1
|
Werner A, Kanhere A, Wahlestedt C, Mattick JS. Natural antisense transcripts as versatile regulators of gene expression. Nat Rev Genet 2024; 25:730-744. [PMID: 38632496 DOI: 10.1038/s41576-024-00723-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/07/2024] [Indexed: 04/19/2024]
Abstract
Long non-coding RNAs (lncRNAs) are emerging as a major class of gene products that have central roles in cell and developmental biology. Natural antisense transcripts (NATs) are an important subset of lncRNAs that are expressed from the opposite strand of protein-coding and non-coding genes and are a genome-wide phenomenon in both eukaryotes and prokaryotes. In eukaryotes, a myriad of NATs participate in regulatory pathways that affect expression of their cognate sense genes. Recent developments in the study of NATs and lncRNAs and large-scale sequencing and bioinformatics projects suggest that whether NATs regulate expression, splicing, stability or translation of the sense transcript is influenced by the pattern and degrees of overlap between the sense-antisense pair. Moreover, epigenetic gene regulatory mechanisms prevail in somatic cells whereas mechanisms dependent on the formation of double-stranded RNA intermediates are prevalent in germ cells. The modulating effects of NATs on sense transcript expression make NATs rational targets for therapeutic interventions.
Collapse
Affiliation(s)
| | | | | | - John S Mattick
- University of New South Wales, Sydney, New South Wales, Australia
| |
Collapse
|
2
|
Fan HH, Zhang HJ. EVA1A, a novel and promising prognostic biomarker in colorectal cancer. Front Oncol 2024; 14:1333702. [PMID: 38529374 PMCID: PMC10961441 DOI: 10.3389/fonc.2024.1333702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 02/23/2024] [Indexed: 03/27/2024] Open
Abstract
Purpose The purpose of this study was to investigate the potential of EVA1A as a prognostic biomarker for Colorectal cancer (CRC). Methods The study utilized public databases to analyze the difference in Evala mRNA expression between CRC tumor tissues and adjacent normal tissues. Additionallymunohistochemical staining was performed on 90 paired tissue samples to detect EVA1A expression. The relationship between EVA1A and clinicopathological features was examined, and a Kaplan-Meier survival analysis was conducted. Univariate and multivariate Cox analyses were employed to identify prognostic factors affecting the overall survival (OS) of CRC patients. Results The analysis revealed a significant increase in Evala mRNA expression in CRC tumor cells compared to normal controls from public databases (P< 0.05). Immunohistochemical staining further confirmed a significant upregulation of EVA1A expression in CRC tissues (P< 0.05). High EVA1A expression was associated with age, pathological M stage, total tumor stage, and Carbohydrate antigen CA19-9 (CA19-9). Kaplan-Meier analysis demonstrated a significant association between high EVA1A expression and poor OS. Univariate and multivariate analysis identified EVA1A as an independent risk factor for CRC prognosis. Conclusion The study suggests that EVA1A is increased in CRC tumor tissues and may serve as a potential biomarker for poor prognosis in CRC.
Collapse
Affiliation(s)
- Hai-hua Fan
- Department of Oncology, The Affiliated Tumor Hospital of Nantong University, Nantong, Jiangsu, China
| | - Hai-jun Zhang
- Department of Oncology, The Affiliated Zhongda Hospital of Southeast University, Medical School of Southeast University, Nanjing, Jiangsu, China
| |
Collapse
|
3
|
Ma Y, Zhao T, Wu X, Yang Z, Sun Y. Identification cloning and functional analysis of novel natural antisense lncRNA CFL1-AS1 in cattle. Epigenetics 2023; 18:2231707. [PMID: 37406176 DOI: 10.1080/15592294.2023.2231707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 06/14/2023] [Accepted: 06/26/2023] [Indexed: 07/07/2023] Open
Abstract
Long noncoding RNAs have been identified as important regulators of gene expression and animal development. The expression of natural antisense transcripts (NATs) transcribed in the opposite direction to protein-coding genes is usually positively correlated with the expression of homologous sense genes and is the key factor for expression. Here, we identified a conserved noncoding antisense transcript, CFL1-AS1, that plays an important role in muscle growth and development. CFL1-AS1 overexpression and knockout vectors were constructed and transfected into 293T and C2C12 cells. CFL1-AS1 positively regulated CFL1 gene expression, and the expression of CFL2 was also downregulated when CFL1-AS1 was knocked down. CFL1-AS1 promoted cell proliferation, inhibited apoptosis and participated in autophagy. This study expands the research on NATs in cattle and lays a foundation for the study of the biological function of bovine CFL1 and its natural antisense chain transcript CFL1-AS1 in bovine skeletal muscle development. The discovery of this NAT can provide a reference for subsequent genetic breeding and data on the characteristics and functional mechanisms of NATs.
