1
|
Wilson LC, Riordan A, Nussbaum A, Krawitz J. Heart and shoal: Social cues and oxytocin receptors impact stress recovery in the zebrafish. Physiol Behav 2024; 283:114613. [PMID: 38871154 DOI: 10.1016/j.physbeh.2024.114613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Accepted: 06/10/2024] [Indexed: 06/15/2024]
Abstract
In many species, social interactions decrease behavioral, hormonal, and neural responses to environmental stressors. While "social buffering" and its mechanisms have received considerable attention in mammals, we know less about the phenomenon in fish. The nonapeptide oxytocin regulates social behavior across vertebrates and plays an important role in social buffering in mammals. We investigated social buffering in the zebrafish by evaluating how the social environment and oxytocin receptors impact recovery from an acute stressor. Male and female fish were briefly exposed to alarm substance and recovered either in isolation or within view of a stimulus shoal. Alarm substance did not increase social approach, but social stimuli improved behavioral stress recovery. Oxytocin receptor antagonism decreased social approach during stress recovery and impaired stress recovery exclusively in individuals with access to visual social stimuli. Our findings contribute to the growing body of evidence that social stimuli buffer stress responses in fish and suggest that oxytocin receptors may play a role in socially-buffered stress recovery across taxa.
Collapse
Affiliation(s)
- Leah C Wilson
- Neuroscience Department, Muhlenberg College, 240W Chew St, Allentown, PA 18104, USA.
| | - Anna Riordan
- Neuroscience Department, Muhlenberg College, 240W Chew St, Allentown, PA 18104, USA
| | - April Nussbaum
- Neuroscience Department, Muhlenberg College, 240W Chew St, Allentown, PA 18104, USA
| | - Jacob Krawitz
- Neuroscience Department, Muhlenberg College, 240W Chew St, Allentown, PA 18104, USA
| |
Collapse
|
2
|
Mazocco CC, de Castro Júnior SL, Silveira RMF, Poletto R, da Silva IJO. Laying Hens: Why Smothering and Not Surviving?-A Literature Review. Animals (Basel) 2024; 14:1518. [PMID: 38891565 PMCID: PMC11171085 DOI: 10.3390/ani14111518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 04/12/2024] [Accepted: 04/15/2024] [Indexed: 06/21/2024] Open
Abstract
The proliferation of rearing systems providing opportunities for birds to engage in natural behaviors can trigger behavioral repertoires that when not manageable compromise animal welfare and the economic viability of the flock. Smothering in laying hens has long been perceived as "natural" or the result of hysteria among birds in the flock. However, the current literature has recognized smothering as an abnormal outcome with the potential to result in significant losses in cage-free poultry systems. Recent studies have specifically aimed to categorize the organization of smothering behavior and highlight its potential causes and consequences. In this study, literature review and bibliographic mapping, drawing on published articles and engagement with poultry farmers through extension and rural technical assistance, were employed. The findings indicate that smothering is a behavior triggered by factors related to the environment in which the laying hens are kept. This study concludes that there is a critical need for more rigorous and detailed research to elucidate the nuances of avian behavioral physiology and assess the impact of production systems on animal welfare and the economic impacts on the flock. This research contributes to a deeper understanding of bird behavior in high-production environments and provides practical insights for the poultry industry.
Collapse
Affiliation(s)
- Caroline Citta Mazocco
- Núcleo de Pesquisa em Ambiência (NUPEA), Escola Superior de Agricultura ‘‘Luiz de Queiroz’’ (ESALQ), Universidade de São Paulo (USP), Piracicaba 13418-900, SP, Brazil; (S.L.d.C.J.); (R.M.F.S.); (I.J.O.d.S.)
| | - Sérgio Luís de Castro Júnior
- Núcleo de Pesquisa em Ambiência (NUPEA), Escola Superior de Agricultura ‘‘Luiz de Queiroz’’ (ESALQ), Universidade de São Paulo (USP), Piracicaba 13418-900, SP, Brazil; (S.L.d.C.J.); (R.M.F.S.); (I.J.O.d.S.)
| | - Robson Mateus Freitas Silveira
- Núcleo de Pesquisa em Ambiência (NUPEA), Escola Superior de Agricultura ‘‘Luiz de Queiroz’’ (ESALQ), Universidade de São Paulo (USP), Piracicaba 13418-900, SP, Brazil; (S.L.d.C.J.); (R.M.F.S.); (I.J.O.d.S.)
