1
|
Arlegi M, Lorenzo C. Evolutionary selection and morphological integration in the hand of modern humans. AMERICAN JOURNAL OF BIOLOGICAL ANTHROPOLOGY 2024; 185:e25024. [PMID: 39228137 DOI: 10.1002/ajpa.25024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 08/10/2024] [Accepted: 08/18/2024] [Indexed: 09/05/2024]
Abstract
OBJECTIVES To enhance our understanding of the evolutionary dynamics of the modern human hand by analyzing the degree of integration and ability to respond to selection pressures of each phalanx and metacarpal bone. MATERIALS AND METHODS The sample comprised 96 adult individuals, both female and male, from Euro-American, Afro-American, and European populations. We collected 10 linear measurements from the 19 metacarpals and proximal, middle, and distal phalanges that constitute the five digits of the hand. Using these data, we constructed variance/covariance matrices to quantify the degree of integration and assess the hand ability to respond to selective pressures. RESULTS Distal phalanges are the most evolvable and flexible elements, while being the least integrated and constrained. The thumb is similarly integrated as the second and third rays, while medial rays (fourth and fifth digits) are more integrated. However, the thumb presents different integration and response to selection patterns. No significant relationship was found between functionality and the indices of selection and integration. Finally, the correlation between hand and foot indices yielded significant results for conditional evolvability and flexibility. DISCUSSION The findings suggest different evolutionary trajectories for the metacarpal and distal phalanx in the modern human thumb, likely reflecting varying functional and developmental pressures. The first metacarpal, characterized by high flexibility and low evolvability, appears to have reached a stable, optimal morphology, under stabilizing selection. In contrast, the distal phalanx seems to have undergone directional evolution, suggesting specialization for a specific function. Comparisons between hands and feet suggest that these structures evolve differently under directional selection but similarly under stabilizing selection.
Collapse
Affiliation(s)
- Mikel Arlegi
- McDonald Institute for Archaeological Research, University of Cambridge, Cambridge, UK
| | - Carlos Lorenzo
- Departament d'Història i Història de l'Art, Universitat Rovira i Virgili, Tarragona, Spain
- Institut Català de Paleoecologia Humana i Evolució Social (IPHES-CERCA), Tarragona, Spain
| |
Collapse
|
2
|
Eteson B, Affinito S, Moos ET, Karakostis FA. "How handy was early hominin 'know-how'?" An experimental approach exploring efficient early stone tool use. AMERICAN JOURNAL OF BIOLOGICAL ANTHROPOLOGY 2024; 185:e25019. [PMID: 39222398 DOI: 10.1002/ajpa.25019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 08/05/2024] [Accepted: 08/14/2024] [Indexed: 09/04/2024]
Abstract
OBJECTIVES The appearance of early lithic industries has been associated with the gradual development of unique biomechanical and cognitive abilities in hominins, including human-like precision grasping and basic learning and/or communicating capacities. These include tools used for activities exclusively associated with hominin contexts (cutting flakes) and hammerstones utilized for behaviors shared with non-human primates (e.g., nut-cracking). However, no previous experimental research has focused on comparing the factors affecting efficiency between these two key behavioral patterns and their evolutionary implications. MATERIALS AND METHODS Here, we address this gap with an experimental design involving participants with varying tool-related experience levels (i.e., no experience, theoretical-only experience, and extensive practical knapping expertise) to monitor their success rates, biometrics, and surface electromyography (sEMG) recordings from eight important hand and forearm muscles. RESULTS Our results showed that practical experience had a substantial impact on flake-cutting efficiency, allowing participants to achieve greater success rates with substantially less muscle effort. This relationship between success rates and muscle effort was not observed for the nut-cracking task. Moreover, even though practical experience did not significantly benefit nut-cracking success, experts exhibited increased rates of self-improvement in that task. DISCUSSION Altogether, these experimental findings suggest that the ability to practice and retain tool-using knowledge played a fundamental role in the subsistence strategies and adaptability of early hominins, potentially providing the cognitive basis for conceptualizing the first intentional tool production strategies.