Collapse
Affiliation(s)
- Yaoyao Ma
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Institutes of Agricultural Science and Technology Development, Yangzhou University, Yangzhou, China
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Tianqi Zhao
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Institutes of Agricultural Science and Technology Development, Yangzhou University, Yangzhou, China
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Xinyi Wu
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Institutes of Agricultural Science and Technology Development, Yangzhou University, Yangzhou, China
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Zhangping Yang
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Institutes of Agricultural Science and Technology Development, Yangzhou University, Yangzhou, China
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Yujia Sun
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Institutes of Agricultural Science and Technology Development, Yangzhou University, Yangzhou, China
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| |
Collapse
|
4
|
Jiang B, Yuan Y, Yi T, Dang W. The Roles of Antisense Long Noncoding RNAs in Tumorigenesis and Development through Cis-Regulation of Neighbouring Genes. Biomolecules 2023; 13:684. [PMID: 37189431 PMCID: PMC10135817 DOI: 10.3390/biom13040684] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 03/31/2023] [Accepted: 04/14/2023] [Indexed: 05/17/2023] Open
Abstract
Antisense long noncoding RNA (as-lncRNA) is a lncRNA transcribed in reverse orientation that is partially or completely complementary to the corresponding sense protein-coding or noncoding genes. As-lncRNAs, one of the natural antisense transcripts (NATs), can regulate the expression of their adjacent sense genes through a variety of mechanisms, affect the biological activities of cells, and further participate in the occurrence and development of a variety of tumours. This study explores the functional roles of as-lncRNAs, which can cis-regulate protein-coding sense genes, in tumour aetiology to understand the occurrence and development of malignant tumours in depth and provide a better theoretical basis for tumour therapy targeting lncRNAs.
Collapse
Affiliation(s)
- Binyuan Jiang
- Department of Clinical Laboratory, The Affiliated Changsha Central Hospital, Hengyang Medical School, University of South China, Changsha 410004, China
- Medical Research Center, The Affiliated Changsha Central Hospital, Hengyang Medical School, University of South China, Changsha 410004, China
| | - Yeqin Yuan
- Department of Clinical Laboratory, The Affiliated Changsha Central Hospital, Hengyang Medical School, University of South China, Changsha 410004, China
- Medical Research Center, The Affiliated Changsha Central Hospital, Hengyang Medical School, University of South China, Changsha 410004, China
| | - Ting Yi
- Department of Science and Education, The Affiliated Changsha Central Hospital, Hengyang Medical School, University of South China, Changsha 410004, China
| | - Wei Dang
- Department of Clinical Laboratory, The Affiliated Changsha Central Hospital, Hengyang Medical School, University of South China, Changsha 410004, China
- Medical Research Center, The Affiliated Changsha Central Hospital, Hengyang Medical School, University of South China, Changsha 410004, China
- Department of Science and Education, The Affiliated Changsha Central Hospital, Hengyang Medical School, University of South China, Changsha 410004, China