| | - Rosangela Poletto
- Instituto Federal de Educação, Ciência e Tecnologia do Rio Grande do Sul (IFRS)-Campus Sertão, Sertão 99170-000, RS, Brazil;
| | - Iran José Oliveira da Silva
- Núcleo de Pesquisa em Ambiência (NUPEA), Escola Superior de Agricultura ‘‘Luiz de Queiroz’’ (ESALQ), Universidade de São Paulo (USP), Piracicaba 13418-900, SP, Brazil; (S.L.d.C.J.); (R.M.F.S.); (I.J.O.d.S.)
| |
Collapse
|
3
|
Vane LS, Morris-Drake A, Arbon JJ, Thomson RJ, Layton M, Kern JM, Radford AN. Investigating the impact of anthropogenic noise on the decision-making of dwarf mongoose offspring. ROYAL SOCIETY OPEN SCIENCE 2024; 11:240192. [PMID: 39076821 PMCID: PMC11285877 DOI: 10.1098/rsos.240192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 03/27/2024] [Accepted: 04/02/2024] [Indexed: 07/31/2024]
Abstract
Anthropogenic (man-made) noise constitutes a novel and widespread pollutant which is increasing in prevalence in terrestrial and aquatic ecosystems, resulting in alterations of natural soundscapes. There is proliferating evidence that noise leads to maladaptive behaviour in wildlife, yet few studies have addressed the effect on mammalian parent-offspring interactions. We investigated the impact of road noise on dwarf mongoose (Helogale parvula) offspring nearest-neighbour decision-making while foraging, using a field-based playback experiment. We predicted that offspring would forage closer to groupmates, especially adult and dominant individuals, when experiencing road noise compared with ambient sound to reduce communication masking and alleviate stress. We also predicted that noise would have a reduced effect with increasing offspring age owing to reduced reliance on adult groupmates for provisioning and predator defence. However, we found that mean nearest-neighbour distance and nearest-neighbour intrinsic characteristics (age, sex and dominance status) did not differ significantly between sound treatments, and these responses did not vary significantly with focal individual age. Noise may not impact nearest-neighbour decision-making owing to habituation from chronic natural exposure; alternatively, noise could induce stress and distraction, resulting in maladaptive decision-making. Future work should aim to detangle the underlying mechanisms mediating parent-offspring interactions in conditions of anthropogenic noise.
Collapse
Affiliation(s)
- Lauren S. Vane
- School of Biological Sciences, University of Bristol, Bristol BS8 1TQ, UK
| | - Amy Morris-Drake
- School of Biological Sciences, University of Bristol, Bristol BS8 1TQ, UK
| | - Josh J. Arbon
- School of Biological Sciences, University of Bristol, Bristol BS8 1TQ, UK
| | - Robyn J. Thomson
- School of Biological Sciences, University of Bristol, Bristol BS8 1TQ, UK
| | - Megan Layton
- School of Biological Sciences, University of Bristol, Bristol BS8 1TQ, UK
| | - Julie M. Kern
- School of Environmental and Rural Science, University of New England, ArmidaleNSW 2351, Australia
| | - Andrew N. Radford
- School of Biological Sciences, University of Bristol, Bristol BS8 1TQ, UK
| |
Collapse
|
4
|
da Silva DO, Ratko J, Côrrea APN, da Silva NG, Pereira DMC, Schleger IC, Neundorf AKA, de Souza MRDP, Herrerias T, Donatti L. Assessing physiological responses and oxidative stress effects in Rhamdia voulezi exposed to high temperatures. FISH PHYSIOLOGY AND BIOCHEMISTRY 2024; 50:617-633. [PMID: 38175338 DOI: 10.1007/s10695-023-01294-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Accepted: 12/22/2023] [Indexed: 01/05/2024]
Abstract
Exposure to high temperatures induces changes in fish respiration, resulting in an increased production of reactive oxygen species. This, in turn, affects the enzymatic and non-enzymatic components of antioxidant defenses, which are essential for mitigating cellular stress. Rhamdia voulezi, an economically important fish species endemic to Brazil's Iguaçu River, served as the subject of our study. Our goal was to assess enzymatic antioxidant biomarkers (superoxide dismutase, catalase, glutathione peroxidase, glutathione S-transferase, glutathione reductase, glucose-6-phosphate dehydrogenase), non-protein thiol levels (reduced glutathione), and markers of oxidative damage (lipoperoxidation and carbonylation) in the liver, gills, and kidneys of R. voulezi after acute exposure to high temperatures (31°C) for 2, 6, 12, 24, and 96 h. Control groups were maintained at 21°C. Our findings revealed that the liver exhibited increased superoxide dismutase levels up to 12 h and elevated glutathione S-transferase levels at 12 and 96 h at 31°C. In the gills, superoxide dismutase levels increased up to 24 h, along with increased lipoperoxidation at 2, 6, 12, and 96 h of exposure to high temperatures. The kidneys responded to heat stress at 12 h, with an increase in superoxide dismutase and catalase activity, and lipid peroxidation was observed at 2 and 6 h at 31°C. The three tissues evaluated responded differently to heat stress, with the liver demonstrating greater physiological adjustment to high temperatures. The intricate interplay of various antioxidant defense biomarkers and oxidative damage suggests the presence of oxidative stress in R. voulezi when exposed to high temperatures.
