1
|
Gregorovicova M, Lashkarinia SS, Yap CH, Tomek V, Sedmera D. Hemodynamics During Development and Postnatal Life. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1441:201-226. [PMID: 38884713 DOI: 10.1007/978-3-031-44087-8_11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2024]
Abstract
A well-developed heart is essential for embryonic survival. There are constant interactions between cardiac tissue motion and blood flow, which determine the heart shape itself. Hemodynamic forces are a powerful stimulus for cardiac growth and differentiation. Therefore, it is particularly interesting to investigate how the blood flows through the heart and how hemodynamics is linked to a particular species and its development, including human. The appropriate patterns and magnitude of hemodynamic stresses are necessary for the proper formation of cardiac structures, and hemodynamic perturbations have been found to cause malformations via identifiable mechanobiological molecular pathways. There are significant differences in cardiac hemodynamics among vertebrate species, which go hand in hand with the presence of specific anatomical structures. However, strong similarities during development suggest a common pattern for cardiac hemodynamics in human adults. In the human fetal heart, hemodynamic abnormalities during gestation are known to progress to congenital heart malformations by birth. In this chapter, we discuss the current state of the knowledge of the prenatal cardiac hemodynamics, as discovered through small and large animal models, as well as from clinical investigations, with parallels gathered from the poikilotherm vertebrates that emulate some hemodynamically significant human congenital heart diseases.
Collapse
Affiliation(s)
- Martina Gregorovicova
- Laboratory of Developmental Cardiology, Institute of Physiology, Czech Academy of Sciences, Prague, Czech Republic
- Institute of Anatomy, First Faculty of Medicine, Charles University, Prague, Czech Republic
| | | | - Choon Hwai Yap
- Department of Bioengineering, Imperial College, London, UK
| | - Viktor Tomek
- Pediatric Cardiology, Motol University Hospital, Prague, Czech Republic
| | - David Sedmera
- Laboratory of Developmental Cardiology, Institute of Physiology, Czech Academy of Sciences, Prague, Czech Republic.
- Institute of Anatomy, First Faculty of Medicine, Charles University, Prague, Czech Republic.
| |
Collapse
|
2
|
Cho JM, Poon MLS, Zhu E, Wang J, Butcher JT, Hsiai T. Quantitative 4D imaging of biomechanical regulation of ventricular growth and maturation. CURRENT OPINION IN BIOMEDICAL ENGINEERING 2023; 26:100438. [PMID: 37424697 PMCID: PMC10327868 DOI: 10.1016/j.cobme.2022.100438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Abnormal cardiac development is intimately associated with congenital heart disease. During development, a sponge-like network of muscle fibers in the endocardium, known as trabeculation, becomes compacted. Biomechanical forces regulate myocardial differentiation and proliferation to form trabeculation, while the molecular mechanism is still enigmatic. Biomechanical forces, including intracardiac hemodynamic flow and myocardial contractile force, activate a host of molecular signaling pathways to mediate cardiac morphogenesis. While mechanotransduction pathways to initiate ventricular trabeculation is well studied, deciphering the relative importance of hemodynamic shear vs. mechanical contractile forces to modulate the transition from trabeculation to compaction requires advanced imaging tools and genetically tractable animal models. For these reasons, the advent of 4-D multi-scale light-sheet imaging and complementary multiplex live imaging via micro-CT in the beating zebrafish heart and live chick embryos respectively. Thus, this review highlights the complementary animal models and advanced imaging needed to elucidate the mechanotransduction underlying cardiac ventricular development.
