3062, 1228, 907 and 1519 selected regions, respectively. The genes identified in selected regions of XPs were associated with growth and development processes (IGF1R, PROP1, TBX19, STAC3, RLF, SELENOM, MSTN), immunity and disease resistance (ZCCHC2, SERPINB2, ADGRE5, CYP7B1, STAT6, IL2, CD80, RHBDD3, PIK3IP1), environmental adaptation (NR2E1, SERPINB8, SERPINB10, SLC26A7, MYO1A, SDR9C7, UVSSA, EXPH5, VEGFC, PDE1A), reproduction (CCNB2, TRPM6, EYA3, CYP7B1, LIMK2, RSPO1, ADAM32, SPAG16), meat quality traits (DECR1, EWSR1), and early sexual maturity (TAC3). Through the absolute allele frequency difference (ΔAF) analysis, we explored two population-specific missense mutations occurred in NR6A1 and LTBP2 genes, which well explained that the vertebrae numbers of Xiang pigs were less than that of the European pig breeds. Our results indicated that Xiang pigs were less affected by artificial selection than the European and Meishan pig breeds. The selected candidate genes were mainly involved in growth and development, disease resistance, reproduction, meat quality, and early sexual maturity. This study provided a list of functional candidate genes, as well as a number of genetic variants, which would provide insight into the molecular basis for the unique traits of Xiang pig.
Collapse
Affiliation(s)
- Xiying Wang
- Institute of Agro-Bioengineering/Key Laboratory of Plant Resource Conservative and Germplasm Innovation in Mountainous Region and Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region (Ministry of Education), College of Life Science and College of Animal Science, Guizhou University, Guiyang, 550025, China.,Tongren University, Tongren, 554300, China
| | - Xueqin Ran
- Institute of Agro-Bioengineering/Key Laboratory of Plant Resource Conservative and Germplasm Innovation in Mountainous Region and Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region (Ministry of Education), College of Life Science and College of Animal Science, Guizhou University, Guiyang, 550025, China.
| | - Xi Niu
- Institute of Agro-Bioengineering/Key Laboratory of Plant Resource Conservative and Germplasm Innovation in Mountainous Region and Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region (Ministry of Education), College of Life Science and College of Animal Science, Guizhou University, Guiyang, 550025, China
| | - Shihui Huang
- Institute of Agro-Bioengineering/Key Laboratory of Plant Resource Conservative and Germplasm Innovation in Mountainous Region and Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region (Ministry of Education), College of Life Science and College of Animal Science, Guizhou University, Guiyang, 550025, China
| | - Sheng Li
- Institute of Agro-Bioengineering/Key Laboratory of Plant Resource Conservative and Germplasm Innovation in Mountainous Region and Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region (Ministry of Education), College of Life Science and College of Animal Science, Guizhou University, Guiyang, 550025, China
| | - Jiafu Wang
- Institute of Agro-Bioengineering/Key Laboratory of Plant Resource Conservative and Germplasm Innovation in Mountainous Region and Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region (Ministry of Education), College of Life Science and College of Animal Science, Guizhou University, Guiyang, 550025, China.
| |
Collapse
|
9
|
Hou H, Wang X, Ding W, Xiao C, Cai X, Lv W, Tu Y, Zhao W, Yao J, Yang C. Whole-genome sequencing reveals the artificial selection and local environmental adaptability of pigeons ( Columba livia). Evol Appl 2022; 15:603-617. [PMID: 35505885 PMCID: PMC9046921 DOI: 10.1111/eva.13284] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 06/17/2021] [Accepted: 07/12/2021] [Indexed: 12/16/2022] Open
Abstract
To meet human needs, domestic pigeons (Columba livia) with various phenotypes have been bred to provide genetic material for our research on artificial selection and local environmental adaptation. Seven pigeon breeds were resequenced and can be divided into commercial varieties (Euro-pigeon, Shiqi, Shen King, Taishen, and Silver King), ornamental varieties (High Fliers), and local varieties (Tarim pigeon). Phylogenetic analysis based on population resequencing showed that one group contained local breeds and ornamental pigeons from China, whereas all commercial varieties were clustered together. It is revealed that the traditional Chinese ornamental pigeon is a branch of Tarim pigeon. Runs of homozygosity (ROH) and linkage disequilibrium (LD) analyses revealed significant differences in the genetic diversity of the three types of pigeons. Genome sweep analysis revealed that the selected genes of commercial breeds were related to body size, reproduction, and plumage color. The genomic imprinting genes left by the ornamental pigeon breeds were mostly related to special human facial features and muscular dystrophy. The Tarim pigeon has evolved genes related to chemical ion transport, photoreceptors, oxidative stress, organ development, and olfaction in order to adapt to local environmental stress. This research provides a molecular basis for pigeon genetic resource evaluation and genetic improvement and suggests that the understanding of adaptive evolution should integrate the effects of various natural environmental characteristics.