Collapse
Affiliation(s)
- Brienna Eteson
- DFG Center for Advanced Studies "Words, Bones, Genes, Tools", Department of Geosciences, Eberhard Karls University of Tübingen, Tübingen, Germany
| | - Simona Affinito
- DFG Center for Advanced Studies "Words, Bones, Genes, Tools", Department of Geosciences, Eberhard Karls University of Tübingen, Tübingen, Germany
| | - Elena T Moos
- Department of Early Prehistory and Quaternary Ecology, Eberhard Karls University of Tübingen, Schloss Hohentübingen, Tübingen, Germany
| | - Fotios Alexandros Karakostis
- DFG Center for Advanced Studies "Words, Bones, Genes, Tools", Department of Geosciences, Eberhard Karls University of Tübingen, Tübingen, Germany
- Paleoanthropology, Senckenberg Centre for Human Evolution and Palaeoenvironment, Eberhard Karls University of Tübingen, Tübingen, Germany
- Integrative Prehistory and Archaeological Science, University of Basel, Basel, Switzerland
| |
Collapse
|
3
|
Kunze J, Harvati K, Hotz G, Karakostis FA. Humanlike manual activities in Australopithecus. J Hum Evol 2024; 196:103591. [PMID: 39366305 DOI: 10.1016/j.jhevol.2024.103591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 08/31/2024] [Accepted: 08/31/2024] [Indexed: 10/06/2024]
Abstract
The evolution of the human hand is a topic of great interest in paleoanthropology. As the hand can be involved in a vast array of activities, knowledge regarding how it was used by early hominins can yield crucial information on the factors driving biocultural evolution. Previous research on early hominin hands focused on the overall bone shape. However, while such approaches can inform on mechanical abilities and the evolved efficiency of manipulation, they cannot be used as a definite proxy for individual habitual activity. Accordingly, it is crucial to examine bone structures more responsive to lifetime biomechanical loading, such as muscle attachment sites or internal bone architecture. In this study, we investigate the manual entheseal patterns of Australopithecus afarensis, Australopithecus africanus, and Australopithecus sediba through the application of the validated entheses-based reconstruction of activity method. Using a comparative sample of later Homo and three great ape genera, we analyze the muscle attachment site proportions on the thumb, fifth ray, and third intermediate phalanx to gain insight into the habitual hand use of Australopithecus. We use a novel statistical procedure to account for the effects of interspecies variation in overall size and ray proportions. Our results highlight the importance of certain muscles of the first and fifth digits for humanlike hand use. In humans, these muscles are required for variable in-hand manipulation and are activated during stone-tool production. The entheses of A. sediba suggest muscle activation patterns consistent with a similar suite of habitual manual activities as in later Homo. In contrast, A. africanus and A. afarensis display a mosaic entheseal pattern that combines indications of both humanlike and apelike manipulation. Overall, these findings provide new evidence that some australopith species were already habitually engaging in humanlike manipulation, even if their manual dexterity was likely not as high as in later Homo.
Collapse
Affiliation(s)
- Jana Kunze
- Paleoanthropology, Senckenberg Centre for Human Evolution and Palaeoenvironment, Institute for Archaeological Sciences, Eberhard Karls University of Tübingen, Rümelinstraße 23, Tübingen D-72070, Germany.
| | - Katerina Harvati
- Paleoanthropology, Senckenberg Centre for Human Evolution and Palaeoenvironment, Institute for Archaeological Sciences, Eberhard Karls University of Tübingen, Rümelinstraße 23, Tübingen D-72070, Germany; DFG Centre of Advanced Studies 'Words, Bones, Genes, Tools', Eberhard Karls University of Tübingen, Rümelinstraße 23, Tübingen D-72070, Germany
| | - Gerhard Hotz
- Anthropological Collection, Natural History Museum Basel, Augustinergasse 2, Basel S-4051, Switzerland; Integrative Prehistory and Archaeological Science, University of Basel, Spalenring 145, Basel S-4055, Switzerland
| | - Fotios Alexandros Karakostis
- Paleoanthropology, Senckenberg Centre for Human Evolution and Palaeoenvironment, Institute for Archaeological Sciences, Eberhard Karls University of Tübingen, Rümelinstraße 23, Tübingen D-72070, Germany; DFG Centre of Advanced Studies 'Words, Bones, Genes, Tools', Eberhard Karls University of Tübingen, Rümelinstraße 23, Tübingen D-72070, Germany; Anthropological Collection, Natural History Museum Basel, Augustinergasse 2, Basel S-4051, Switzerland; Integrative Prehistory and Archaeological Science, University of Basel, Spalenring 145, Basel S-4055, Switzerland.