Collapse
Affiliation(s)
- Jae Min Cho
- Division of Cardiology, Department of Medicine, David Geffen School of Medicine, UCLA
- Department of Medicine, Greater Los Angeles VA Healthcare System
| | - Mong Lung Steve Poon
- Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University
| | - Enbo Zhu
- Division of Cardiology, Department of Medicine, David Geffen School of Medicine, UCLA
- Department of Medicine, Greater Los Angeles VA Healthcare System
| | | | - Jonathan T. Butcher
- Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University
| | - Tzung Hsiai
- Division of Cardiology, Department of Medicine, David Geffen School of Medicine, UCLA
- Department of Medicine, Greater Los Angeles VA Healthcare System
- Department of Bioengineering, UCLA
| |
Collapse
|
3
|
Trinidad F, Rubonal F, Rodriguez de Castro I, Pirzadeh I, Gerrah R, Kheradvar A, Rugonyi S. Effect of Blood Flow on Cardiac Morphogenesis and Formation of Congenital Heart Defects. J Cardiovasc Dev Dis 2022; 9:jcdd9090303. [PMID: 36135448 PMCID: PMC9503889 DOI: 10.3390/jcdd9090303] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 08/30/2022] [Accepted: 09/02/2022] [Indexed: 11/26/2022] Open
Abstract
Congenital heart disease (CHD) affects about 1 in 100 newborns and its causes are multifactorial. In the embryo, blood flow within the heart and vasculature is essential for proper heart development, with abnormal blood flow leading to CHD. Here, we discuss how blood flow (hemodynamics) affects heart development from embryonic to fetal stages, and how abnormal blood flow solely can lead to CHD. We emphasize studies performed using avian models of heart development, because those models allow for hemodynamic interventions, in vivo imaging, and follow up, while they closely recapitulate heart defects observed in humans. We conclude with recommendations on investigations that must be performed to bridge the gaps in understanding how blood flow alone, or together with other factors, contributes to CHD.
Collapse
Affiliation(s)
- Fernando Trinidad
- Biomedical Engineering Department, University of California, Irvine, CA 92697, USA
| | - Floyd Rubonal
- Biomedical Engineering Department, Oregon Health & Science University, Portland, OR 97239, USA
| | | | - Ida Pirzadeh
- Biomedical Engineering Department, University of California, Irvine, CA 92697, USA
| | - Rabin Gerrah
- Department of Cardiothoracic Surgery, Stanford University, Stanford, CA 94305, USA
| | - Arash Kheradvar
- Biomedical Engineering Department, University of California, Irvine, CA 92697, USA
| | - Sandra Rugonyi
- Biomedical Engineering Department, Oregon Health & Science University, Portland, OR 97239, USA
- Correspondence:
| |
Collapse
|
4
|
Foo YY, Motakis E, Tiang Z, Shen S, Lai JKH, Chan WX, Wiputra H, Chen N, Chen CK, Winkler C, Foo RSY, Yap CH. Effects of extended pharmacological disruption of zebrafish embryonic heart biomechanical environment on cardiac function, morphology, and gene expression. Dev Dyn 2021; 250:1759-1777. [PMID: 34056790 DOI: 10.1002/dvdy.378] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 04/24/2021] [Accepted: 05/13/2021] [Indexed: 01/14/2023] Open
Abstract
BACKGROUND Biomechanical stimuli are known to be important to cardiac development, but the mechanisms are not fully understood. Here, we pharmacologically disrupted the biomechanical environment of wild-type zebrafish embryonic hearts for an extended duration and investigated the consequent effects on cardiac function, morphological development, and gene expression. RESULTS Myocardial contractility was significantly diminished or abolished in zebrafish embryonic hearts treated for 72 hours from 2 dpf with 2,3-butanedione monoxime (BDM). Image-based flow simulations showed that flow wall shear stresses were abolished or significantly reduced with high oscillatory shear indices. At 5 dpf, after removal of BDM, treated embryonic hearts were maldeveloped, having disrupted cardiac looping, smaller ventricles, and poor cardiac function (lower ejected flow, bulboventricular regurgitation, lower contractility, and slower heart rate). RNA sequencing of cardiomyocytes of treated hearts revealed 922 significantly up-regulated genes and 1,698 significantly down-regulated genes. RNA analysis and subsequent qPCR and histology validation suggested that biomechanical disruption led to an up-regulation of inflammatory and apoptotic genes and down-regulation of ECM remodeling and ECM-receptor interaction genes. Biomechanics disruption also prevented the formation of ventricular trabeculation along with notch1 and erbb4a down-regulation. CONCLUSIONS Extended disruption of biomechanical stimuli caused maldevelopment, and potential genes responsible for this are identified.