Collapse
Affiliation(s)
- Diego Ortiz da Silva
- Adaptive Biology Laboratory, Federal University of Paraná, Av. Cel.Francisco H. dos Santos, s/n, Jardim das Américas, 19031, Curitiba, Paraná, CEP: 81531-970, Brazil
| | - Jonathan Ratko
- Adaptive Biology Laboratory, Federal University of Paraná, Av. Cel.Francisco H. dos Santos, s/n, Jardim das Américas, 19031, Curitiba, Paraná, CEP: 81531-970, Brazil
| | - Ana Paula Nascimento Côrrea
- Adaptive Biology Laboratory, Federal University of Paraná, Av. Cel.Francisco H. dos Santos, s/n, Jardim das Américas, 19031, Curitiba, Paraná, CEP: 81531-970, Brazil
| | - Niumaique Gonçalves da Silva
- Adaptive Biology Laboratory, Federal University of Paraná, Av. Cel.Francisco H. dos Santos, s/n, Jardim das Américas, 19031, Curitiba, Paraná, CEP: 81531-970, Brazil
| | - Diego Mauro Carneiro Pereira
- Adaptive Biology Laboratory, Federal University of Paraná, Av. Cel.Francisco H. dos Santos, s/n, Jardim das Américas, 19031, Curitiba, Paraná, CEP: 81531-970, Brazil
| | - Ieda Cristina Schleger
- Adaptive Biology Laboratory, Federal University of Paraná, Av. Cel.Francisco H. dos Santos, s/n, Jardim das Américas, 19031, Curitiba, Paraná, CEP: 81531-970, Brazil
| | - Ananda Karla Alvez Neundorf
- Adaptive Biology Laboratory, Federal University of Paraná, Av. Cel.Francisco H. dos Santos, s/n, Jardim das Américas, 19031, Curitiba, Paraná, CEP: 81531-970, Brazil
| | - Maria Rosa Dmengeon Pedreiro de Souza
- Adaptive Biology Laboratory, Federal University of Paraná, Av. Cel.Francisco H. dos Santos, s/n, Jardim das Américas, 19031, Curitiba, Paraná, CEP: 81531-970, Brazil
| | - Tatiana Herrerias
- Department of Clinical Analysis, Federal University of Santa Catarina, Florianópolis, Santa Catarina, Brazil
| | - Lucélia Donatti
- Adaptive Biology Laboratory, Federal University of Paraná, Av. Cel.Francisco H. dos Santos, s/n, Jardim das Américas, 19031, Curitiba, Paraná, CEP: 81531-970, Brazil.
| |
Collapse
|
5
|
Lai NHY, Mohd Zahir IA, Liew AKY, Ogawa S, Parhar I, Soga T. Teleosts as behaviour test models for social stress. Front Behav Neurosci 2023; 17:1205175. [PMID: 37744951 PMCID: PMC10512554 DOI: 10.3389/fnbeh.2023.1205175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 08/21/2023] [Indexed: 09/26/2023] Open
Abstract
Stress is an important aspect of our everyday life and exposure to it is an unavoidable occurrence. In humans, this can come in the form of social stress or physical stress from an injury. Studies in animal models have helped researchers to understand the body's adaptive response to stress in human. Notably, the use of behavioural tests in animal models plays a pivotal role in understanding the neural, endocrine and behavioural changes induced by social stress. Under socially stressed conditions, behavioural parameters are often measured physiological and molecular parameters as changes in behaviour are direct responses to stress and are easily assessed by behavioural tests. Throughout the past few decades, the rodent model has been used as a well-established animal model for stress and behavioural changes. Recently, more attention has been drawn towards using fish as an animal model. Common fish models such as zebrafish, medaka, and African cichlids have the advantage of a higher rate of reproduction, easier handling techniques, sociability and most importantly, share evolutionary conserved genetic make-up, neural circuitry, neuropeptide molecular structure and function with mammalian species. In fact, some fish species exhibit a clear diurnal or seasonal rhythmicity in their stress response, similar to humans, as opposed to rodents. Various social stress models have been established in fish including but not limited to chronic social defeat stress, social stress avoidance, and social stress-related decision-making. The huge variety of behavioural patterns in teleost also aids in the study of more behavioural phenotypes than the mammalian species. In this review, we focus on the use of fish models as alternative models to study the effects of stress on different types of behaviours. Finally, fish behavioural tests against the typical mammalian model-based behavioural test are compared and discussed for their viability.
