1
|
Gureyev TE, Paganin DM, Quiney HM. Signal-to-noise and spatial resolution in in-line imaging. 1. Basic theory, numerical simulations and planar experimental images. JOURNAL OF SYNCHROTRON RADIATION 2024; 31:896-909. [PMID: 38843003 PMCID: PMC11226163 DOI: 10.1107/s1600577524003886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Accepted: 04/29/2024] [Indexed: 07/06/2024]
Abstract
Signal-to-noise ratio and spatial resolution are quantitatively analysed in the context of in-line (propagation based) X-ray phase-contrast imaging. It is known that free-space propagation of a coherent X-ray beam from the imaged object to the detector plane, followed by phase retrieval in accordance with Paganin's method, can increase the signal-to-noise in the resultant images without deteriorating the spatial resolution. This results in violation of the noise-resolution uncertainty principle and demonstrates `unreasonable' effectiveness of the method. On the other hand, when the process of free-space propagation is performed in software, using the detected intensity distribution in the object plane, it cannot reproduce the same effectiveness, due to the amplification of photon shot noise. Here, it is shown that the performance of Paganin's method is determined by just two dimensionless parameters: the Fresnel number and the ratio of the real decrement to the imaginary part of the refractive index of the imaged object. The relevant theoretical analysis is performed first, followed by computer simulations and then by a brief test using experimental images collected at a synchrotron beamline. More extensive experimental tests will be presented in the second part of this paper.
Collapse
Affiliation(s)
- Timur E. Gureyev
- School of PhysicsUniversity of MelbourneParkvilleVictoria3010Australia
- School of Physics and AstronomyMonash UniversityClaytonVictoria3800Australia
| | - David M. Paganin
- School of Physics and AstronomyMonash UniversityClaytonVictoria3800Australia
| | - Harry M. Quiney
- School of PhysicsUniversity of MelbourneParkvilleVictoria3010Australia
| |
Collapse
|
2
|
Sawall S, Baader E, Wolf J, Maier J, Schlemmer HP, Schönberg SO, Sechopoulos I, Kachelrieß M. Image quality of opportunistic breast examinations in photon-counting computed tomography: A phantom study. Phys Med 2024; 122:103378. [PMID: 38797026 DOI: 10.1016/j.ejmp.2024.103378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 04/11/2024] [Accepted: 05/20/2024] [Indexed: 05/29/2024] Open
Abstract
PURPOSE To compare the breast imaging performance of a clinical whole-body photon-counting CT (PCCT) to that of a dedicated breast CT (BCT) to determine the image quality of opportunistic breast examinations in clinical PCCT. MATERIALS AND METHODS To quantify image quality for breast cancer applications, acquisitions of a breast phantom including representations of calcifications, fibers, and masses were performed using a clinical PCCT and a dedicated BCT. When imaging with the PCCT, the phantom was also combined with a thorax phantom to simulate realistic patient positioning, while only the breast phantom was imaged in the BCT. Images in BCT were acquired at 7.0 mGy (CTDI16cm) and using 2.6 mGy-25.0 mGy in the PCCT. Spatial resolution between the BCT and PCCT images was matched and data were reconstructed using the default methods of each system. The dose-normalized contrast-to-noise ratio (CNRD) of masses and the structural visibility of fibers and calcifications were evaluated as figures of merit for all reconstructions. RESULTS CNRD between masses and background was 0.56 mGy-½, on average with BCT and varied between 0.39 mGy-½ to 1.46 mGy-½ with PCCT over all dose levels, phantom configurations, and reconstruction algorithms. Calcifications down to a size of 0.29 mm and fibers down to a size of 0.23 mm could be reliably identified in the images of both systems. CONCLUSIONS Clinical PCCT provides an image quality superior to that obtained with BCT in terms of CNRD and allows for the identification of calcifications and fibers at comparable dose levels.