| |
Collapse
|
4
|
Barroso-Medina C, Lin SC, Tocheri MW, Sreenivasa M. Design and development of a sensorized hammerstone for accurate force measurement in stone knapping experiments. PLoS One 2024; 19:e0310520. [PMID: 39288151 PMCID: PMC11407656 DOI: 10.1371/journal.pone.0310520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 09/03/2024] [Indexed: 09/19/2024] Open
Abstract
The process of making stone tools, specifically knapping, is a hominin behaviour that typically involves using the upper limb to manipulate a stone hammer and apply concentrated percussive force to another stone, causing fracture and detachment of stone chips with sharp edges. To understand the emergence and subsequent evolution of tool-related behaviours in hominins, the connections between the mechanics of stone knapping, including the delivery of percussive forces, and biomechanics and hominin anatomy, especially in the upper limb, are required. However, there is an absence of direct experimental means to measure the actual forces generated and applied to produce flakes during knapping. Our study introduces a novel solution to this problem in the form of an ergonomic hand-held synthetic hammerstone that can record the percussive forces that occur during knapping experiments. This hammerstone is composed of a deformable pneumatic 3D-printed chamber encased within a 3D-printed grip and a stone-milled striker. During knapping, hammer impact causes the pneumatic chamber to deform, which leads to a change in pressure that is measured by a sensor. Comparisons of recorded pressure data against corresponding force values measured using a force plate show that the synthetic hammer quantifies percussion forces with relatively high accuracy. The performance of this hammerstone was further validated by conducting anvil-supported knapping experiments on glass that resulted in a root mean square error of under 6%, while recording forces up to 730 N with successful flake detachments. These validation results indicate that accuracy was not sensitive to variations up to 15° from the vertical in the hammer striking angle. Our approach allows future studies to directly examine the role of percussive force during the stone knapping process and its relationship with both anatomical and technological changes during human evolution.
Collapse
Affiliation(s)
- Cecilia Barroso-Medina
- School of Earth, Atmospheric and Life Sciences, University of Wollongong, Wollongong, NSW, Australia
| | - Sam C Lin
- School of Earth, Atmospheric and Life Sciences, University of Wollongong, Wollongong, NSW, Australia
- Australian Research Council Centre of Excellence for Australian Biodiversity and Heritage, University of Wollongong, Wollongong, NSW, Australia
| | - Matthew W Tocheri
- Australian Research Council Centre of Excellence for Australian Biodiversity and Heritage, University of Wollongong, Wollongong, NSW, Australia
- Department of Anthropology, Lakehead University, Thunder Bay, Ontario, Canada
- Human Origins Program, National Museum of Natural History, Smithsonian Institution, Washington, D.C., United States of America
| | - Manish Sreenivasa
- School of Mechanical, Materials, Mechatronic and Biomedical Engineering, University of Wollongong, Wollongong, NSW, Australia
| |
Collapse
|
5
|
Rivero O, Beato MS, Alvarez-Martinez A, García-Bustos M, Suarez M, Mateo-Pellitero AM, Eseverri J, Eguilleor-Carmona X. Experimental insights into cognition, motor skills, and artistic expertise in Paleolithic art. Sci Rep 2024; 14:18029. [PMID: 39098948 PMCID: PMC11298520 DOI: 10.1038/s41598-024-68861-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Accepted: 07/29/2024] [Indexed: 08/06/2024] Open
Abstract
The production of Paleolithic art represents one of the most intricate technical and cognitive endeavors of Homo sapiens, marked by its profound antiquity and vast temporal and spatial framework. Despite its significance, there have been no prior studies aimed at understanding the cognitive and motor skills linked to the creation of realistic images characteristic of this artistic cycle. This research integrates archaeology and experimental psychology, premised on the assumption that the neurological basis of Anatomically Modern Humans has not changed substantially since the Upper Paleolithic. This work employs an innovative interdisciplinary approach, utilizing psychometric tests and drawing and engraving tasks monitored by motion-sensing gloves, to compare the performance of experts and non-experts in visual arts when faced with challenges akin to those of Upper Paleolithic artistic production. The results revealed that expertise in visual arts is linked to enhanced spatial abilities and specific patterns in drawing from memory. Additionally, both experts and non-experts displayed similar motor skills when engraving using Paleolithic techniques, suggesting that these techniques required specialized training in the contemporary experts. In conclusion, this research deepens our understanding of the processes involved in Upper Paleolithic artistic production.