Collapse
Affiliation(s)
| | | | | | | | | | - Tomoko Soga
- Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway, Selangor, Malaysia
| |
Collapse
|
6
|
Cook A, Beckmann H, Azap R, Ryu S. Acute Stress Modulates Social Approach and Social Maintenance in Adult Zebrafish. eNeuro 2023; 10:ENEURO.0491-22.2023. [PMID: 37620148 PMCID: PMC10493981 DOI: 10.1523/eneuro.0491-22.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 06/13/2023] [Accepted: 06/15/2023] [Indexed: 08/26/2023] Open
Abstract
Stress alters social functioning in a complex manner. An important variable determining the final effects of stress is stressor intensity. However, the precise relationship between stressor intensity and social behavior is not well understood. Here, we investigate the effects of varying acute stressor intensity exposure on social behavior using adult zebrafish. We first establish a novel test using adult zebrafish that allows distinguishing fish's drive to approach a social cue and its ability to engage and maintain social interaction within the same behavioral paradigm. Next, we combined this test with a new method to deliver an acute stress stimulus of varying intensities. Our results show that both social approach and social maintenance are reduced in adult zebrafish on acute stress exposure in an intensity-dependent manner. Interestingly, lower stress intensity reduces social maintenance without affecting the social approach, while a higher stress level is required to alter social approach. These results provide evidence for a direct correlation between acute stressor intensity and social functioning and suggest that distinct steps in social behavior are modulated differentially by the acute stress level.
Collapse
Affiliation(s)
- Alexander Cook
- Institute of Human Genetics, University Medical Center of Johannes Gutenberg University Mainz, 55116, Mainz, Germany
| | - Holger Beckmann
- Institute of Human Genetics, University Medical Center of Johannes Gutenberg University Mainz, 55116, Mainz, Germany
- Living Systems Institute, Faculty of Health and Life Sciences, University of Exeter, Exeter, EX4 4QD, United Kingdom
| | - Rutkay Azap
- Max Planck Institute for Medical Research, 69120, Heidelberg, Germany
| | - Soojin Ryu
- Institute of Human Genetics, University Medical Center of Johannes Gutenberg University Mainz, 55116, Mainz, Germany
- Living Systems Institute, Faculty of Health and Life Sciences, University of Exeter, Exeter, EX4 4QD, United Kingdom
| |
Collapse
|
7
|
Jones M, Alexander M, Lightbody S, Snellgrove D, Smith P, Bramhall S, Henriquez F, McLellan, Sloman K. Influence of social enrichment on transport stress in fish: a behavioural approach. Appl Anim Behav Sci 2023. [DOI: 10.1016/j.applanim.2023.105920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2023]
|
8
|
Georgopoulou DG, Fanouraki E, Voskakis D, Mitrizakis N, Papandroulakis N. European seabass show variable responses in their group swimming features after tag implantation. FRONTIERS IN ANIMAL SCIENCE 2022. [DOI: 10.3389/fanim.2022.997948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The usefulness of acoustic telemetry on the study of movements, interactions, and behaviors has been revealed by many field and laboratory studies. The process of attaching acoustic tags on fish can, however, impact their physiological, behavioral, and growth performance traits. The potential negative effects are still unknown for several species and behavioral attributes. Previous studies have attempted to shed light on the effects of tag implantation on fish, focusing mainly on fish growth and physiological parameters, and one or two behavioral properties mainly on the individual level. However, the effect of this procedure could also be expressed at the group level. This study investigated the short-term effects of dummy and active body-implanted acoustic tags on the group-level swimming performance of adult European seabass (Dicentrarchus labrax) using optical flow analysis. We studied four main swimming performance properties—group speed, alignment (polarization), cohesion, and exploratory behavior. To help in the interpretation of any detected differences, physiological stress-related parameters were also extracted. The results show that the tag implantation procedure has variable effects on the different swimming performance attributes of fish. Group cohesion, polarization, and the group’s exploratory tendency were significantly impacted initially, and the effect persisted but to a lesser extent two weeks after surgery. In contrast, group speed was not affected initially but showed a significant decrease in comparison with the control group two weeks post-surgery. In addition, the physiological parameters tested did not show any significant difference between the control and the treated group 14 days after the onset of the experiment. The findings suggest that the effect of tagging is non-trivial, leading to responses and response times that could affect behavioral studies carried out using acoustic telemetry.