Collapse
Affiliation(s)
- S Sawall
- Division of X-Ray Imaging and CT, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany; Medical Faculty, Heidelberg University, Im Neuenheimer Feld 672, 69120 Heidelberg, Germany.
| | - E Baader
- Division of X-Ray Imaging and CT, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany; Department of Physics and Astronomy, Ruprecht-Karls-University Heidelberg, Heidelberg, Germany
| | - J Wolf
- Division of X-Ray Imaging and CT, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
| | - J Maier
- Division of X-Ray Imaging and CT, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
| | - H-P Schlemmer
- Medical Faculty, Heidelberg University, Im Neuenheimer Feld 672, 69120 Heidelberg, Germany; Division of Radiology, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
| | - S O Schönberg
- Department of Radiology and Nuclear Medicine, University Medical Center Mannheim, Theodor-Kutzer-Ufer 1-3, 68167 Mannheim, Germany
| | - I Sechopoulos
- Department of Medical Imaging, Radboud University Medical Center, Geert Grooteplein Zuid 10, 6525 GA Nijmegen, The Netherlands
| | - M Kachelrieß
- Division of X-Ray Imaging and CT, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany; Medical Faculty, Heidelberg University, Im Neuenheimer Feld 672, 69120 Heidelberg, Germany
| |
Collapse
|
3
|
Varghese AP, Naik S, Asrar Up Haq Andrabi S, Luharia A, Tivaskar S. Enhancing Radiological Diagnosis: A Comprehensive Review of Image Quality Assessment and Optimization Strategies. Cureus 2024; 16:e63016. [PMID: 39050319 PMCID: PMC11268977 DOI: 10.7759/cureus.63016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Accepted: 06/24/2024] [Indexed: 07/27/2024] Open
Abstract
Image quality plays a pivotal role in the accurate diagnosis and effective management of diseases in radiology. This review explores the principles, methodologies, and strategies for assessing and optimizing image quality across various imaging modalities, including X-ray, computed tomography (CT), magnetic resonance imaging (MRI), ultrasound, and nuclear medicine. We discuss key factors influencing image quality, such as spatial resolution, noise, contrast, and artifacts, and highlight techniques for quality assurance, image optimization, and dose reduction in clinical practice.
Collapse
Affiliation(s)
- Albert P Varghese
- Department of Radiology, Datta Meghe Institute of Higher Education and Research, Wardha, IND
| | - Shreya Naik
- Department of Radiology, Datta Meghe Institute of Higher Education and Research, Wardha, IND
| | | | - Anurag Luharia
- Department of Radiology, Datta Meghe Institute of Higher Education and Research, Wardha, IND
| | - Suhas Tivaskar
- Department of Radiology, Datta Meghe Institute of Higher Education and Research, Wardha, IND
| |
Collapse
|
4
|
Mettivier G, Lai Y, Jia X, Russo P. Virtual dosimetry study with three cone-beam breast computed tomography scanners using a fast GPU-based Monte Carlo code. Phys Med Biol 2024; 69:045028. [PMID: 38237186 DOI: 10.1088/1361-6560/ad2012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 01/18/2024] [Indexed: 02/15/2024]
Abstract
Objective. To compare the dosimetric performance of three cone-beam breast computed tomography (BCT) scanners, using real-time Monte Carlo-based dose estimates obtained with the virtual clinical trials (VCT)-BREAST graphical processing unit (GPU)-accelerated platform dedicated to VCT in breast imaging. Approach. A GPU-based Monte Carlo (MC) code was developed for replicatingin silicothe geometric, x-ray spectra and detector setups adopted, respectively, in two research scanners and one commercial BCT scanner, adopting 80 kV, 60 kV and 49 kV tube voltage, respectively. Our cohort of virtual breasts included 16 anthropomorphic voxelized breast phantoms from a publicly available dataset. For each virtual patient, we simulated exams on the three scanners, up to a nominal simulated mean glandular dose of 5 mGy (primary photons launched, in the order of 1011-1012per scan). Simulated 3D dose maps (recorded for skin, adipose and glandular tissues) were compared for the same phantom, on the three scanners. MC simulations were implemented on a single NVIDIA GeForce RTX 3090 graphics card.Main results.Using the spread of the dose distribution as a figure of merit, we showed that, in the investigated phantoms, the glandular dose is more uniform within less dense breasts, and it is more uniformly distributed for scans at 80 kV and 60 kV, than at 49 kV. A realistic virtual study of each breast phantom was completed in about 3.0 h with less than 1% statistical uncertainty, with 109primary photons processed in 3.6 s computing time.Significance. We reported the first dosimetric study of the VCT-BREAST platform, a fast MC simulation tool for real-time virtual dosimetry and imaging trials in BCT, investigating the dose delivery performance of three clinical BCT scanners. This tool can be adopted to investigate also the effects on the 3D dose distribution produced by changes in the geometrical and spectrum characteristics of a cone-beam BCT scanner.