Collapse
Affiliation(s)
- Olivia Rivero
- Faculty of Geography and History, University of Salamanca, Salamanca, Spain.
| | - M Soledad Beato
- Faculty of Psychology, University of Salamanca, Salamanca, Spain
| | | | | | - Mar Suarez
- Faculty of Psychology, University of Salamanca, Salamanca, Spain
| | | | - Javier Eseverri
- Faculty of Psychology, University of Salamanca, Salamanca, Spain
| | | |
Collapse
|
6
|
Dunmore CJ, Bachmann S, Synek A, Pahr DH, Skinner MM, Kivell TL. The deep trabecular structure of first metacarpals in extant hominids. AMERICAN JOURNAL OF BIOLOGICAL ANTHROPOLOGY 2024; 183:e24695. [PMID: 36790736 DOI: 10.1002/ajpa.24695] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 11/07/2022] [Accepted: 01/04/2023] [Indexed: 06/18/2023]
Abstract
OBJECTIVES Recent studies have associated subarticular trabecular bone distribution in the extant hominid first metacarpal (Mc1) with observed thumb use, to infer fossil hominin thumb use. Here, we analyze the entire Mc1 to test for interspecific differences in: (1) the absolute volume of trabecular volume fraction, (2) the distribution of the deeper trabecular network, and (3) the distribution of trabeculae in the medullary cavity, especially beneath the Mc1 disto-radial flange. MATERIALS AND METHODS Trabecular bone was imaged using micro-computed tomography in a sample of Homo sapiens (n = 11), Pan paniscus (n = 10), Pan troglodytes (n = 11), Gorilla gorilla (n = 10) and Pongo sp., (n = 7). Using Canonical Holistic Morphometric Analysis (cHMA), we tested for interspecific differences in the trabecular bone volume fraction (BV/TV) and its relative distribution (rBV/TV) throughout the Mc1, including within the head, medullary cavity, and base. RESULTS P. paniscus had the highest, and H. sapiens the lowest, BV/TV relative to other species. rBV/TV distribution statistically distinguished the radial concentrations and lack of medullary trabecular bone in the H. sapiens Mc1 from all other hominids. H. sapiens and, to a lesser extent, G. gorilla also had a significantly higher trabecular volume beneath the disto-radial flange relative to other hominids. DISCUSSION These results are consistent with differences in observed thumb use in these species and may also reflect systemic differences in bone volume fraction. The trabecular bone extension into the medullary cavity and concentrations beneath the disto-radial flange may represent crucial biomechanical signals that will aid in the inference of fossil hominin thumb use.
Collapse
Affiliation(s)
- Christopher J Dunmore
- Skeletal Biology Research Centre, School of Anthropology and Conservation, University of Kent, Canterbury, UK
| | - Sebastian Bachmann
- Institute of Lightweight Design and Structural Biomechanics, TU Wien, Vienna, Austria
| | - Alexander Synek
- Institute of Lightweight Design and Structural Biomechanics, TU Wien, Vienna, Austria
| | - Dieter H Pahr
- Institute of Lightweight Design and Structural Biomechanics, TU Wien, Vienna, Austria
- Department of Anatomy and Biomechanics, Division Biomechanics, Karl Landsteiner University of Health Sciences, Krems, Austria
| | - Matthew M Skinner
- Skeletal Biology Research Centre, School of Anthropology and Conservation, University of Kent, Canterbury, UK
- Centre for the Exploration of the Deep Human Journey, University of the Witwatersrand, Johannesburg, South Africa
| | - Tracy L Kivell
- Skeletal Biology Research Centre, School of Anthropology and Conservation, University of Kent, Canterbury, UK
- Centre for the Exploration of the Deep Human Journey, University of the Witwatersrand, Johannesburg, South Africa
| |
Collapse
|
7
|
Bird EE, Kivell TL, Dunmore CJ, Tocheri MW, Skinner MM. Trabecular bone structure of the proximal capitate in extant hominids and fossil hominins with implications for midcarpal joint loading and the dart-thrower's motion. AMERICAN JOURNAL OF BIOLOGICAL ANTHROPOLOGY 2024; 183:e24824. [PMID: 37493308 DOI: 10.1002/ajpa.24824] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 05/05/2023] [Accepted: 07/10/2023] [Indexed: 07/27/2023]
Abstract