Collapse
|
9
|
Lee CJ, Paull GC, Tyler CR. Improving zebrafish laboratory welfare and scientific research through understanding their natural history. Biol Rev Camb Philos Soc 2022; 97:1038-1056. [PMID: 34983085 PMCID: PMC9303617 DOI: 10.1111/brv.12831] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2021] [Revised: 12/17/2021] [Accepted: 12/23/2021] [Indexed: 12/13/2022]
Abstract
Globally, millions of zebrafish (Danio rerio) are used for scientific laboratory experiments for which researchers have a duty of care, with legal obligations to consider their welfare. Considering the growing use of the zebrafish as a vertebrate model for addressing a diverse range of scientific questions, optimising their laboratory conditions is of major importance for both welfare and improving scientific research. However, most guidelines for the care and breeding of zebrafish for research are concerned primarily with maximising production and minimising costs and pay little attention to the effects on welfare of the environments in which the fish are maintained, or how those conditions affect their scientific research. Here we review the physical and social conditions in which laboratory zebrafish are kept, identifying and drawing attention to factors likely to affect their welfare and experimental science. We also identify a fundamental lack knowledge of how zebrafish interact with many biotic and abiotic features in their natural environment to support ways to optimise zebrafish health and well-being in the laboratory, and in turn the quality of scientific data produced. We advocate that the conditions under which zebrafish are maintained need to become a more integral part of research and that we understand more fully how they influence experimental outcome and in turn interpretations of the data generated.
Collapse
Affiliation(s)
- Carole J. Lee
- Biosciences, Geoffrey Pope BuildingUniversity of ExeterStocker RoadExeterEX4 4QDU.K.
| | - Gregory C. Paull
- Biosciences, Geoffrey Pope BuildingUniversity of ExeterStocker RoadExeterEX4 4QDU.K.
| | - Charles R. Tyler
- Biosciences, Geoffrey Pope BuildingUniversity of ExeterStocker RoadExeterEX4 4QDU.K.
| |
Collapse
|
10
|
Gonçalves C, Kareklas K, Teles MC, Varela SAM, Costa J, Leite RB, Paixão T, Oliveira RF. Phenotypic architecture of sociality and its associated genetic polymorphisms in zebrafish. GENES, BRAIN, AND BEHAVIOR 2022; 21:e12809. [PMID: 35524578 PMCID: PMC9744564 DOI: 10.1111/gbb.12809] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 04/02/2022] [Accepted: 04/06/2022] [Indexed: 12/11/2022]
Abstract
Sociality relies on motivational and cognitive components that may have evolved independently, or may have been linked by phenotypic correlations driven by a shared selective pressure for increased social competence. Furthermore, these components may be domain-specific or of general-domain across social and non-social contexts. Here, we used zebrafish to test if the motivational and cognitive components of social behavior are phenotypically linked and if they are domain specific or of general domain. The behavioral phenotyping of zebrafish in social and equivalent non-social tests shows that the motivational (preference) and cognitive (memory) components of sociality: (1) are independent from each other, hence not supporting the occurrence of a sociality syndrome; and (2) are phenotypically linked to non-social traits, forming two general behavioral modules, suggesting that sociality traits have been co-opted from general-domain motivational and cognitive traits. Moreover, the study of the association between single nucleotide polymorphisms (SNPs) and each behavioral module further supports this view, since several SNPs from a list of candidate "social" genes, are statistically associated with the motivational, but not with the cognitive, behavioral module. Together, these results support the occurrence of general-domain motivational and cognitive behavioral modules in zebrafish, which have been co-opted for the social domain.
