1
|
Fung FM, Widyantoro C, Li SFY. Keeping Analytical Chemistry Training Up-to-Date. Anal Chem 2024; 96:6863-6869. [PMID: 38656177 DOI: 10.1021/acs.analchem.4c00407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
The undergraduate analytical chemistry curriculum serves to equip students with the knowledge and skills for work outside of classroom training. As such, instructors face a challenging task in deciding the breadth and depth of topics for their courses to ensure their syllabi can remain up-to-date with today's needs. We propose that instructors consider covering capillary electrophoresis (CE) and lab-on-a-chip (LOC) technologies in their analytical chemistry courses. Past surveys of the curriculum show a noticeable lack of emphasis on these topics, which we feel is a missed opportunity and one that holds potential for the collective benefit of instructors and students. CE and LOCs are utilized in a diverse array of fields like biochemistry, pharmaceutical production, materials science, and environmental analysis, and their applications are becoming increasingly important amidst the growing movement toward environmentally sustainable practices and green chemistry. They are also more accessible in the analytical chemistry classroom compared with typical benchtop instruments due to the flexibility of their size and cost. This makes them easier to obtain, maintain, and transport for use and demonstration purposes. Additionally, interwoven in these topics are core concepts that are fundamental to analytical chemistry; thus, covering them will inherently reinforce students' understanding of fundamental knowledge. Therefore, we believe increased coverage of CE and LOCs can better prepare undergraduates for modern analytical chemistry work in various industries and fields of research.
Collapse
Affiliation(s)
- Fun Man Fung
- Department of Chemistry, Faculty of Science, National University of Singapore, 3 Science Drive 3, Singapore 117543, Singapore
- College of Humanities and Sciences, National University of Singapore, 21 Lower Kent Ridge Road, Singapore 119077
- Centre for Teaching, Learning and Technology, National University of Singapore,15 Kent Ridge Road, Singapore 119225
| | - Clarissa Widyantoro
- Department of Chemistry, Faculty of Science, National University of Singapore, 3 Science Drive 3, Singapore 117543, Singapore
- College of Humanities and Sciences, National University of Singapore, 21 Lower Kent Ridge Road, Singapore 119077
| | - Sam Fong Yau Li
- Department of Chemistry, Faculty of Science, National University of Singapore, 3 Science Drive 3, Singapore 117543, Singapore
- College of Humanities and Sciences, National University of Singapore, 21 Lower Kent Ridge Road, Singapore 119077
- NUS Environmental Research Institute (NERI), #02-01, T-Lab Building (TL), 5A Engineering Drive 1, Singapore 117411, Singapore
| |
Collapse
|
2
|
Wu G, Zhang Z, Du M, Wu D, Zhou J, Hao T, Xie X. Optimizing Microfluidic Impedance Cytometry by Bypass Electrode Layout Design. BIOSENSORS 2024; 14:204. [PMID: 38667197 PMCID: PMC11048680 DOI: 10.3390/bios14040204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 04/12/2024] [Accepted: 04/18/2024] [Indexed: 04/28/2024]
Abstract
Microfluidic impedance cytometry (MIC) has emerged as a popular technique for single-cell analysis. Traditional MIC electrode designs consist of a pair of (or three) working electrodes, and their detection performance needs further improvements for microorganisms. In this study, we designed an 8-electrode MIC device in which the center pair was defined as the working electrode, and the connection status of bypass electrodes could be changed. This allowed us to compare the performance of layouts with no bypasses and those with floating or grounding electrodes by simulation and experiment. The results of detecting Φ 5 μm beads revealed that both the grounding and the floating electrode outperformed the no bypass electrode, and the grounding electrode demonstrated the best signal-to-noise ratio (SNR), coefficient of variation (CV), and detection sensitivity. Furthermore, the effects of different bypass grounding areas (numbers of grounding electrodes) were investigated. Finally, particles passing at high horizontal positions can be detected, and Φ 1 μm beads can be measured in a wide channel (150 μm) using a fully grounding electrode, with the sensitivity of bead volume detection reaching 0.00097%. This provides a general MIC electrode optimization technology for detecting smaller particles, even macromolecular proteins, viruses, and exosomes in the future.
Collapse
Affiliation(s)
- Guangzu Wu
- Systems Engineering Institute, Academy of Military Sciences, People’s Liberation Army, Tianjin 300161, China; (G.W.); (Z.Z.)