Collapse
Affiliation(s)
- Giovanni Mettivier
- Dipartimento di Fisica 'Ettore Pancini', Università di Napoli Federico II, I-80126 Naples, Italy
- INFN Sezione di Napoli, I-80126 Naples, Italy
| | - Youfang Lai
- Innovative Technology of Radiotherapy Computation and Hardware (iTORCH) Laboratory, Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, TX 752878, United States of America
| | - Xun Jia
- Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins University, Baltimore, MD 21224, United States of America
| | - Paolo Russo
- Dipartimento di Fisica 'Ettore Pancini', Università di Napoli Federico II, I-80126 Naples, Italy
- INFN Sezione di Napoli, I-80126 Naples, Italy
| |
Collapse
|
5
|
Agrawal AK, Gupta C, Singh B, Kashyap Y, Shukla M. Quantitative phase contrast X-ray tomography of aluminium metal matrix composite. Appl Radiat Isot 2024; 204:111149. [PMID: 38134854 DOI: 10.1016/j.apradiso.2023.111149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 12/11/2023] [Accepted: 12/13/2023] [Indexed: 12/24/2023]
Abstract
The quantitative assessment of micro-structure and load-induced damages in Al-SiC metal matrix composites (MMC) is important for its design optimization, performance evaluation and structure-property correlation. X-ray Phase contrast micro-tomography is potentially used for evaluation of its 3 dimensional micro-structure manifested in the form of voids, cracks, embedded particles, and load-induced damages. However, the contrast between Al matrix and SiC particles is insufficient for their clear morphological identification and quantitative assessment. In the present study, we have proposed and applied single image-based phase retrieval as a pre-processing step to micro-tomography reconstruction for improved assessment of micro-structure and cohesion-induced damages in Al-SiC MMC. The advantages of applying different phase retrieval techniques in the enhancement of image quality and morphological quantification of SiC particles, pores and cohesion damages are discussed. It is observed that the Paganin method offers the best improvement in contrast to noise ratio for the measurement of SiC particles embedded in the Al matrix.
Collapse
Affiliation(s)
- Ashish K Agrawal
- Technical Physics Division, Bhabha Atomic Research Centre, Mumbai, India; Homi Bhabha National Institute, Mumbai, 400 094, India.
| | - Chiradeep Gupta
- Mechanical Metallurgy Division, Bhabha Atomic Research Centre, Mumbai, India; Homi Bhabha National Institute, Mumbai, 400 094, India
| | - Balwant Singh
- Technical Physics Division, Bhabha Atomic Research Centre, Mumbai, India; Homi Bhabha National Institute, Mumbai, 400 094, India
| | - Yogesh Kashyap
- Technical Physics Division, Bhabha Atomic Research Centre, Mumbai, India; Homi Bhabha National Institute, Mumbai, 400 094, India
| | - Mayank Shukla
- Technical Physics Division, Bhabha Atomic Research Centre, Mumbai, India; Homi Bhabha National Institute, Mumbai, 400 094, India
| |
Collapse
|
6
|
Duan X, Ding XF, Li N, Wu FX, Chen X, Zhu N. Sparse2Noise: Low-dose synchrotron X-ray tomography without high-quality reference data. Comput Biol Med 2023; 165:107473. [PMID: 37690288 DOI: 10.1016/j.compbiomed.2023.107473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 08/30/2023] [Accepted: 09/04/2023] [Indexed: 09/12/2023]
Abstract
BACKGROUND Synchrotron radiation computed tomography (SR-CT) holds promise for high-resolution in vivo imaging. Notably, the reconstruction of SR-CT images necessitates a large set of data to be captured with sufficient photons from multiple angles, resulting in high radiation dose received by the object. Reducing the number of projections and/or photon flux is a straightforward means to lessen the radiation dose, however, compromises data completeness, thus introducing noises and artifacts. Deep learning (DL)-based supervised methods effectively denoise and remove artifacts, but they heavily depend on high-quality paired data acquired at high doses. Although algorithms exist for training without high-quality references, they struggle to effectively eliminate persistent artifacts present in real-world data. METHODS