Collapse
Affiliation(s)
- Claúdia Gonçalves
- Integrative Behavioural Biology LaboratoryGulbenkian Institute of ScienceOeirasPortugal
| | - Kyriacos Kareklas
- Integrative Behavioural Biology LaboratoryGulbenkian Institute of ScienceOeirasPortugal
| | - Magda C. Teles
- Integrative Behavioural Biology LaboratoryGulbenkian Institute of ScienceOeirasPortugal
| | - Susana A. M. Varela
- Integrative Behavioural Biology LaboratoryGulbenkian Institute of ScienceOeirasPortugal
| | - João Costa
- Integrative Behavioural Biology LaboratoryGulbenkian Institute of ScienceOeirasPortugal
| | - Ricardo B. Leite
- Integrative Behavioural Biology LaboratoryGulbenkian Institute of ScienceOeirasPortugal
| | - Tiago Paixão
- Integrative Behavioural Biology LaboratoryGulbenkian Institute of ScienceOeirasPortugal
| | - Rui F. Oliveira
- Integrative Behavioural Biology LaboratoryGulbenkian Institute of ScienceOeirasPortugal,Department of BiosciencesISPA‐Instituto UniversitárioLisbonPortugal,Champalimaud Neuroscience Program, Champalimaud FoundationLisbonPortugal
| |
Collapse
|
11
|
Resende AC, Mauro Carneiro Pereira D, Cristina Schleger I, Dmengeon Pedreiro de Souza MR, Alvez Neundorf AK, Romão S, Herrerias T, Donatti L. Effects of heat shock on energy metabolism and antioxidant defence in a tropical fish species Psalidodon bifasciatus. JOURNAL OF FISH BIOLOGY 2022; 100:1245-1263. [PMID: 35266159 DOI: 10.1111/jfb.15036] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 02/08/2022] [Accepted: 03/07/2022] [Indexed: 06/14/2023]
Abstract
Predictions about global warming have raised interest in assessing whether ectothermic organisms will be able to adapt to these changes. Understanding the physiological mechanisms and metabolic adjustment capacity of fish subjected to heat stress can provide subsidies that may contribute to decision-making in relation to ecosystems and organisms subjected to global climate change. This study investigated the antioxidant defence system and energy metabolism of carbohydrate and protein responses in the gill, liver and kidney tissues of Psalidodon bifasciatus (Garavello & Sampaio 2010), a Brazilian freshwater fish used in aquaculture and in biological studies, following exposure to heat shock at 31°C for 2, 6, 12, 24 and 48 h. The fish presented signs of stress in all tissues tested, as evidenced by increased lipid peroxidation concentration at 2 h and phosphofructokinase, hexokinase and malate dehydrogenase activity at 48 h in the gills; increased glutathione-S-transferase activity at 12 h, citrate synthase activity at 24 h and concentration of reduced glutathione (GSH) concentration at 12 and 48 h in the liver; and through increased activity of superoxide dismutase at 48 h, glutathione reductase at 24 h, glucose-6-phosphate dehydrogenase at 48 h and concentration of GSH at 24 h in the kidney. In the kidneys, changes in the antioxidant system were more prominent, whereas in the gills, there were greater changes in the carbohydrate metabolism. These results indicated the importance of glycolysis and aerobic metabolism in the gills, aerobic metabolism in the liver and pentose-phosphate pathway in the kidneys during homeostasis. The biomarker response was tissue specific, with the greatest number of biomarkers altered in the gills, followed by those in the kidneys and liver.