Collapse
Affiliation(s)
- Yoke Yin Foo
- Department of Biomedical Engineering, National University of Singapore, Singapore, Singapore
| | - Efthymios Motakis
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Zenia Tiang
- Genome Institute of Singapore, Agency for Science, Technology and Research, Singapore, Singapore
| | - Shuhao Shen
- Department of Biomedical Engineering, National University of Singapore, Singapore, Singapore
| | - Jason Kuan Han Lai
- Mechanobiology Institute, National University of Singapore, Singapore, Singapore
| | - Wei Xuan Chan
- Department of Biomedical Engineering, National University of Singapore, Singapore, Singapore
| | - Hadi Wiputra
- Department of Biomedical Engineering, National University of Singapore, Singapore, Singapore
| | - Nanguang Chen
- Department of Biomedical Engineering, National University of Singapore, Singapore, Singapore
| | - Ching Kit Chen
- Department of Paediatrics, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.,Division of Cardiology, Department of Paediatrics, Khoo Teck Puat-National University Children's Medical Institute, National University Health System, Singapore, Singapore
| | - Christoph Winkler
- Department of Biological Sciences, National University of Singapore, Singapore, Singapore
| | - Roger Sik Yin Foo
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.,Genome Institute of Singapore, Agency for Science, Technology and Research, Singapore, Singapore
| | - Choon Hwai Yap
- Department of Biomedical Engineering, National University of Singapore, Singapore, Singapore.,Department of Bioengineering, Imperial College London, London, UK
| |
Collapse
|
5
|
Ho S, Chan WX, Yap CH. Fluid mechanics of the left atrial ligation chick embryonic model of hypoplastic left heart syndrome. Biomech Model Mechanobiol 2021; 20:1337-1351. [PMID: 33774755 PMCID: PMC8298253 DOI: 10.1007/s10237-021-01447-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Accepted: 03/06/2021] [Indexed: 11/24/2022]
Abstract
Left atrial ligation (LAL) of the chick embryonic heart at HH21 is a model of the hypoplastic left heart syndrome (HLHS) disease, demonstrating morphological and hemodynamic features similar to human HLHS cases. Since it relies on mechanical intervention without genetic or pharmacological manipulations, it is a good model for understanding the biomechanics origins of such HLHS malformations. To date, however, the fluid mechanical environment of this model is poorly understood. In the current study, we performed 4D ultrasound imaging of LAL and normal chick embryonic hearts and 4D cardiac flow simulations to help shed light on the mechanical environment that may lead to the HLHS morphology. Results showed that the HH25 LAL atrial function was compromised, and velocities in the ventricle were reduced. The HH25 LAL ventricles developed a more triangular shape with a sharper apex, and in some cases, the atrioventricular junction shifted medially. These changes led to more sluggish flow near the ventricular free wall and apex, where more fluid particles moved in an oscillatory manner with the motion of the ventricular wall, while slowly being washed out, resulting in lower wall shear stresses and higher oscillatory indices. Consequent to these flow conditions, at HH28, even before septation is complete, the left ventricle was found to be hypoplastic while the right ventricle was found to be larger in compensation. Our results suggest that the low and oscillatory flow near the left side of the heart may play a role in causing the HLHS morphology in the LAL model.
Collapse
Affiliation(s)
- Sheldon Ho
- Department of Biomedical Engineering, National University of Singapore, Singapore, Singapore
| | - Wei Xuan Chan
- Department of Biomedical Engineering, National University of Singapore, Singapore, Singapore
| | - Choon Hwai Yap
- Department of Bioengineering, Imperial College London, London, UK.
| |
Collapse
|