OBJECTIVES This research examines whether the distribution of trabecular bone in the proximal capitates of extant hominids, as well as several fossil hominin taxa, is associated with the oblique path of the midcarpal joint known as the dart-thrower's motion (DTM). MATERIALS AND METHODS We analyzed proximal capitates from extant (Pongo n = 12; Gorilla n = 11; Pan n = 10; fossil and recent Homo sapiens n = 29) and extinct (Australopithecus sediba n = 2; Homo naledi n = 1; Homo floresiensis n = 2; Neandertals n = 3) hominids using a new canonical holistic morphometric analysis, which quantifies and visualizes the distribution of trabecular bone using relative bone volume as a fraction of total volume (rBV/TV). RESULTS Homo sapiens and Neandertals had a continuous band of high rBV/TV that extended across the scaphoid, lunate, and hamate subarticular regions, but other fossil hominins and extant great apes did not. A. sediba expressed a distinct combination of human-like and Pan-like rBV/TV distribution. Both H. floresiensis and H. naledi had high rBV/TV on the ulnar-side of the capitate but low rBV/TV on the radial-side. CONCLUSION The proximal capitates of H. sapiens and Neandertals share a distinctive distribution of trabecular bone that suggests that these two species of Homo regularly load(ed) their midcarpal joints along the full extent of the oblique path of the DTM. The observed pattern in A. sediba suggests that human-like stress at the capito-scaphoid articular surface was combined with Pan-like wrist postures, whereas the patterns in H. floresiensis and H. naledi suggest their midcarpal joints were loaded differently from that of H. sapiens and Neandertals.
Collapse
Affiliation(s)
- Emma E Bird
- Skeletal Biology Research Centre, School of Anthropology and Conservation, University of Kent, Canterbury, UK
- Centre for Human Evolution Research, Natural History Museum, London, UK
| | - Tracy L Kivell
- Skeletal Biology Research Centre, School of Anthropology and Conservation, University of Kent, Canterbury, UK
- Centre for the Exploration of the Deep Human Journey, University of the Witwatersrand, Johannesburg, South Africa
| | - Christopher J Dunmore
- Skeletal Biology Research Centre, School of Anthropology and Conservation, University of Kent, Canterbury, UK
| | - Matthew W Tocheri
- Department of Anthropology, Lakehead University, Thunder Bay, Ontario, Canada
- Human Origins Program, National Museum of Natural History, Smithsonian Institution, Washington, DC, USA
- Australian Research Council, Centre of Excellence for Australian Biodiversity and Heritage, University of Wollongong, Wollongong, New South Wales, Australia
| | - Matthew M Skinner
- Skeletal Biology Research Centre, School of Anthropology and Conservation, University of Kent, Canterbury, UK
- Centre for the Exploration of the Deep Human Journey, University of the Witwatersrand, Johannesburg, South Africa
| |
Collapse
|
8
|
Orr CM, Kivell TL, Tocheri MW. Mary Marzke, PhD: A pioneer and innovator in the study of the evolution of the human hand. AMERICAN JOURNAL OF BIOLOGICAL ANTHROPOLOGY 2024; 183:e24892. [PMID: 38263793 DOI: 10.1002/ajpa.24892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 12/13/2023] [Indexed: 01/25/2024]
Affiliation(s)
- Caley M Orr
- Department of Cell and Developmental Biology, University of Colorado School of Medicine, Aurora, Colorado, USA
- Department of Anthropology, University of Colorado Denver, Denver, Colorado, USA
| | - Tracy L Kivell
- Department of Anthropology and Conservation, University of Kent, Canterbury, UK
- Department of Human Origins, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | - Matthew W Tocheri
- Department of Anthropology, Lakehead University, Thunder Bay, Ontario, Canada
- Human Origins Program, Department of Anthropology, National Museum of Natural History, Smithsonian Institution, Washington, DC, USA
- Australian Research Council Centre of Excellence for Australian Biodiversity and Heritage, University of Wollongong, Wollongong, Australia
| |
Collapse
|
9
|
Syeda SM, Tsegai ZJ, Cazenave M, Skinner MM, Kivell TL. Cortical bone distribution of the proximal phalanges in great apes: implications for reconstructing manual behaviours. J Anat 2023; 243:707-728. [PMID: 37358024 PMCID: PMC10557399 DOI: 10.1111/joa.13918] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 06/06/2023] [Accepted: 06/12/2023] [Indexed: 06/27/2023] Open
Abstract