- National Bio-Protection Engineering Center, Tianjin 300161, China
| | - Zhiwei Zhang
- Systems Engineering Institute, Academy of Military Sciences, People’s Liberation Army, Tianjin 300161, China; (G.W.); (Z.Z.)
- National Bio-Protection Engineering Center, Tianjin 300161, China
| | - Manman Du
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China;
| | - Dan Wu
- School of Electronic Information and Automation, Tianjin University of Science and Technology, Tianjin 300222, China; (D.W.); (J.Z.); (T.H.)
| | - Junting Zhou
- School of Electronic Information and Automation, Tianjin University of Science and Technology, Tianjin 300222, China; (D.W.); (J.Z.); (T.H.)
| | - Tianteng Hao
- School of Electronic Information and Automation, Tianjin University of Science and Technology, Tianjin 300222, China; (D.W.); (J.Z.); (T.H.)
| | - Xinwu Xie
- Systems Engineering Institute, Academy of Military Sciences, People’s Liberation Army, Tianjin 300161, China; (G.W.); (Z.Z.)
- National Bio-Protection Engineering Center, Tianjin 300161, China
| |
Collapse
|
3
|
Warren MA, Shakouri A, Pacheco-Peña V, Hallam T. Development of a Novel Design of Microfluidic Impedance Cytometry for Improved Sensitivity and Cell Identification. ACS OMEGA 2023; 8:18882-18890. [PMID: 37273599 PMCID: PMC10233676 DOI: 10.1021/acsomega.3c00797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Accepted: 04/26/2023] [Indexed: 06/06/2023]
Abstract
A long-standing issue for microfluidic impedance cytometry devices is the accuracy in determining the size of cells during counting and measurements. In this paper, we introduce a novel design that produces a homogeneous electric field in the sensing region and demonstrates higher accuracy than traditional designs in cell counting and sizing, reducing the reliance on cell focusing and signal postprocessing. The concept is validated, and the increased accuracy of the device over traditional designs is demonstrated through the use of finite element simulations to generate suitable data sets for particle trajectories and model expected signal variations.
Collapse
Affiliation(s)
- Michael A. Warren
- School
of Mathematics, Statistics and Physics, Newcastle University, Newcastle
upon Tyne NE1 7RU, United Kingdom
| | - Amir Shakouri
- School
of Physical & Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore 637371, Singapore
| | - Víctor Pacheco-Peña
- School
of Mathematics, Statistics and Physics, Newcastle University, Newcastle
upon Tyne NE1 7RU, United Kingdom
| | - Toby Hallam
- School
of Mathematics, Statistics and Physics, Newcastle University, Newcastle
upon Tyne NE1 7RU, United Kingdom
| |
Collapse
|
4
|
Gasparin AT, Araujo CIF, Cardoso MR, Schmitt P, Godoy JB, Reichert ES, Pimenta ME, Gonçalves CB, Santiago EB, Silva ILR, Gaideski BDP, Cardoso MA, Silva FD, Sommer VDR, Hartmann LF, Perazzoli CRDA, Farias JSDH, Beltrame OC, Winter N, Nicollete DRP, Lopes SNB, Predebon JV, Almeida BMMD, Rogal Júnior SR, Figueredo MVM. Hilab System Device in an Oncological Hospital: A New Clinical Approach for Point of Care CBC Test, Supported by the Internet of Things and Machine Learning. Diagnostics (Basel) 2023; 13:diagnostics13101695. [PMID: 37238184 DOI: 10.3390/diagnostics13101695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 05/05/2023] [Accepted: 05/05/2023] [Indexed: 05/28/2023] Open
Abstract
The complete blood count (CBC) is a highly requested test that is generally restricted to centralized laboratories, which are limited by high cost, being maintenance-demanding, and requiring costly equipment. The Hilab System (HS) is a small, handheld hematological platform that uses microscopy and chromatography techniques, combined with machine learning (ML) and artificial intelligence (AI), to perform a CBC test. This platform uses ML and AI techniques to add higher accuracy and reliability to the results besides allowing for faster reporting. For clinical and flagging capability evaluation of the handheld device, the study analyzed 550 blood samples of patients from a reference institution for oncological diseases. The clinical analysis encompassed the data comparison between the Hilab System and a conventional hematological analyzer (Sysmex XE-2100) for all CBC analytes. The flagging capability study compared the microscopic findings from the Hilab System and the standard blood smear evaluation method. The study also assessed the sample collection source (venous or capillary) influences. The Pearson correlation, Student t-test, Bland-Altman, and Passing-Bablok plot of analytes were calculated and are shown. Data from both methodologies were similar (p > 0.05; r ≥ 0.9 for most parameters) for all CBC analytes and flagging parameters. Venous and capillary samples did not differ statistically (p > 0.05). The study indicates that the Hilab System provides humanized blood collection associated with fast and accurate data, essential features for patient wellbeing and quick physician decision making.