This work presents a novel low-dose imaging strategy namely Sparse2Noise, which combines the reconstruction data from paired sparse-view CT scan (normal-flux) and full-view CT scan (low-flux) using a convolutional neural network (CNN). Sparse2Noise does not require high-quality reconstructed data as references and allows for fresh training on data with very small size. Sparse2Noise was evaluated by both simulated and experimental data. RESULTS Sparse2Noise effectively reduces noise and ring artifacts while maintaining high image quality, outperforming state-of-the-art image denoising methods at same dose levels. Furthermore, Sparse2Noise produces impressive high image quality for ex vivo rat hindlimb imaging with the acceptable low radiation dose (i.e., 0.5 Gy with the isotropic voxel size of 26 μm). CONCLUSIONS This work represents a significant advance towards in vivo SR-CT imaging. It is noteworthy that Sparse2Noise can also be used for denoising in conventional CT and/or phase-contrast CT.
Collapse
Affiliation(s)
- Xiaoman Duan
- Division of Biomedical Engineering, College of Engineering, University of Saskatchewan, Saskatoon, SK S7N 5A9, Canada
| | - Xiao Fan Ding
- Division of Biomedical Engineering, College of Engineering, University of Saskatchewan, Saskatoon, SK S7N 5A9, Canada
| | - Naitao Li
- Division of Biomedical Engineering, College of Engineering, University of Saskatchewan, Saskatoon, SK S7N 5A9, Canada
| | - Fang-Xiang Wu
- Division of Biomedical Engineering, College of Engineering, University of Saskatchewan, Saskatoon, SK S7N 5A9, Canada; Department of Computer Science, University of Saskatchewan, Saskatoon, SK S7N 5A9, Canada; Department of Mechanical Engineering, College of Engineering, University of Saskatchewan, Saskatoon, SK S7N 5A9, Canada
| | - Xiongbiao Chen
- Division of Biomedical Engineering, College of Engineering, University of Saskatchewan, Saskatoon, SK S7N 5A9, Canada; Department of Mechanical Engineering, College of Engineering, University of Saskatchewan, Saskatoon, SK S7N 5A9, Canada.
| | - Ning Zhu
- Division of Biomedical Engineering, College of Engineering, University of Saskatchewan, Saskatoon, SK S7N 5A9, Canada; Canadian Light Source, Saskatoon, S7N 2V3, SK, Canada; Department of Chemical and Biological Engineering, College of Engineering, University of Saskatchewan, Saskatoon, SK S7N 5A9, Canada.
| |
Collapse
|
7
|
Guo Q, AlKendi A, Jiang X, Mittone A, Wang L, Larsson E, Bravin A, Renström E, Fang X, Zhang E. Reduced volume of diabetic pancreatic islets in rodents detected by synchrotron X-ray phase-contrast microtomography and deep learning network. Heliyon 2023; 9:e13081. [PMID: 36718155 PMCID: PMC9883183 DOI: 10.1016/j.heliyon.2023.e13081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Revised: 01/09/2023] [Accepted: 01/16/2023] [Indexed: 01/20/2023] Open
Abstract
The pancreatic islet is a highly structured micro-organ that produces insulin in response to rising blood glucose. Here we develop a label-free and automatic imaging approach to visualize the islets in situ in diabetic rodents by the synchrotron radiation X-ray phase-contrast microtomography (SRμCT) at the ID17 station of the European Synchrotron Radiation Facility. The large-size images (3.2 mm × 15.97 mm) were acquired in the pancreas in STZ-treated mice and diabetic GK rats. Each pancreas was dissected by 3000 reconstructed images. The image datasets were further analysed by a self-developed deep learning method, AA-Net. All islets in the pancreas were segmented and visualized by the three-dimension (3D) reconstruction. After quantifying the volumes of the islets, we found that the number of larger islets (=>1500 μm3) was reduced by 2-fold (wt 1004 ± 94 vs GK 419 ± 122, P < 0.001) in chronically developed diabetic GK rat, while in STZ-treated diabetic mouse the large islets were decreased by half (189 ± 33 vs 90 ± 29, P < 0.001) compared to the untreated mice. Our study provides a label-free tool for detecting and quantifying pancreatic islets in situ. It implies the possibility of monitoring the state of pancreatic islets in vivo diabetes without labelling.