Primate fingers are typically in direct contact with the environment during both locomotion and manipulation, and aspects of external phalangeal morphology are known to reflect differences in hand use. Since bone is a living tissue that can adapt in response to loading through life, the internal bone architecture of the manual phalanges should also reflect differences in manual behaviours. Here, we use the R package Morphomap to analyse high-resolution microCT scans of hominid proximal phalanges of digits 2-5 to determine whether cortical bone structure reflects variation in manual behaviours between bipedal (Homo), knuckle-walking (Gorilla, Pan) and suspensory (Pongo) taxa. We test the hypothesis that relative cortical bone distribution patterns and cross-sectional geometric properties will differ both among extant great apes and across the four digits due to locomotor and postural differences. Results indicate that cortical bone structure reflects the varied hand postures employed by each taxon. The phalangeal cortices of Pongo are significantly thinner and have weaker cross-sectional properties relative to the African apes, yet thick cortical bone under their flexor sheath ridges corresponds with predicted loading during flexed finger grips. Knuckle-walking African apes have even thicker cortical bone under the flexor sheath ridges, as well as in the region proximal to the trochlea, but Pan also has thicker diaphyseal cortices than Gorilla. Humans display a distinct pattern of distodorsal thickening, as well as relatively thin cortices, which may reflect the lack of phalangeal curvature combined with frequent use of flexed fingered hand grips during manipulation. Within each taxon, digits 2-5 have a similar cortical distribution in Pongo, Gorilla and, unexpectedly, Homo, which suggest similar loading of all fingers during habitual locomotion or hand use. In Pan, however, cortical thickness differs between the fingers, potentially reflecting differential loading during knuckle-walking. Inter- and intra-generic variation in phalangeal cortical bone structure reflects differences in manual behaviours, offering a comparative framework for reconstructing hand use in fossil hominins.
Collapse
Affiliation(s)
- Samar M. Syeda
- Skeletal Biology Research Centre, School of Anthropology and ConservationUniversity of KentCanterburyUK
| | - Zewdi J. Tsegai
- Department of Organismal Biology and AnatomyUniversity of ChicagoChicagoIllinoisUSA
| | - Marine Cazenave
- Skeletal Biology Research Centre, School of Anthropology and ConservationUniversity of KentCanterburyUK
- Division of AnthropologyAmerican Museum of Natural HistoryNew YorkNew YorkUSA
- Department of Anatomy, Faculty of Health SciencesUniversity of PretoriaPretoriaSouth Africa
| | - Matthew M. Skinner
- Skeletal Biology Research Centre, School of Anthropology and ConservationUniversity of KentCanterburyUK
| | - Tracy L. Kivell
- Department of Human OriginsMax Planck Institute for Evolutionary AnthropologyLeipzigGermany
| |
Collapse
|
10
|
Vaill M, Kawanishi K, Varki N, Gagneux P, Varki A. Comparative physiological anthropogeny: exploring molecular underpinnings of distinctly human phenotypes. Physiol Rev 2023; 103:2171-2229. [PMID: 36603157 PMCID: PMC10151058 DOI: 10.1152/physrev.00040.2021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 12/26/2022] [Accepted: 12/28/2022] [Indexed: 01/06/2023] Open
Abstract
Anthropogeny is a classic term encompassing transdisciplinary investigations of the origins of the human species. Comparative anthropogeny is a systematic comparison of humans and other living nonhuman hominids (so-called "great apes"), aiming to identify distinctly human features in health and disease, with the overall goal of explaining human origins. We begin with a historical perspective, briefly describing how the field progressed from the earliest evolutionary insights to the current emphasis on in-depth molecular and genomic investigations of "human-specific" biology and an increased appreciation for cultural impacts on human biology. While many such genetic differences between humans and other hominids have been revealed over the last two decades, this information remains insufficient to explain the most distinctive phenotypic traits distinguishing humans from other living hominids. Here we undertake a complementary approach of "comparative physiological anthropogeny," along the lines of the preclinical medical curriculum, i.e., beginning with anatomy and considering each physiological system and in each case considering genetic and molecular components that are relevant. What is ultimately needed is a systematic comparative approach at all levels from molecular to physiological to sociocultural, building networks of related information, drawing inferences, and generating testable hypotheses. The concluding section will touch on distinctive considerations in the study of human evolution, including the importance of gene-culture interactions.