Collapse
Affiliation(s)
- Aléxia Thamara Gasparin
- Department of Research and Development, Hilab, Jose Altair Possebom, 800, Curitiba 81270-185, PR, Brazil
| | | | - Mônica Ribas Cardoso
- Department of Research and Development, Hilab, Jose Altair Possebom, 800, Curitiba 81270-185, PR, Brazil
| | - Patricia Schmitt
- Department of Research and Development, Hilab, Jose Altair Possebom, 800, Curitiba 81270-185, PR, Brazil
| | - Juliana Beker Godoy
- Department of Research and Development, Hilab, Jose Altair Possebom, 800, Curitiba 81270-185, PR, Brazil
| | - Eduarda Silva Reichert
- Department of Research and Development, Hilab, Jose Altair Possebom, 800, Curitiba 81270-185, PR, Brazil
| | - Maria Eduarda Pimenta
- Department of Research and Development, Hilab, Jose Altair Possebom, 800, Curitiba 81270-185, PR, Brazil
| | - Caroline Bretas Gonçalves
- Department of Research and Development, Hilab, Jose Altair Possebom, 800, Curitiba 81270-185, PR, Brazil
| | - Erika Bergamo Santiago
- Department of Research and Development, Hilab, Jose Altair Possebom, 800, Curitiba 81270-185, PR, Brazil
| | - Ivan Lucas Reis Silva
- Department of Research and Development, Hilab, Jose Altair Possebom, 800, Curitiba 81270-185, PR, Brazil
| | - Bruno de Paula Gaideski
- Department of Research and Development, Hilab, Jose Altair Possebom, 800, Curitiba 81270-185, PR, Brazil
| | - Milena Andreuzo Cardoso
- Department of Research and Development, Hilab, Jose Altair Possebom, 800, Curitiba 81270-185, PR, Brazil
| | - Fernanda D'Amico Silva
- Department of Research and Development, Hilab, Jose Altair Possebom, 800, Curitiba 81270-185, PR, Brazil
| | - Viviane da Rosa Sommer
- Department of Research and Development, Hilab, Jose Altair Possebom, 800, Curitiba 81270-185, PR, Brazil
| | - Luis Felipe Hartmann
- Department of Research and Development, Hilab, Jose Altair Possebom, 800, Curitiba 81270-185, PR, Brazil
| | | | | | | | - Nicole Winter
- Erasto Gaertner Hospital, Curitiba 81520-060, PR, Brazil
| | | | | | - João Victor Predebon
- Department of Research and Development, Hilab, Jose Altair Possebom, 800, Curitiba 81270-185, PR, Brazil
| | | | - Sérgio Renato Rogal Júnior
- Department of Research and Development, Hilab, Jose Altair Possebom, 800, Curitiba 81270-185, PR, Brazil
| | | |
Collapse
|
5
|
Kim H, Zhbanov A, Yang S. Microfluidic Systems for Blood and Blood Cell Characterization. BIOSENSORS 2022; 13:13. [PMID: 36671848 PMCID: PMC9856090 DOI: 10.3390/bios13010013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 12/16/2022] [Accepted: 12/19/2022] [Indexed: 06/17/2023]
Abstract
A laboratory blood test is vital for assessing a patient's health and disease status. Advances in microfluidic technology have opened the door for on-chip blood analysis. Currently, microfluidic devices can reproduce myriad routine laboratory blood tests. Considerable progress has been made in microfluidic cytometry, blood cell separation, and characterization. Along with the usual clinical parameters, microfluidics makes it possible to determine the physical properties of blood and blood cells. We review recent advances in microfluidic systems for measuring the physical properties and biophysical characteristics of blood and blood cells. Added emphasis is placed on multifunctional platforms that combine several microfluidic technologies for effective cell characterization. The combination of hydrodynamic, optical, electromagnetic, and/or acoustic methods in a microfluidic device facilitates the precise determination of various physical properties of blood and blood cells. We analyzed the physical quantities that are measured by microfluidic devices and the parameters that are determined through these measurements. We discuss unexplored problems and present our perspectives on the long-term challenges and trends associated with the application of microfluidics in clinical laboratories. We expect the characterization of the physical properties of blood and blood cells in a microfluidic environment to be considered a standard blood test in the future.