Collapse
Affiliation(s)
- Anna Carolina Resende
- Adaptive Biology Laboratory, Department of Cell Biology, Federal University of Paraná, Curitiba, Brazil
- Postgraduate Program on Ecology and Conservation, Federal University of Paraná, Curitiba, Brazil
| | | | - Ieda Cristina Schleger
- Adaptive Biology Laboratory, Department of Cell Biology, Federal University of Paraná, Curitiba, Brazil
| | | | | | - Silvia Romão
- Laranjeiras do Sul, Universidade Federal da Fronteira Sul, Curitiba, Brazil
| | - Tatiana Herrerias
- Department of Health Promotion, Uniguairacá University Center, Curitiba, Brazil
| | - Lucélia Donatti
- Adaptive Biology Laboratory, Department of Cell Biology, Federal University of Paraná, Curitiba, Brazil
- Postgraduate Program on Ecology and Conservation, Federal University of Paraná, Curitiba, Brazil
| |
Collapse
|
12
|
Andersson M, Kettunen P. Effects of Holding Density on the Welfare of Zebrafish: A Systematic Review. Zebrafish 2021; 18:297-306. [PMID: 34448632 DOI: 10.1089/zeb.2021.0018] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
The zebrafish is becoming an increasingly popular research animal around the world. Its welfare is affected by an array of environmental factors, such as food access and water quality. Holding density is an important welfare aspect, not least due to its interaction with other housing conditions. Despite the extensive use of zebrafish in research, little is known of how densities affect its welfare. In this systematic review, we have performed a large literature search, compiled, and evaluated all publications regarding zebrafish holding density. We have analyzed how density effects growth, reproduction, and stress response, including behavior, water quality, and pathogenic outbreaks in young and adult fish. Our review shows that the holding densities tested vary largely depending on the research focus, for example, body growth or behavior. In fact, research indicates that future recommendations on holding density could depend on which welfare aspects are considered. Overall, there is a need for more studies investigating the interactive effects of density on welfare indicators, such as reproduction coupled with stress response. We stress the necessity of including holding density in universal housing guidelines and reporting information on holding conditions of larvae and adults when publishing zebrafish work.
Collapse
Affiliation(s)
- Marica Andersson
- Department of Marine Sciences, University of Gothenburg, Gothenburg, Sweden
| | - Petronella Kettunen
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
13
|
Papadaki K, Laliotis GP, Bizelis I. Acoustic variables of high-pitched vocalizations in dairy sheep breeds. Appl Anim Behav Sci 2021. [DOI: 10.1016/j.applanim.2021.105398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
14
|
Evaluating the Effect of Visitor Presence on Nile Crocodile (Crocodylus niloticus) Behavior. JOURNAL OF ZOOLOGICAL AND BOTANICAL GARDENS 2021. [DOI: 10.3390/jzbg2010009] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Visitor presence has been shown to affect the behavior of animals in zoos. However, studies to date have not included a wide range of taxonomic groupings, and thus, the effect is poorly understood for many species. Here, we compared the behavior of Nile crocodiles (Crocodylus niloticus) in the presence and absence of visitors for the first time. Data were collected at Disney’s Animal Kingdom® over two months during normal operating conditions and during the same two months the following year when the park was closed due to the COVID-19 pandemic, totaling 158 observation hours. Significant differences in crocodile behavior were observed between park operating conditions; however, the direction of change varied by behavior and average differences were generally small. In addition, we found that time of day, temperature and month significantly affected behavior, often with greater magnitude than visitor presence. This highlights the importance of accounting for environmental variables when evaluating and interpreting the behavior, and ultimately welfare, of reptiles in zoos. Collectively, the data suggest the overall effect of visitors on crocodile behavior was small and neutral from a welfare perspective. This study highlights the importance of taxonomic diversity in studying the visitor effect.
Collapse
|
15
|
Demin KA, Taranov AS, Ilyin NP, Lakstygal AM, Volgin AD, de Abreu MS, Strekalova T, Kalueff AV. Understanding neurobehavioral effects of acute and chronic stress in zebrafish. Stress 2021; 24:1-18. [PMID: 32036720 DOI: 10.1080/10253890.2020.1724948] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Stress is a common cause of neuropsychiatric disorders, evoking multiple behavioral, endocrine and neuro-immune deficits. Animal models have been extensively used to understand the mechanisms of stress-related disorders and to develop novel strategies for their treatment. Complementing rodent and clinical studies, the zebrafish (Danio rerio) is one of the most important model organisms in biomedicine. Rapidly becoming a popular model species in stress neuroscience research, zebrafish are highly sensitive to both acute and chronic stress, and show robust, well-defined behavioral and physiological stress responses. Here, we critically evaluate the utility of zebrafish-based models for studying acute and chronic stress-related CNS pathogenesis, assess the advantages and limitations of these aquatic models, and emphasize their relevance for the development of novel anti-stress therapies. Overall, the zebrafish emerges as a powerful and sensitive model organism for stress research. Although these fish generally display evolutionarily conserved behavioral and physiological responses to stress, zebrafish-specific aspects of neurogenesis, neuroprotection and neuro-immune responses may be particularly interesting to explore further, as they may offer additional insights into stress pathogenesis that complement (rather than merely replicate) rodent findings. Compared to mammals, zebrafish models are also characterized by increased availability of gene-editing tools and higher throughput of drug screening, thus being able to uniquely empower translational research of genetic determinants of stress and resilience, as well as to foster innovative CNS drug discovery and the development of novel anti-stress therapies.