| |
Collapse
|
5
|
Polenkowski M, Burbano de Lara S, Allister AB, Nguyen TNQ, Tamura T, Tran DDH. Identification of Novel Micropeptides Derived from Hepatocellular Carcinoma-Specific Long Noncoding RNA. Int J Mol Sci 2021; 23:ijms23010058. [PMID: 35008483 PMCID: PMC8744898 DOI: 10.3390/ijms23010058] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 12/16/2021] [Accepted: 12/20/2021] [Indexed: 12/13/2022] Open
Abstract
Identification of cancer-specific target molecules and biomarkers may be useful in the development of novel treatment and immunotherapeutic strategies. We have recently demonstrated that the expression of long noncoding (lnc) RNAs can be cancer-type specific due to abnormal chromatin remodeling and alternative splicing. Furthermore, we identified and determined that the functional small protein C20orf204-189AA encoded by long intergenic noncoding RNA Linc00176 that is expressed predominantly in hepatocellular carcinoma (HCC), enhances transcription of ribosomal RNAs and supports growth of HCC. In this study we combined RNA-sequencing and polysome profiling to identify novel micropeptides that originate from HCC-specific lncRNAs. We identified nine lncRNAs that are expressed exclusively in HCC cells but not in the liver or other normal tissues. Here, DNase-sequencing data revealed that the altered chromatin structure plays a key role in the HCC-specific expression of lncRNAs. Three out of nine HCC-specific lncRNAs contain at least one open reading frame (ORF) longer than 50 amino acid (aa) and enriched in the polysome fraction, suggesting that they are translated. We generated a peptide specific antibody to characterize one candidate, NONHSAT013026.2/Linc013026. We show that Linc013026 encodes a 68 amino acid micropeptide that is mainly localized at the perinuclear region. Linc013026-68AA is expressed in a subset of HCC cells and plays a role in cell proliferation, suggesting that Linc013026-68AA may be used as a HCC-specific target molecule. Our finding also sheds light on the role of the previously ignored ’dark proteome’, that originates from noncoding regions in the maintenance of cancer.
Collapse
Affiliation(s)
- Mareike Polenkowski
- Institut fuer Zellbiochemie, OE4310, Medizinische Hochschule Hannover, Carl-Neuberg-Str. 1, 30623 Hannover, Germany; (M.P.); (S.B.d.L.); (A.B.A.); (T.N.Q.N.)
| | - Sebastian Burbano de Lara
- Institut fuer Zellbiochemie, OE4310, Medizinische Hochschule Hannover, Carl-Neuberg-Str. 1, 30623 Hannover, Germany; (M.P.); (S.B.d.L.); (A.B.A.); (T.N.Q.N.)
- Systems Biology of Signal Transduction B200, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
| | - Aldrige Bernardus Allister
- Institut fuer Zellbiochemie, OE4310, Medizinische Hochschule Hannover, Carl-Neuberg-Str. 1, 30623 Hannover, Germany; (M.P.); (S.B.d.L.); (A.B.A.); (T.N.Q.N.)
| | - Thi Nhu Quynh Nguyen
- Institut fuer Zellbiochemie, OE4310, Medizinische Hochschule Hannover, Carl-Neuberg-Str. 1, 30623 Hannover, Germany; (M.P.); (S.B.d.L.); (A.B.A.); (T.N.Q.N.)
| | - Teruko Tamura
- Institut fuer Zellbiochemie, OE4310, Medizinische Hochschule Hannover, Carl-Neuberg-Str. 1, 30623 Hannover, Germany; (M.P.); (S.B.d.L.); (A.B.A.); (T.N.Q.N.)
| | - Doan Duy Hai Tran
- Institut fuer Zellbiochemie, OE4310, Medizinische Hochschule Hannover, Carl-Neuberg-Str. 1, 30623 Hannover, Germany; (M.P.); (S.B.d.L.); (A.B.A.); (T.N.Q.N.)