Collapse
Affiliation(s)
- Qingqing Guo
- School of Computer Science and Technology, Anhui University, Hefei, China
- Islet Pathophysiology, Department of Clinical Science, Lund University Diabetes Centre, Malmö, Sweden
| | - Abdulla AlKendi
- Islet Pathophysiology, Department of Clinical Science, Lund University Diabetes Centre, Malmö, Sweden
| | - Xiaoping Jiang
- Islet Pathophysiology, Department of Clinical Science, Lund University Diabetes Centre, Malmö, Sweden
- School of Physical Science and Technology, Southwest University, Chongqing, China
| | - Alberto Mittone
- Advanced Photon Source, Argonne National Laboratory, Lemont, IL, United States
- Biomedical Beamline ID17, European Synchrotron Radiation Facility, Grenoble Cedex, France
| | - Linbo Wang
- School of Computer Science and Technology, Anhui University, Hefei, China
| | - Emanuel Larsson
- Division of Solid Mechanics & LUNARC, Department of Construction Sciences, Lund University, Lund, Sweden
| | - Alberto Bravin
- Biomedical Beamline ID17, European Synchrotron Radiation Facility, Grenoble Cedex, France
- Department of Physics, University Milano Bicocca, Milan, Italy
- Department of Physics, Università della Calabria, Rende, Italy
| | - Erik Renström
- Islet Pathophysiology, Department of Clinical Science, Lund University Diabetes Centre, Malmö, Sweden
| | - Xianyong Fang
- School of Computer Science and Technology, Anhui University, Hefei, China
- Corresponding author.
| | - Enming Zhang
- Islet Pathophysiology, Department of Clinical Science, Lund University Diabetes Centre, Malmö, Sweden
- NanoLund, Lund University, Box 118, 22100, Lund, Sweden
- Corresponding author. Islet Pathophysiology, Department of Clinical Science, Lund University Diabetes Centre, Malmö, Sweden.
| |
Collapse
|
8
|
Physical and digital phantoms for 2D and 3D x-ray breast imaging: Review on the state-of-the-art and future prospects. Radiat Phys Chem Oxf Engl 1993 2022. [DOI: 10.1016/j.radphyschem.2022.110715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
9
|
Donato S, Brombal L, Arana Peña LM, Arfelli F, Contillo A, Delogu P, Di Lillo F, Di Trapani V, Fanti V, Longo R, Oliva P, Rigon L, Stori L, Tromba G, Golosio B. Optimization of a customized simultaneous algebraic reconstruction technique algorithm for phase-contrast breast computed tomography. Phys Med Biol 2022; 67. [DOI: 10.1088/1361-6560/ac65d4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Accepted: 04/08/2022] [Indexed: 12/22/2022]
Abstract
Abstract
Objective. To introduce the optimization of a customized GPU-based simultaneous algebraic reconstruction technique (cSART) in the field of phase-contrast breast computed tomography (bCT). The presented algorithm features a 3D bilateral regularization filter that can be tuned to yield optimal performance for clinical image visualization and tissues segmentation. Approach. Acquisitions of a dedicated test object and a breast specimen were performed at Elettra, the Italian synchrotron radiation (SR) facility (Trieste, Italy) using a large area CdTe single-photon counting detector. Tomographic images were obtained at 5 mGy of mean glandular dose, with a 32 keV monochromatic x-ray beam in the free-space propagation mode. Three independent algorithms parameters were optimized by using contrast-to-noise ratio (CNR), spatial resolution, and noise texture metrics. The results obtained with the cSART algorithm were compared with conventional SART and filtered back projection (FBP) reconstructions. Image segmentation was performed both with gray scale-based and supervised machine-learning approaches. Main results. Compared to conventional FBP reconstructions, results indicate that the proposed algorithm can yield images with a higher CNR (by 35% or more), retaining a high spatial resolution while preserving their textural properties. Alternatively, at the cost of an increased image ‘patchiness’, the cSART can be tuned to achieve a high-quality tissue segmentation, suggesting the possibility of performing an accurate glandularity estimation potentially of use in the realization of realistic 3D breast models starting from low radiation dose images. Significance. The study indicates that dedicated iterative reconstruction techniques could provide significant advantages in phase-contrast bCT imaging. The proposed algorithm offers great flexibility in terms of image reconstruction optimization, either toward diagnostic evaluation or image segmentation.