Collapse
Affiliation(s)
- Haobin Hou
- Shanghai Academy of Agricultural SciencesShanghaiChina
- National Poultry Engineer Research CenterShanghaiChina
| | - Xiaoliang Wang
- Shanghai Academy of Agricultural SciencesShanghaiChina
- National Poultry Engineer Research CenterShanghaiChina
| | - Weixing Ding
- Shanghai Academy of Agricultural SciencesShanghaiChina
| | - Changfeng Xiao
- Shanghai Academy of Agricultural SciencesShanghaiChina
- National Poultry Engineer Research CenterShanghaiChina
| | - Xia Cai
- Shanghai Academy of Agricultural SciencesShanghaiChina
- National Poultry Engineer Research CenterShanghaiChina
| | - Wenwei Lv
- National Poultry Engineer Research CenterShanghaiChina
| | - Yingying Tu
- National Poultry Engineer Research CenterShanghaiChina
| | - Weimin Zhao
- Shanghai Jinhuang Pigeon CompanyShanghaiChina
| | - Junfeng Yao
- Shanghai Academy of Agricultural SciencesShanghaiChina
- National Poultry Engineer Research CenterShanghaiChina
| | - Changsuo Yang
- Shanghai Academy of Agricultural SciencesShanghaiChina
- National Poultry Engineer Research CenterShanghaiChina
| |
Collapse
|
10
|
de Faria DA, do Prado Paim T, Dos Santos CA, Paiva SR, Nogueira MB, McManus C. Selection signatures for heat tolerance in Brazilian horse breeds. Mol Genet Genomics 2022; 297:449-462. [PMID: 35150300 DOI: 10.1007/s00438-022-01862-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Accepted: 01/24/2022] [Indexed: 12/14/2022]
Abstract
Since domestication, horse breeds have adapted to their environments and differentiated from one another. This paper uses two methods to detect selection signatures in 23 horse breeds, eight of which are Brazilian (610 animals), both cold-blooded and warm-blooded, from temperate and tropical regions. These animals were genotyped using the GGP Equine BeadChip and we analysed the data by Principal Component Analysis (PCA). The samples were separated into groups based on their geographical area of origin and PCA results studied. The genomic regions under selection were detected by hapFLK and PCAdapt methodologies, identifying six regions under selection with at least one Brazilian horse breed. These regions contain genes associated with heat tolerance, skin colour, body size, energy production/metabolism, genes involved in protein degradation/turnover/DNA repair, genes reducing the impact of oxidative stress/cellular repair, and transcriptional regulation. This work confirmed LCORL and NCAPG gene regions in previous studies associated with body size on Equine Chromosome Autosome 3 (ECA3). On the same ECA3, a region implicating genes linked to coat colour was identified, also previously related to heat stress. Regions with genes coding heat shock proteins were found on ECA1 and 2, and many candidate genes for oxidation-reduction which are a natural response to heat stress. However, a larger sample size and whole-genome SNPs are needed to understand better and identify new candidate regions as well as their functional relation with heat tolerance.