Collapse
Affiliation(s)
- Hojin Kim
- Department of Mechatronics Engineering, Dongseo University, Busan 47011, Republic of Korea
| | - Alexander Zhbanov
- School of Mechanical Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju 61005, Republic of Korea
| | - Sung Yang
- School of Mechanical Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju 61005, Republic of Korea
- Department of Biomedical Science and Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju 61005, Republic of Korea
| |
Collapse
|
6
|
Priyadarshi N, Abbasi U, Kumaran V, Chowdhury P. A new approach for accurate determination of particle sizes in microfluidic impedance cytometry. NANOTECHNOLOGY AND PRECISION ENGINEERING 2022. [DOI: 10.1063/10.0015006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
In microfluidic impedance cytometry, the change in impedance is recorded as an individual cell passes through a channel between electrodes deposited on its walls, and the particle size is inferred from the amplitude of the impedance signal using calibration. However, because the current density is nonuniform between electrodes of finite width, there could be an error in the particle size measurement because of uncertainty about the location of the particle in the channel cross section. Here, a correlation is developed relating the particle size to the signal amplitude and the velocity of the particle through the channel. The latter is inferred from the time interval between the two extrema in the impedance curve as the particle passes through a channel with cross-sectional dimensions of 50 μm (width) × 30 μm (height) with two pairs of parallel facing electrodes. The change in impedance is predicted using 3D COMSOL finite-element simulations, and a theoretical correlation that is independent of particle size is formulated to correct the particle diameter for variations in the cross-sectional location. With this correlation, the standard deviation in the experimental data is reduced by a factor of two to close to the standard deviation reported in the manufacturer specifications.
Collapse
Affiliation(s)
- N. Priyadarshi
- Department of Chemical Engineering, Indian Institute of Science, Bangalore 560012, India
| | - U. Abbasi
- Pratimesh Laboratory, Indian Institute of Science, Bangalore 560012, India
| | - V. Kumaran
- Department of Chemical Engineering, Indian Institute of Science, Bangalore 560012, India
| | - P. Chowdhury
- Nanomaterials Research Laboratory, Surface Engineering Division, CSIR–National Aerospace Laboratories, Bangalore 560017, India
| |
Collapse
|
7
|
Ojaghi A, Kendall Williams E, Kaza N, Gorti V, Choi H, Torey J, Wiley T, Turner B, Jackson S, Park S, Lam WA, Robles FE. Label-free deep-UV microscopy detection and grading of neutropenia using a passive microfluidic device. OPTICS LETTERS 2022; 47:6005-6008. [PMID: 37219158 DOI: 10.1364/ol.472691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 10/26/2022] [Indexed: 05/24/2023]
Abstract
Neutropenia is a condition comprising an abnormally low number of neutrophils, a type of white blood cell, which puts patients at an increased risk of severe infections. Neutropenia is especially common among cancer patients and can disrupt their treatment or even be life-threatening in severe cases. Therefore, routine monitoring of neutrophil counts is crucial. However, the current standard of care to assess neutropenia, the complete blood count (CBC), is resource-intensive, time-consuming, and expensive, thereby limiting easy or timely access to critical hematological information such as neutrophil counts. Here, we present a simple technique for fast, label-free neutropenia detection and grading via deep-ultraviolet (deep-UV) microscopy of blood cells in polydimethylsiloxane (PDMS)-based passive microfluidic devices. The devices can potentially be manufactured in large quantities at a low cost, requiring only 1 μL of whole blood for operation. We show that the absolute neutrophil counts (ANC) obtained from our proposed microfluidic device-enabled deep-UV microscopy system are highly correlated with those from CBCs using commercial hematology analyzers in patients with moderate and severe neutropenia, as well as healthy donors. This work lays the foundation for the development of a compact, easy-to-use UV microscope system to track neutrophil counts that is suitable for low-resource, at-home, or point-of-care settings.