Collapse
Affiliation(s)
- Michael Vaill
- Center for Academic Research and Training in Anthropogeny, University of California, San Diego, La Jolla, California
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, California
- Glycobiology Research and Training Center, University of California, San Diego, La Jolla, California
| | - Kunio Kawanishi
- Center for Academic Research and Training in Anthropogeny, University of California, San Diego, La Jolla, California
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, California
- Department of Experimental Pathology, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Nissi Varki
- Center for Academic Research and Training in Anthropogeny, University of California, San Diego, La Jolla, California
- Glycobiology Research and Training Center, University of California, San Diego, La Jolla, California
- Department of Pathology, University of California, San Diego, La Jolla, California
| | - Pascal Gagneux
- Center for Academic Research and Training in Anthropogeny, University of California, San Diego, La Jolla, California
- Glycobiology Research and Training Center, University of California, San Diego, La Jolla, California
- Department of Pathology, University of California, San Diego, La Jolla, California
| | - Ajit Varki
- Center for Academic Research and Training in Anthropogeny, University of California, San Diego, La Jolla, California
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, California
- Glycobiology Research and Training Center, University of California, San Diego, La Jolla, California
| |
Collapse
|
11
|
Bird EE, Kivell TL, Skinner MM. Patterns of internal bone structure and functional adaptation in the hominoid scaphoid, lunate, and triquetrum. AMERICAN JOURNAL OF PHYSICAL ANTHROPOLOGY 2021. [DOI: 10.1002/ajpa.24449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Emma E. Bird
- Skeletal Biology Research Centre, School of Anthropology and Conservation University of Kent Canterbury UK
| | - Tracy L. Kivell
- Skeletal Biology Research Centre, School of Anthropology and Conservation University of Kent Canterbury UK
- Department of Human Evolution Max Planck Institute for Evolutionary Anthropology Leipzig Germany
| | - Matthew M. Skinner
- Skeletal Biology Research Centre, School of Anthropology and Conservation University of Kent Canterbury UK
- Department of Human Evolution Max Planck Institute for Evolutionary Anthropology Leipzig Germany
| |
Collapse
|
12
|
Bucchi A, Luengo J, Del Bove A, Lorenzo C. Insertion sites in manual proximal phalanges of African apes and modern humans. AMERICAN JOURNAL OF PHYSICAL ANTHROPOLOGY 2021; 173:556-567. [PMID: 33460049 DOI: 10.1002/ajpa.24127] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2019] [Revised: 07/13/2020] [Accepted: 07/15/2020] [Indexed: 12/20/2022]
Abstract
OBJECTIVES The primary aim of this study was to describe the insertion sites of the ligaments holding the flexor digitorum profundus and superficialis muscles (flexor ridges) in proximal phalanges 2-5 of African apes and modern humans. To interpret differences in flexor ridge size based on general behavioral differences among taxa. MATERIALS AND METHODS We analyzed 3D models of manual proximal phalanges 2-5 from 29 gorillas (Gorilla beringei and Gorilla gorilla), 30 chimpanzees (Pan troglodytes) and 36 recent modern humans. Flexor ridges (mm2) were compared within and across genera. RESULTS Gorillas and chimpanzees had larger flexor ridges for phalanges 2-4 than humans and this difference subsists when controlling for body size. Each genus had a unique insertion size pattern across the digits, with the most heterogeneous pattern found in chimpanzees, followed by humans, and lastly gorillas. These patterns corresponded strongly to the differences in the size of the phalanges within each genus, except for phalanx 5 in humans, which had a larger flexor ridge than expected. DISCUSSION When comparing these genera, the flexor ridges signal differences between taxa that use their hands for manipulation and locomotion (gorillas and chimpanzees) and taxa that use them exclusively for manipulation (humans). This functional signal was also apparent in the PP5 of humans, whose larger FR may be indicating the high recruitment of this digit during forceful precision grip characteristic of humans.