Collapse
Affiliation(s)
- Danielle Assis de Faria
- Faculdade de Agronomia e Veterinária, Instituto Central de Ciências, Campus Darcy Ribeiro, Universidade de Brasília, Asa Norte, Brasília, DF, 70910-900, Brazil
| | - Tiago do Prado Paim
- Instituto Federal de Educação, Ciência e Tecnologia Goiano, Rodovia Sul Goiana, Km 01, Zona Rural, Rio Verde, GO, 75901-970, Brazil
| | - Camila Alves Dos Santos
- Instituto Federal de Educação, Ciência e Tecnologia Goiano, Rodovia Sul Goiana, Km 01, Zona Rural, Rio Verde, GO, 75901-970, Brazil
| | - Samuel Rezende Paiva
- Embrapa Recursos Genéticos e Biotecnologia, Final W5 Norte, Brasília, DF, 70770-917, Brasil
| | - Marcelo Bchara Nogueira
- Faculdade de Agronomia e Veterinária, Instituto Central de Ciências, Campus Darcy Ribeiro, Universidade de Brasília, Asa Norte, Brasília, DF, 70910-900, Brazil
| | - Concepta McManus
- Departamento de Ciências Fisiológicas, Instituto de Biologia, Campus Darcy Ribeiro, Universidade de Brasília, Asa Norte, Brasília, DF, 70910-900, Brazil.
| |
Collapse
|
11
|
Hou H, Wang X, Yang C, Cai X, Lv W, Tu Y, Bao A, Wu Q, Zhao W, Yao J, Ding W. Comparative Genome and Transcriptome Integration Studies Reveal the Mechanism of Pectoral Muscle Development and Function in Pigeons. Front Genet 2022; 12:735795. [PMID: 34987544 PMCID: PMC8721168 DOI: 10.3389/fgene.2021.735795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2021] [Accepted: 11/26/2021] [Indexed: 11/13/2022] Open
Abstract
Pigeon breed resources provide a genetic model for the study of phenomics. The pectoral muscles play a key role for the meat production performance of the meat pigeon and the athletic ability of the High flyers. Euro-pigeons and Silver King pigeons are commercial varieties that exhibit good meat production performance. In contrast to the domestication direction of meat pigeons, the traditional Chinese ornamental pigeon breed, High flyers, has a small and light body. Here, we investigate the molecular mechanism of the pectoral muscle development and function of pigeons using whole-genome and RNA sequencing data. The selective sweep analysis (FST and log2 (θπ ratio)) revealed 293 and 403 positive selection genes in Euro-pigeons and Silver King, respectively, of which 65 genes were shared. With the Silver King and Euro-pigeon as the control group, the High flyers were selected for 427 and 566 genes respectively. There were 673 differentially expressed genes in the breast muscle transcriptome between the commercial meat pigeons and ornamental pigeons. Pigeon genome selection signal combined with the breast muscle transcriptome revealed that six genes (SLC16A10, S100B, SYNE1, HECW2, CASQ2 and LOC110363470) from commercial varieties of pigeons and five genes (INSC, CALCB, ZBTB21, B2M and LOC110356506) from Chinese traditional ornamental pigeons were positively selected which were involved in pathways related to muscle development and function. This study provides new insights into the selection of different directions and the genetic mechanism related to muscle development in pigeons.