- Correspondence: ; Tel.: +49-511-532-2857
| |
Collapse
|
6
|
Hassan MS, Cwidak N, Johnson C, Däster S, Eppenberger-Castori S, Awasthi N, Li J, Schwarz MA, von Holzen U. Therapeutic Potential of the Cyclin-Dependent Kinase Inhibitor Flavopiridol on c-Myc Overexpressing Esophageal Cancer. Front Pharmacol 2021; 12:746385. [PMID: 34621175 PMCID: PMC8490822 DOI: 10.3389/fphar.2021.746385] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Accepted: 09/08/2021] [Indexed: 12/14/2022] Open
Abstract
Tumors with elevated c-Myc expression often exhibit a highly aggressive phenotype, and c-Myc amplification has been shown to be frequent in esophageal cancer. Emerging data suggests that synthetic lethal interactions between c-Myc pathway activation and small molecules inhibition involved in cell cycle signaling can be therapeutically exploited to preferentially kill tumor cells. We therefore investigated whether exploiting elevated c-Myc expression is effective in treating esophageal cancer with the CDK inhibitor flavopiridol. We found frequent overexpression of c-Myc in human esophageal cancer cell lines and tissues. c-Myc overexpression correlated with accelerated esophageal cancer subcutaneous xenograft tumor growth. Esophageal cancer cells with elevated c-Myc expression were found preferentially more sensitive to induction of apoptosis by the CDK inhibition flavopiridol compared to esophageal cancer cells with lower c-Myc expression. In addition, we observed that flavopiridol alone or in combination with the chemotherapeutic agent nanoparticle albumin-bound paclitaxel (NPT) or in combinations with the targeted agent BMS-754807 significantly inhibited esophageal cancer cell proliferation and subcutaneous xenograft tumor growth while significantly enhancing overall mice survival. These results indicate that aggressive esophageal cancer cells with elevated c-Myc expression are sensitive to the CDK inhibitor flavopiridol, and that flavopiridol alone or in combination can be a potential therapy for c-Myc overexpressing esophageal cancer.
Collapse
Affiliation(s)
- Md Sazzad Hassan
- Department of Surgery, Indiana University School of Medicine, South Bend, IN, United States.,Harper Cancer Research Institute, South Bend, IN, United States
| | - Nicholas Cwidak
- Department of Surgery, Indiana University School of Medicine, South Bend, IN, United States
| | - Chloe Johnson
- University of Notre Dame, Notre Dame, IN, United States
| | | | | | - Niranjan Awasthi
- Department of Surgery, Indiana University School of Medicine, South Bend, IN, United States.,Harper Cancer Research Institute, South Bend, IN, United States
| | - Jun Li
- Harper Cancer Research Institute, South Bend, IN, United States.,University of Notre Dame, Notre Dame, IN, United States
| | - Margaret A Schwarz
- Harper Cancer Research Institute, South Bend, IN, United States.,Department of Pediatrics, Indiana University School of Medicine, South Bend, IN, United States
| | - Urs von Holzen
- Department of Surgery, Indiana University School of Medicine, South Bend, IN, United States.,Harper Cancer Research Institute, South Bend, IN, United States.,University of Basel, Basel, Switzerland.,Goshen Center for Cancer Care, Goshen, IN, United States
| |
Collapse
|
7
|
Yang J, Wang B, Xu Q, Yang Y, Hou L, Yin K, Guo Q, Hua Y, Zhang L, Li Y, Zhang J, Li N. TMEM166 inhibits cell proliferation, migration and invasion in hepatocellular carcinoma via upregulating TP53. Mol Cell Biochem 2020; 476:1151-1163. [PMID: 33200377 DOI: 10.1007/s11010-020-03979-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Accepted: 11/06/2020] [Indexed: 12/24/2022]
Abstract
Transmembrane protein 166 (TMEM166), an endoplasmic reticulum-associated protein, functions in many diseases via regulating autophagy and/or apoptosis. However, the role of TMEM166 in hepatocellular carcinoma (HCC) remains largely unknown. In this study, we detected the expression of TMEM166 in HCC by real-time fluorescent quantitative PCR (RT-qPCR), immunohistochemistry and western blot. To investigate its biological function and underlying mechanism in HCC, TMEM166 was overexpressed in HCC cell lines and assessed its effects on cell proliferation, migration, invasion, apoptosis and cell cycle by MTT assay, wound healing assay, Transwell assay, Annexin V-FITC/PI assay, JC-1 staining and flow cytometry assay, respectively. Results demonstrated that the expression of TMEM166 was significantly decreased in HCC and was associated with advanced TNM clinical stage and poor clinical outcome of HCC patients. TMEM166 overexpression inhibited HCC cells proliferation, migration and invasion. Furthermore, TMEM166 inhibited cell proliferation by inducing apoptosis and cell cycle arrest via upregulating anti-oncogene TP53 and TP53 knockdown significantly alleviated the anti-tumor effects of TMEM166 on HCC cells. This study provides the first comprehensive analysis the role of TMEM166 in HCC. TMEM166 displays a fine anti-tumor activity on HCC cells involving a mechanism of upregulating TP53. This study suggests TMEM166 is a potential target for the treatment of HCC.