Collapse
Affiliation(s)
- Ana Bucchi
- Departament d'Història i Història de l'Art, Universitat Rovira i Virgili, 35 Avinguda de Catalunya, Tarragona, Spain.,Institut Català de Paleoecologia Humana i Evolució Social (IPHES), 4 Zona Educacional, Campus Sescelades URV (Edifici W3), Tarragona, Spain
| | - Javier Luengo
- Departament d'Història i Història de l'Art, Universitat Rovira i Virgili, 35 Avinguda de Catalunya, Tarragona, Spain.,Institut Català de Paleoecologia Humana i Evolució Social (IPHES), 4 Zona Educacional, Campus Sescelades URV (Edifici W3), Tarragona, Spain
| | - Antonietta Del Bove
- Departament d'Història i Història de l'Art, Universitat Rovira i Virgili, 35 Avinguda de Catalunya, Tarragona, Spain.,Institut Català de Paleoecologia Humana i Evolució Social (IPHES), 4 Zona Educacional, Campus Sescelades URV (Edifici W3), Tarragona, Spain
| | - Carlos Lorenzo
- Departament d'Història i Història de l'Art, Universitat Rovira i Virgili, 35 Avinguda de Catalunya, Tarragona, Spain.,Institut Català de Paleoecologia Humana i Evolució Social (IPHES), 4 Zona Educacional, Campus Sescelades URV (Edifici W3), Tarragona, Spain
| |
Collapse
|
13
|
Williams-Hatala EM, Hatala KG, Key A, Dunmore CJ, Kasper M, Gordon M, Kivell TL. Kinetics of stone tool production among novice and expert tool makers. AMERICAN JOURNAL OF PHYSICAL ANTHROPOLOGY 2020; 174:714-727. [PMID: 33107044 DOI: 10.1002/ajpa.24159] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 08/21/2020] [Accepted: 09/15/2020] [Indexed: 12/30/2022]
Abstract
OBJECTIVES As is the case among many complex motor tasks that require prolonged practice before achieving expertise, aspects of the biomechanics of knapping vary according to the relative experience/skill level of the practitioner. In archaeological experiments focused on the production of Plio-Pleistocene stone tools, these skill-mediated biomechanical differences have bearings on experimental design, the interpretation of results, and lithic assemblage analysis. A robust body of work exists on variation in kinematic patterns across skill levels but less is known about potential kinetic differences. The current study was undertaken to better understand kinetic patterns observed across skill levels during "Oldowan," freehand stone tool production. MATERIALS AND METHODS Manual pressure data were collected from 23 novice and 9 expert stone tool makers during the production of simple stone flakes using direct hard hammer percussion. RESULTS Results show that expert tool makers experienced significantly lower cumulative pressure magnitudes and pressure-time integral magnitudes compared with novices. In expert knappers, digits I and II experienced similarly high pressures (both peak pressure and pressure-time integrals) and low variability in pressure relative to digits III-V. Novices, in contrast, tended to hold hammerstones such that pressure patterns were similar across digits II-V, and they showed low variability on digit I only. DISCUSSION The similar and consistent emphasis of the thumb by both skill groups indicates the importance of this digit in stabilizing the hammerstone. The emphasis placed on digit II is exclusive to expert knappers, and so this digit may offer osteological signals diagnostic of habitual expert tool production.
Collapse
Affiliation(s)
- Erin Marie Williams-Hatala
- Department of Biology, Chatham University, Pittsburgh, Pennsylvania, USA.,Center for the Advanced Study of Human Paleobiology, The George Washington University, Washington, District of Columbia, USA
| | - Kevin G Hatala
- Department of Biology, Chatham University, Pittsburgh, Pennsylvania, USA.,Center for the Advanced Study of Human Paleobiology, The George Washington University, Washington, District of Columbia, USA
| | - Alastair Key
- Skeletal Biology Research Centre, School of Anthropology and Conservation, University of Kent, Canterbury, UK
| | - Christopher J Dunmore
- Skeletal Biology Research Centre, School of Anthropology and Conservation, University of Kent, Canterbury, UK
| | - Margaret Kasper
- Department of Biology, Chatham University, Pittsburgh, Pennsylvania, USA
| | - McKenzie Gordon
- Department of Biology, Chatham University, Pittsburgh, Pennsylvania, USA
| | - Tracy L Kivell
- Skeletal Biology Research Centre, School of Anthropology and Conservation, University of Kent, Canterbury, UK.,Department of Human Evolution, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| |
Collapse
|