Collapse
Affiliation(s)
- Haobin Hou
- Shanghai Academy of Agricultural Sciences, Shanghai, China.,National Poultry Engineer Research Center, Shanghai, China
| | - Xiaoliang Wang
- Shanghai Academy of Agricultural Sciences, Shanghai, China.,National Poultry Engineer Research Center, Shanghai, China
| | - Changsuo Yang
- Shanghai Academy of Agricultural Sciences, Shanghai, China.,National Poultry Engineer Research Center, Shanghai, China
| | - Xia Cai
- Shanghai Academy of Agricultural Sciences, Shanghai, China.,National Poultry Engineer Research Center, Shanghai, China
| | - Wenwei Lv
- National Poultry Engineer Research Center, Shanghai, China
| | - Yingying Tu
- National Poultry Engineer Research Center, Shanghai, China
| | | | - Quanli Wu
- Shanghai Jinhuang Pigeon Company, Shanghai, China
| | - Weimin Zhao
- Shanghai Jinhuang Pigeon Company, Shanghai, China
| | - Junfeng Yao
- Shanghai Academy of Agricultural Sciences, Shanghai, China.,National Poultry Engineer Research Center, Shanghai, China
| | - Weixing Ding
- Shanghai Academy of Agricultural Sciences, Shanghai, China.,National Poultry Engineer Research Center, Shanghai, China
| |
Collapse
|
12
|
Santos WB, Schettini GP, Maiorano AM, Bussiman FO, Balieiro JCC, Ferraz GC, Pereira GL, Baldassini WA, Neto ORM, Oliveira HN, Curi RA. Genome-wide scans for signatures of selection in Mangalarga Marchador horses using high-throughput SNP genotyping. BMC Genomics 2021; 22:737. [PMID: 34645387 PMCID: PMC8515666 DOI: 10.1186/s12864-021-08053-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Accepted: 09/07/2021] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND The detection of signatures of selection in genomic regions provides insights into the evolutionary process, enabling discoveries regarding complex phenotypic traits. In this research, we focused on identifying genomic regions affected by different selection pressures, mainly highlighting the recent positive selection, as well as understanding the candidate genes and functional pathways associated with the signatures of selection in the Mangalarga Marchador genome. Besides, we seek to direct the discussion about genes and traits of importance in this breed, especially traits related to the type and quality of gait, temperament, conformation, and locomotor system. RESULTS Three different methods were used to search for signals of selection: Tajima's D (TD), the integrated haplotype score (iHS), and runs of homozygosity (ROH). The samples were composed of males (n = 62) and females (n = 130) that were initially chosen considering well-defined phenotypes for gait: picada (n = 86) and batida (n = 106). All horses were genotyped using a 670 k Axiom® Equine Genotyping Array (Axiom MNEC670). In total, 27, 104 (chosen), and 38 candidate genes were observed within the signatures of selection identified in TD, iHS, and ROH analyses, respectively. The genes are acting in essential biological processes. The enrichment analysis highlighted the following functions: anterior/posterior pattern for the set of genes (GLI3, HOXC9, HOXC6, HOXC5, HOXC4, HOXC13, HOXC11, and HOXC10); limb morphogenesis, skeletal system, proximal/distal pattern formation, JUN kinase activity (CCL19 and MAP3K6); and muscle stretch response (MAPK14). Other candidate genes were associated with energy metabolism, bronchodilator response, NADH regeneration, reproduction, keratinization, and the immunological system. CONCLUSIONS Our findings revealed evidence of signatures of selection in the MM breed that encompass genes acting on athletic performance, limb development, and energy to muscle activity, with the particular involvement of the HOX family genes. The genome of MM is marked by recent positive selection. However, Tajima's D and iHS results point also to the presence of balancing selection in specific regions of the genome.
Collapse
Affiliation(s)
- Wellington B Santos
- Department of Animal Science, São Paulo State University (Unesp) - FCAV, Via de Acesso Professor Paulo Donato Castelane, NN, CEP: 14884-900, Jaboticabal, SP, Brazil.
| | - Gustavo P Schettini
- Department of Animal Science, São Paulo State University (Unesp) - FCAV, Via de Acesso Professor Paulo Donato Castelane, NN, CEP: 14884-900, Jaboticabal, SP, Brazil
| | - Amanda M Maiorano
- Department of Animal Science, São Paulo State University (Unesp) - FCAV, Via de Acesso Professor Paulo Donato Castelane, NN, CEP: 14884-900, Jaboticabal, SP, Brazil