Collapse
|
8
|
Villalobos-Sánchez E, Burciaga-Flores M, Zapata-Cuellar L, Camacho-Villegas TA, Elizondo-Quiroga DE. Possible Routes for Zika Virus Vertical Transmission in Human Placenta: A Comprehensive Review. Viral Immunol 2022; 35:392-403. [PMID: 35506896 DOI: 10.1089/vim.2021.0199] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Zika virus (ZIKV) infections have gained notoriety due to congenital abnormalities. Pregnant women have a greater risk of ZIKV infection and consequent transmission to their progeny due to the immunological changes associated with pregnancy. ZIKV has been detected in amniotic fluid, as well as in fetal and neonatal tissues of infected pregnant women. However, the mechanism by which ZIKV reaches the fetus is not well understood. The four dengue virus serotypes have been the most widely used flaviviruses to elucidate the host-cell entry pathways. Nevertheless, it is of increasing interest to understand the specific interaction between ZIKV and the host cell, especially in the gestation period. Herein, the authors describe the mechanisms of prenatal vertical infection of ZIKV based on results from in vitro, in vivo, and ex vivo studies, including murine models and nonhuman primates. It also includes up-to-date knowledge from ex vivo and natural infections in pregnant women explaining the vertical transmission along four tracks: transplacental, paracellular, transcytosis mediated by extracellular vesicles, and paraplacental route and the antibody-dependent enhancement process. A global understanding of the diverse pathways used by ZIKV to cross the placental barrier and access the fetus, along with a better comprehension of the pathogenesis of ZIKV in pregnant females, may constitute a fundamental role in the design of antiviral drugs to reduce congenital disabilities associated with ZIKV.
Collapse
Affiliation(s)
- Erendira Villalobos-Sánchez
- Medical and Pharmaceutical Biotechnology Unit, Center for Research and Assistance in Technology and Design of the State of Jalisco (CIATEJ), Guadalajara, México
| | - Mirna Burciaga-Flores
- Medical and Pharmaceutical Biotechnology Unit, Center for Research and Assistance in Technology and Design of the State of Jalisco (CIATEJ), Guadalajara, México
| | - Lorena Zapata-Cuellar
- Medical and Pharmaceutical Biotechnology Unit, Center for Research and Assistance in Technology and Design of the State of Jalisco (CIATEJ), Guadalajara, México
| | - Tanya A Camacho-Villegas
- CONACYT-Medical and Pharmaceutical Biotechnology Unit, Center for Research and Assistance in Technology and Design of the State of Jalisco (CIATEJ), Guadalajara, México
| | - Darwin E Elizondo-Quiroga
- Medical and Pharmaceutical Biotechnology Unit, Center for Research and Assistance in Technology and Design of the State of Jalisco (CIATEJ), Guadalajara, México
| |
Collapse
|
9
|
Blood cell quantification on dry blood samples: toward patient-centric complete blood counts. Bioanalysis 2022; 14:693-701. [PMID: 35593738 DOI: 10.4155/bio-2022-0029] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Background: Performing complete blood counts from patients' homes could have a transformative impact on e-based healthcare. Blood microsampling and sample drying are enabling elements for patient-centric healthcare. The aim of this study was to investigate the potential of dry blood samples for image-based cell quantification of red and white blood cells. Methods: A manual sample preparation method was developed and tested for image-based red and white blood cell counting. Results & conclusion: Dry blood samples enable image-based cell counting of red and white blood cells with a good correlation to gold standard hematology analyzer data (average coefficient of variation <6.5%; R2 >0.8) and resolve the basic morphology of white blood cell nuclei. The presented proof-of-principle study is a first step toward patient-centric complete blood counts.
Collapse
|
10
|
Kaushik S, Selvanathan P, Soni GV. Customized low-cost high-throughput amplifier for electro-fluidic detection of cell volume changes in point-of-care applications. PLoS One 2022; 17:e0267207. [PMID: 35442970 PMCID: PMC9020695 DOI: 10.1371/journal.pone.0267207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 04/04/2022] [Indexed: 11/23/2022] Open
Abstract
Physical parameters of the pathogenic cells, like its volume, shape, and stiffness, are important biomarkers for diseases, chemical changes within the cell, and overall cell health. The response of pathogenic bacteria and viruses to different chemical disinfectants is studied widely. Some of the routinely employed techniques to measure these changes require elaborate and expensive equipment which limits any study to a non-mobile research lab facility. Recently, we showed a micropore-based electro-fluidic technique to have great promise in measuring subtle changes in cell volumes at high throughput and resolution. This method, however, requires commercial amplifiers, which makes this technique expensive and incompatible for in-field use. In this paper, we develop a home-built amplifier to make this technique in-field compatible and apply it to measure changes in bacterial volumes upon exposure to alcohol. First, we introduce our low-cost and portable transimpedance amplifier and characterize the maximum range, absolute error percentage, and RMS noise of the amplifier in the measured current signal, along with the amplifier's bandwidth, and compared these characteristics with the commercial amplifiers. Using our home-built amplifier, we demonstrate a high throughput detection of ~1300 cells/second and resolve cell diameter changes down to 1 μm. Finally, we demonstrate measurement of cell volume changes in E. coli bacteria when exposed to ethanol (5% v/v), which is otherwise difficult to measure via imaging techniques. Our low-cost amplifier (~100-fold lower than commercial alternatives) is battery-run, completely portable for point-of-care applications, and the electro-fluidic devices are currently being tested for in-field applications.