Collapse
Affiliation(s)
- Konstantin A Demin
- Institute of Experimental Biomedicine, Almazov National Medical Research Center, Ministry of Healthcare of Russian Federation, St. Petersburg, Russia
- Laboratory of Biological Psychiatry, Institute of Translational Biomedicine, St. Petersburg State University, St. Petersburg, Russia
| | - Alexander S Taranov
- Laboratory of Biological Psychiatry, Institute of Translational Biomedicine, St. Petersburg State University, St. Petersburg, Russia
- Laboratory of Preclinical Bioscreening, Granov Russian Research Center of Radiology and Surgical Technologies, Ministry of Healthcare of Russian Federation, Pesochny, Russia
| | - Nikita P Ilyin
- Laboratory of Biological Psychiatry, Institute of Translational Biomedicine, St. Petersburg State University, St. Petersburg, Russia
- Laboratory of Preclinical Bioscreening, Granov Russian Research Center of Radiology and Surgical Technologies, Ministry of Healthcare of Russian Federation, Pesochny, Russia
| | - Anton M Lakstygal
- Laboratory of Biological Psychiatry, Institute of Translational Biomedicine, St. Petersburg State University, St. Petersburg, Russia
- Laboratory of Preclinical Bioscreening, Granov Russian Research Center of Radiology and Surgical Technologies, Ministry of Healthcare of Russian Federation, Pesochny, Russia
| | - Andrey D Volgin
- Laboratory of Preclinical Bioscreening, Granov Russian Research Center of Radiology and Surgical Technologies, Ministry of Healthcare of Russian Federation, Pesochny, Russia
| | - Murilo S de Abreu
- Bioscience Institute, University of Passo Fundo, Passo Fundo, Brazil
- The International Zebrafish Neuroscience Research Consortium (ZNRC), Slidell, LA, USA
| | - Tatyana Strekalova
- I.M. Sechenov First Moscow State Medical University, Moscow, Russia
- Maastricht University, Maastricht, The Netherlands
- Research Institute of General Pathology and Pathophysiology, Moscow, Russia
| | - Allan V Kalueff
- School of Pharmacy, Southwest University, Chongqing, China
- Ural Federal University, Ekaterinburg, Russia
| |
Collapse
|
16
|
Golla A, Østby H, Kermen F. Chronic unpredictable stress induces anxiety-like behaviors in young zebrafish. Sci Rep 2020; 10:10339. [PMID: 32587370 PMCID: PMC7316714 DOI: 10.1038/s41598-020-67182-4] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2020] [Accepted: 06/02/2020] [Indexed: 01/12/2023] Open
Abstract
Exposure to stress during early life affects subsequent behaviors and increases the vulnerability to adult pathologies, a phenomenon that has been well documented in humans and rodents. In this study, we introduce a chronic unpredictable stress protocol adapted to young zebrafish, which is an increasingly popular vertebrate model in neuroscience research. We exposed zebrafish to a series of intermittent and unpredictable mild stressors from day 10 to 17 post-fertilization. The stressed fish showed a reduced exploration of a novel environment one day post-stress and an increased responsiveness to dark-light transition two days post-stress, indicative of heightened anxiety-related behaviors. The stress-induced decrease in exploration lasted for at least three days and returned to control levels within one week. Moreover, stressed fish were on average 8% smaller than their control siblings two days post-stress and returned to control levels within one week. All together, our results demonstrate that young zebrafish exposed to chronic unpredictable stress develop growth and behavioral alterations akin to those observed in rodent models.
Collapse
Affiliation(s)
- Archana Golla
- Department of Biology, Faculty of Natural Sciences, Norwegian University of Science and Technology, 7491, Trondheim, Norway
| | - Henrik Østby
- Department of Biology, Faculty of Natural Sciences, Norwegian University of Science and Technology, 7491, Trondheim, Norway
| | - Florence Kermen
- Department of Biology, Faculty of Natural Sciences, Norwegian University of Science and Technology, 7491, Trondheim, Norway.
- Kavli Institute for Systems Neuroscience and Centre for Neural Computation, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, 7030, Trondheim, Norway.
| |
Collapse
|
17
|
A new method for vibration-based neurophenotyping of zebrafish. J Neurosci Methods 2020; 333:108563. [DOI: 10.1016/j.jneumeth.2019.108563] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Revised: 12/12/2019] [Accepted: 12/17/2019] [Indexed: 02/08/2023]
|