Collapse
Affiliation(s)
- Jiejie Yang
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Qingdao University, Qingdao, 266071, China
| | - Bin Wang
- School of Electronic Information, Qingdao University, Qingdao, 266071, China
| | - Qian Xu
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Qingdao University, Qingdao, 266071, China
| | - Yuling Yang
- Department of Infectious Diseases, Affiliated Hospital of Qingdao University, Qingdao, 266000, China
| | - Lin Hou
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Qingdao University, Qingdao, 266071, China
| | - Kan Yin
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Qingdao University, Qingdao, 266071, China
| | - Qingming Guo
- Biotherapy Center, Clinical Laboratory, Qingdao Central Hospital, The Second Affiliated Hospital of Qingdao University, Qingdao, 266042, China
| | - Yanan Hua
- Department of Neurobiology, School of Basic Medicine, Qingdao University, Qingdao, 266071, China
| | - Li Zhang
- Experimental Center for Undergraduates of Pharmacy, School of Pharmacy, Qingdao University, Qingdao, 266021, China
| | - Yixuan Li
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Qingdao University, Qingdao, 266071, China
| | - Jinyu Zhang
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Qingdao University, Qingdao, 266071, China
| | - Ning Li
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Qingdao University, Qingdao, 266071, China.
| |
Collapse
|
8
|
Zhen Y, Zhao R, Wang M, Jiang X, Gao F, Fu L, Zhang L, Zhou XL. Flubendazole elicits anti-cancer effects via targeting EVA1A-modulated autophagy and apoptosis in Triple-negative Breast Cancer. Am J Cancer Res 2020; 10:8080-8097. [PMID: 32724459 PMCID: PMC7381743 DOI: 10.7150/thno.43473] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2019] [Accepted: 06/18/2020] [Indexed: 02/07/2023] Open
Abstract
Background: Triple-negative breast cancer (TNBC) is one of the most prevalent neoplastic diseases worldwide, but efficacious treatments for this pathological condition are still challenging. The lack of an effective targeted therapy also leads to a poor prognosis for patients affected by TNBC. In the present study, we repurposed the distinctive inhibitory effects of flubendazole, a traditional anthelmintic drug, towards the putative modulation of proliferation and migration of TNBC in vitro and in vivo. Methods: According to a series of experimental approaches, including immunofluorescence (IF), immunoblotting (IB), siRNA and GFP-mRFP-LC3 plasmid transfection, respectively, we have found that flubendazole is capable of inducing autophagic cell death and apoptosis, thus exerting some anti-proliferative and anti-migration activity in TNBC cells. The therapeutic effects of flubendazole were evaluated by xenograft mouse models, followed by immunohistochemistry (IHC), IF and IB. Changes in the gene expression profiles of flubendazole-treated TNBC cells were analyzed by RNA sequencing (RNA-seq) and validated by IB. The potential binding mode of flubendazole and EVA1A was predicted by molecular docking and demonstrated by site-directed mutagenesis. Results: We have presently found that flubendazole exhibits a considerable anti-proliferative activity in vitro and in vivo. Mechanistically, the induction of autophagic cell death appears to be pivotal for flubendazole-mediated growth inhibition of TNBC cells, whereas blocking autophagy was able to improve the survival rate and migration ability of flubendazole-treated TNBC cells. Specifically, RNA-seq analysis showed that flubendazole treatment could promote the up-regulation of EVA1A. Flubendazole may regulate autophagy and apoptosis by targeting EVA1A, thus affecting the mechanisms of TNBC proliferation and migration. Furthermore, Thr113 may be the key amino acid residues for the binding of flubendazole to EVA1A. Conclusion: Our results provide novel insights towards the putative anti-cancer efficacy of flubendazole. Furthermore, here we show that flubendazole could serve as a potential therapeutic drug in TNBC. Altogether, this study highlights the possibility of this repurposed autophagic inducer for future cancer treatments.
Collapse
|