| | - Fernando O Bussiman
- Department of Animal Science, University of São Paulo (USP) - FZEA, Pirassununga, Brazil
| | - Júlio C C Balieiro
- Department of Animal Science, University of São Paulo (USP) - FZEA, Pirassununga, Brazil
| | - Guilherme C Ferraz
- Department of Animal Science, São Paulo State University (Unesp) - FCAV, Via de Acesso Professor Paulo Donato Castelane, NN, CEP: 14884-900, Jaboticabal, SP, Brazil
| | - Guilherme L Pereira
- Department of Breeding and Animal Nutrition, São Paulo State University (Unesp) - FMVZ, Botucatu, Brazil
| | - Welder Angelo Baldassini
- Department of Breeding and Animal Nutrition, São Paulo State University (Unesp) - FMVZ, Botucatu, Brazil
| | - Otávio R M Neto
- Department of Breeding and Animal Nutrition, São Paulo State University (Unesp) - FMVZ, Botucatu, Brazil
| | - Henrique N Oliveira
- Department of Animal Science, São Paulo State University (Unesp) - FCAV, Via de Acesso Professor Paulo Donato Castelane, NN, CEP: 14884-900, Jaboticabal, SP, Brazil
| | - Rogério A Curi
- Department of Breeding and Animal Nutrition, São Paulo State University (Unesp) - FMVZ, Botucatu, Brazil
| |
Collapse
|
13
|
Arora D, Srikanth K, Lee J, Lee D, Park N, Wy S, Kim H, Park JE, Chai HH, Lim D, Cho IC, Kim J, Park W. Integration of multi-omics approaches for functional characterization of muscle related selective sweep genes in Nanchukmacdon. Sci Rep 2021; 11:7219. [PMID: 33785872 PMCID: PMC8009959 DOI: 10.1038/s41598-021-86683-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Accepted: 03/12/2021] [Indexed: 02/01/2023] Open
Abstract
Pig as a food source serves daily dietary demand to a wide population around the world. Preference of meat depends on various factors with muscle play the central role. In this regards, selective breeding abled us to develop "Nanchukmacdon" a pig breeds with an enhanced variety of meat and high fertility rate. To identify genomic regions under selection we performed whole-genome resequencing, transcriptome, and whole-genome bisulfite sequencing from Nanchukmacdon muscles samples and used published data for three other breeds such as Landrace, Duroc, Jeju native pig and analyzed the functional characterization of candidate genes. In this study, we present a comprehensive approach to identify candidate genes by using multi-omics approaches. We performed two different methods XP-EHH, XP-CLR to identify traces of artificial selection for traits of economic importance. Moreover, RNAseq analysis was done to identify differentially expressed genes in the crossed breed population. Several genes (UGT8, ZGRF1, NDUFA10, EBF3, ELN, UBE2L6, NCALD, MELK, SERP2, GDPD5, and FHL2) were identified as selective sweep and differentially expressed in muscles related pathways. Furthermore, nucleotide diversity analysis revealed low genetic diversity in Nanchukmacdon for identified genes in comparison to related breeds and whole-genome bisulfite sequencing data shows the critical role of DNA methylation pattern in identified genes that leads to enhanced variety of meat. This work demonstrates a way to identify the molecular signature and lays a foundation for future genomic enabled pig breeding.
Collapse
Affiliation(s)
- Devender Arora
- grid.484502.f0000 0004 5935 1171Animal Genomics and Bioinformatics Division, National Institute of Animal Science, RDA, Wanju, 55365 Republic of Korea
| | - Krishnamoorthy Srikanth
- grid.484502.f0000 0004 5935 1171Animal Genomics and Bioinformatics Division, National Institute of Animal Science, RDA, Wanju, 55365 Republic of Korea ,grid.5386.8000000041936877XDepartment of Animal Science, Cornell University, Ithaca, NY 14853 USA
| | - Jongin Lee
- grid.258676.80000 0004 0532 8339Department of Biomedical Science and Engineering, Konkuk University, Seoul, 05029 Republic of Korea
| | - Daehwan Lee
- grid.258676.80000 0004 0532 8339Department of Biomedical Science and Engineering, Konkuk University, Seoul, 05029 Republic of Korea
| | - Nayoung Park
- grid.258676.80000 0004 0532 8339Department of Biomedical Science and Engineering, Konkuk University, Seoul, 05029 Republic of Korea
| | - Suyeon Wy
- grid.258676.80000 0004 0532 8339Department of Biomedical Science and Engineering, Konkuk University, Seoul, 05029 Republic of Korea
| | - Hyeonji Kim
- grid.258676.80000 0004 0532 8339Department of Biomedical Science and Engineering, Konkuk University, Seoul, 05029 Republic of Korea