Collapse
|
11
|
Vázquez M, Anfossi L, Ben-Yoav H, Diéguez L, Karopka T, Della Ventura B, Abalde-Cela S, Minopoli A, Di Nardo F, Shukla VK, Teixeira A, Tvarijonaviciute A, Franco-Martínez L. Use of some cost-effective technologies for a routine clinical pathology laboratory. LAB ON A CHIP 2021; 21:4330-4351. [PMID: 34664599 DOI: 10.1039/d1lc00658d] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Classically, the need for highly sophisticated instruments with important economic costs has been a major limiting factor for clinical pathology laboratories, especially in developing countries. With the aim of making clinical pathology more accessible, a wide variety of free or economical technologies have been developed worldwide in the last few years. 3D printing and Arduino approaches can provide up to 94% economical savings in hardware and instrumentation in comparison to commercial alternatives. The vast selection of point-of-care-tests (POCT) currently available also limits the need for specific instruments or personnel, as they can be used almost anywhere and by anyone. Lastly, there are dozens of free and libre digital tools available in health informatics. This review provides an overview of the state-of-the-art on cost-effective alternatives with applications in routine clinical pathology laboratories. In this context, a variety of technologies including 3D printing and Arduino, lateral flow assays, plasmonic biosensors, and microfluidics, as well as laboratory information systems, are discussed. This review aims to serve as an introduction to different technologies that can make clinical pathology more accessible and, therefore, contribute to achieve universal health coverage.
Collapse
Affiliation(s)
- Mercedes Vázquez
- National Centre For Sensor Research, School of Chemical Sciences, Dublin City University, Glasnevin, Dublin 9, Ireland
| | - Laura Anfossi
- Department of Chemistry, University of Turin, Via Giuria, 5, I-10125 Turin, Italy
| | - Hadar Ben-Yoav
- Nanobioelectronics Laboratory (NBEL), Department of Biomedical Engineering, Ilse Katz Institute of Nanoscale Science and Technology, Zlotowski Center for Neuroscience, Ben-Gurion University of the Negev, Beer-Sheva 8410501, Israel
| | - Lorena Diéguez
- Medical Devices Research Group, International Iberian Nanotechnology Laboratory - INL, 4715-330 Braga, Portugal
| | | | - Bartolomeo Della Ventura
- Department of Physics "E. Pancini", University of Naples Federico II, Via Cintia 26, I-80126 Napoli, Italy
| | - Sara Abalde-Cela
- Medical Devices Research Group, International Iberian Nanotechnology Laboratory - INL, 4715-330 Braga, Portugal
| | - Antonio Minopoli
- Department of Physics "E. Pancini", University of Naples Federico II, Via Cintia 26, I-80126 Napoli, Italy
| | - Fabio Di Nardo
- Department of Chemistry, University of Turin, Via Giuria, 5, I-10125 Turin, Italy
| | - Vikas Kumar Shukla
- Nanobioelectronics Laboratory (NBEL), Department of Biomedical Engineering, Ilse Katz Institute of Nanoscale Science and Technology, Zlotowski Center for Neuroscience, Ben-Gurion University of the Negev, Beer-Sheva 8410501, Israel
| | - Alexandra Teixeira
- Medical Devices Research Group, International Iberian Nanotechnology Laboratory - INL, 4715-330 Braga, Portugal
| | - Asta Tvarijonaviciute
- Interdisciplinary Laboratory of Clinical Pathology, Interlab-UMU, Regional Campus of International Excellence 'Campus Mare Nostrum', University of Murcia, 30100 Murcia, Spain.
| | - Lorena Franco-Martínez
- Interdisciplinary Laboratory of Clinical Pathology, Interlab-UMU, Regional Campus of International Excellence 'Campus Mare Nostrum', University of Murcia, 30100 Murcia, Spain.
| |
Collapse
|
12
|
Regan B, O'Kennedy R, Collins D. Advances in point-of-care testing for cardiovascular diseases. Adv Clin Chem 2021; 104:1-70. [PMID: 34462053 DOI: 10.1016/bs.acc.2020.09.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Point-of-care testing (POCT) is a specific format of diagnostic testing that is conducted without accompanying infrastructure or sophisticated instrumentation. Traditionally, such rapid sample-to-answer assays provide inferior analytical performances to their laboratory counterparts when measuring cardiac biomarkers. Hence, their potentially broad applicability is somewhat bound by their inability to detect clinically relevant concentrations of cardiac troponin (cTn) in the early stages of myocardial injury. However, the continuous refinement of biorecognition elements, the optimization of detection techniques, and the fabrication of tailored fluid handling systems to manage the sensing process has stimulated the production of commercial assays that can support accelerated diagnostic pathways. This review will present the latest commercial POC assays and examine their impact on clinical decision-making. The individual elements that constitute POC assays will be explored, with an emphasis on aspects that contribute to economically feasible and highly sensitive assays. Furthermore, the prospect of POCT imparting a greater influence on early interventions for medium to high-risk individuals and the potential to re-shape the paradigm of cardiovascular risk assessments will be discussed.
Collapse
Affiliation(s)
- Brian Regan
- School of Biotechnology, Dublin City University, Dublin, Ireland.
| | - Richard O'Kennedy
- School of Biotechnology, Dublin City University, Dublin, Ireland; Research Complex, Hamad Bin Khalifa University, Qatar Foundation, Doha, Qatar
| | - David Collins
- School of Biotechnology, Dublin City University, Dublin, Ireland
| |
Collapse
|
13
|
Zhu S, Zhang X, Zhou Z, Han Y, Xiang N, Ni Z. Microfluidic impedance cytometry for single-cell sensing: Review on electrode configurations. Talanta 2021; 233:122571. [PMID: 34215067 DOI: 10.1016/j.talanta.2021.122571] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 05/25/2021] [Accepted: 05/27/2021] [Indexed: 10/21/2022]
Abstract
Single-cell analysis has gained considerable attention for disease diagnosis, drug screening, and differentiation monitoring. Compared to the well-established flow cytometry, which uses fluorescent-labeled antibodies, microfluidic impedance cytometry (MIC) offers a simple, label-free, and noninvasive method for counting, classifying, and monitoring cells. Superior features including a small footprint, low reagent consumption, and ease of use have also been reported. The MIC device detects changes in the impedance signal caused by cells passing through the sensing/electric field zone, which can extract information regarding the size, shape, and dielectric properties of these cells. According to recent studies, electrode configuration has a remarkable effect on detection accuracy, sensitivity, and throughput. With the improvement in microfabrication technology, various electrode configurations have been reported for improving detection accuracy and throughput. However, the various electrode configurations of MIC devices have not been reviewed. In this review, the theoretical background of the impedance technique for single-cell analysis is introduced. Then, two-dimensional, three-dimensional, and liquid electrode configurations are discussed separately; their sensing mechanisms, fabrication processes, advantages, disadvantages, and applications are also described in detail. Finally, the current limitations and future perspectives of these electrode configurations are summarized. The main aim of this review is to offer a guide for researchers on the ongoing advancement in electrode configuration designs.
Collapse
Affiliation(s)
- Shu Zhu
- School of Mechanical Engineering, And Jiangsu Key Laboratory for Design and Manufacture of Micro-Nano Biomedical Instruments, Southeast University, Nanjing, 211189, China
| | - Xiaozhe Zhang
- School of Mechanical Engineering, And Jiangsu Key Laboratory for Design and Manufacture of Micro-Nano Biomedical Instruments, Southeast University, Nanjing, 211189, China
| | - Zheng Zhou
- School of Mechanical Engineering, And Jiangsu Key Laboratory for Design and Manufacture of Micro-Nano Biomedical Instruments, Southeast University, Nanjing, 211189, China
| | - Yu Han
- School of Mechanical Engineering, And Jiangsu Key Laboratory for Design and Manufacture of Micro-Nano Biomedical Instruments, Southeast University, Nanjing, 211189, China
| | - Nan Xiang
- School of Mechanical Engineering, And Jiangsu Key Laboratory for Design and Manufacture of Micro-Nano Biomedical Instruments, Southeast University, Nanjing, 211189, China.