| | - Jong-Eun Park
- grid.484502.f0000 0004 5935 1171Animal Genomics and Bioinformatics Division, National Institute of Animal Science, RDA, Wanju, 55365 Republic of Korea
| | - Han-Ha Chai
- grid.484502.f0000 0004 5935 1171Animal Genomics and Bioinformatics Division, National Institute of Animal Science, RDA, Wanju, 55365 Republic of Korea
| | - Dajeong Lim
- grid.484502.f0000 0004 5935 1171Animal Genomics and Bioinformatics Division, National Institute of Animal Science, RDA, Wanju, 55365 Republic of Korea
| | - In-Cheol Cho
- grid.484502.f0000 0004 5935 1171Subtropical Livestock Research Institute, National Institute of Animal Science, RDA, Jeju, 63242 Korea
| | - Jaebum Kim
- grid.258676.80000 0004 0532 8339Department of Biomedical Science and Engineering, Konkuk University, Seoul, 05029 Republic of Korea
| | - Woncheoul Park
- grid.484502.f0000 0004 5935 1171Animal Genomics and Bioinformatics Division, National Institute of Animal Science, RDA, Wanju, 55365 Republic of Korea
| |
Collapse
|
14
|
|
15
|
Pu Y, Zhang Y, Zhang T, Han J, Ma Y, Liu X. Identification of Novel lncRNAs Differentially Expressed in Placentas of Chinese Ningqiang Pony and Yili Horse Breeds. Animals (Basel) 2020; 10:E119. [PMID: 31940795 PMCID: PMC7022612 DOI: 10.3390/ani10010119] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Revised: 12/30/2019] [Accepted: 01/09/2020] [Indexed: 12/24/2022] Open
Abstract
As a nutrient sensor, the placenta plays a key role in regulating fetus growth and development. Long non-coding RNAs (lncRNAs) have been shown to regulate growth-related traits. However, the biological function of lncRNAs in horse placentas remains unclear. To compare the expression patterns of lncRNAs in the placentas of the Chinese Ningqiang (NQ) and Yili (YL) breeds, we performed a transcriptome analysis using RNA sequencing (RNA-seq) technology. NQ is a pony breed with an average adult height at the withers of less than 106 cm, whereas that of YL is around 148 cm. Based on 813 million high-quality reads and stringent quality control procedures, 3011 transcripts coding for 1464 placental lncRNAs were identified and mapped to the horse reference genome. We found 107 differentially expressed lncRNAs (DELs) between NQ and YL, including 68 up-regulated and 39 down-regulated DELs in YL. Six (TBX3, CACNA1F, EDN3, KAT5, ZNF281, TMED2, and TGFB1) out of the 233 genes targeted by DELs were identified as being involved in limb development, skeletal myoblast differentiation, and embryo development. Two DELs were predicted to target the TBX3 gene, which was found to be under strong selection and associated with small body size in the Chinese Debao pony breed. This finding suggests the potential functional significance of placental lncRNAs in regulating horse body size.
Collapse
Affiliation(s)
- Yabin Pu
- Institute of Animal Science, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100193, China; (Y.P.); (Y.Z.)
- CAAS-ILRI Joint Laboratory on Livestock and Forage Genetic Resources, Institute of Animal Science, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100193, China;
| | - Yanli Zhang
- Institute of Animal Science, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100193, China; (Y.P.); (Y.Z.)
- CAAS-ILRI Joint Laboratory on Livestock and Forage Genetic Resources, Institute of Animal Science, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100193, China;
| | - Tian Zhang
- State Key Laboratory of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China;
| | - Jianlin Han
- CAAS-ILRI Joint Laboratory on Livestock and Forage Genetic Resources, Institute of Animal Science, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100193, China;
- International Livestock Research Institute (ILRI), Nairobi 00100, Kenya
| | - Yuehui Ma
- Institute of Animal Science, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100193, China; (Y.P.); (Y.Z.)
- CAAS-ILRI Joint Laboratory on Livestock and Forage Genetic Resources, Institute of Animal Science, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100193, China;
| | - Xuexue Liu
- Institute of Animal Science, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100193, China; (Y.P.); (Y.Z.)
- CAAS-ILRI Joint Laboratory on Livestock and Forage Genetic Resources, Institute of Animal Science, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100193, China;
| |
Collapse
|