| | - Zhonghua Ni
- School of Mechanical Engineering, And Jiangsu Key Laboratory for Design and Manufacture of Micro-Nano Biomedical Instruments, Southeast University, Nanjing, 211189, China.
| |
Collapse
|
14
|
Nagy M, Fazaeli S, van Oerle R, Ten Cate H, Schemmann M, Sherry J, Kelleher G, Spronk HMH. Evaluation of the analytical performance of the PC100 platelet counter. Thromb J 2021; 19:29. [PMID: 33947405 PMCID: PMC8094460 DOI: 10.1186/s12959-021-00283-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Accepted: 04/19/2021] [Indexed: 11/22/2022] Open
Abstract
Introduction Platelet count can be altered in various diseases and treatments and measuring it may provide better insight into the expected outcome. So far, quantification of platelet count is done within laboratory conditions by using established hematology analyzers, whereas a point-of-care device could be used for this purpose outside of the clinical laboratories. Aim Our aim was to assess the closeness of agreement between a newly developed point-of-care PC100 platelet counter and two reference methods (Sysmex® XP-300, Sysmex® XN-9000) in measuring platelet counts in whole blood and platelet-rich-plasma (PRP). Method Whole blood was obtained from 119 individuals, of which 74 were used to prepare PRP samples. Whole blood platelet count was measured by the two reference methods and the PC100 platelet counter. PRP was prepared from the whole blood and platelet count was adjusted to the range of 250–3600 × 103/μl and measured with the PC100 platelet counter and Sysmex® XP-300. Results A median difference of − 1.35% and − 2.98% occurred in whole blood platelet count between the PC100 platelet counter and the Sysmex® XP-300 and Sysmex® XN-9000, respectively. A strong linear correlation (r ≥ 0.98) was seen in both cases and regression equations indicated neither a constant nor a proportional bias between the methods. Direct comparison of the two reference methods revealed a median difference of − 1.15% and a strongly linear relationship (r = 0.99). Platelet count in PRP resulted in a median difference of 1.42% between the PC100 platelet counter and the reference method, Sysmex® XP-300. While the difference between two methods increased with concentration of platelets in PRP, a strong linear relationship remained throughout the whole measuring interval indicated by the high correlation coefficient (r = 0.99). Assessment of the predicted bias at predefined platelet counts showed that the bias in platelet counts falls within the acceptance criterion for both whole blood and PRP measurements. Conclusions Our results show that the PC100 platelet counter can be used interchangeably with the reference methods for determining platelet counts.
Collapse
Affiliation(s)
- Magdolna Nagy
- Departments of Internal Medicine and Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University Medical Centre+, Universiteitssingel 50, Maastricht, 6229 ER, The Netherlands
| | | | - René van Oerle
- Departments of Internal Medicine and Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University Medical Centre+, Universiteitssingel 50, Maastricht, 6229 ER, The Netherlands
| | - Hugo Ten Cate
- Departments of Internal Medicine and Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University Medical Centre+, Universiteitssingel 50, Maastricht, 6229 ER, The Netherlands
| | | | - John Sherry
- 2M Engineering, Valkenswaard, The Netherlands
| | | | - Henri M H Spronk
- Departments of Internal Medicine and Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University Medical Centre+, Universiteitssingel 50, Maastricht, 6229 ER, The Netherlands.
| |
Collapse
|
15
|
Park HD. Current Status of Clinical Application of Point-of-Care Testing. Arch Pathol Lab Med 2021; 145:168-175. [PMID: 33053162 DOI: 10.5858/arpa.2020-0112-ra] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/03/2020] [Indexed: 11/06/2022]
Abstract
CONTEXT.— The clinical applications of point-of-care testing (POCT) are gradually increasing in many health care systems. Recently, POCT devices using molecular genetic method techniques have been developed. We need to examine clinical pathways to see where POCT can be applied to improve them. OBJECTIVE.— To introduce up-to-date POCT items and equipment and to provide the content that should be prepared for clinical application of POCT. DATA SOURCES.— Literature review based on PubMed searches containing the terms point-of-care testing, clinical chemistry, diagnostic hematology, and clinical microbiology. CONCLUSIONS.— If medical resources are limited, POCT can help clinicians make quick medical decisions. As POCT technology improves and menus expand, areas where POCT can be applied will also increase. We need to understand the limitations of POCT so that it can be optimally used to improve patient management.
Collapse
Affiliation(s)
- Hyung-Doo Park
- From the Department of Laboratory Medicine and Genetics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| |
Collapse
|