Collapse
|
10
|
Massimi L, Suaris T, Hagen CK, Endrizzi M, Munro PRT, Havariyoun G, Hawker PMS, Smit B, Astolfo A, Larkin OJ, Waltham RM, Shah Z, Duffy SW, Nelan RL, Peel A, Jones JL, Haig IG, Bate D, Olivo A. Volumetric High-Resolution X-Ray Phase-Contrast Virtual Histology of Breast Specimens With a Compact Laboratory System. IEEE TRANSACTIONS ON MEDICAL IMAGING 2022; 41:1188-1195. [PMID: 34941505 PMCID: PMC7612751 DOI: 10.1109/tmi.2021.3137964] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The assessment of margin involvement is a fundamental task in breast conserving surgery to prevent recurrences and reoperations. It is usually performed through histology, which makes the process time consuming and can prevent the complete volumetric analysis of large specimens. X-ray phase contrast tomography combines high resolution, sufficient penetration depth and high soft tissue contrast, and can therefore provide a potential solution to this problem. In this work, we used a high-resolution implementation of the edge illumination X-ray phase contrast tomography based on "pixel-skipping" X-ray masks and sample dithering, to provide high definition virtual slices of breast specimens. The scanner was originally designed for intra-operative applications in which short scanning times were prioritised over spatial resolution; however, thanks to the versatility of edge illumination, high-resolution capabilities can be obtained with the same system simply by swapping x-ray masks without this imposing a reduction in the available field of view. This makes possible an improved visibility of fine tissue strands, enabling a direct comparison of selected CT slices with histology, and providing a tool to identify suspect features in large specimens before slicing. Combined with our previous results on fast specimen scanning, this works paves the way for the design of a multi-resolution EI scanner providing intra-operative capabilities as well as serving as a digital pathology system.
Collapse
|
11
|
Zhu Y, O'Connell AM, Ma Y, Liu A, Li H, Zhang Y, Zhang X, Ye Z. Dedicated breast CT: state of the art-Part II. Clinical application and future outlook. Eur Radiol 2021; 32:2286-2300. [PMID: 34476564 DOI: 10.1007/s00330-021-08178-0] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Revised: 06/19/2021] [Accepted: 06/29/2021] [Indexed: 12/17/2022]
Abstract
Dedicated breast CT is being increasingly used for breast imaging. This technique provides images with no compression, removal of tissue overlap, rapid acquisition, and available simultaneous assessment of microcalcifications and contrast enhancement. In this second installment in a 2-part review, the current status of clinical applications and ongoing efforts to develop new imaging systems are discussed, with particular emphasis on how to achieve optimized practice including lesion detection and characterization, response to therapy monitoring, density assessment, intervention, and implant evaluation. The potential for future screening with breast CT is also addressed. KEY POINTS: • Dedicated breast CT is an emerging modality with enormous potential in the future of breast imaging by addressing numerous clinical needs from diagnosis to treatment. • Breast CT shows either noninferiority or superiority with mammography and numerical comparability to MRI after contrast administration in diagnostic statistics, demonstrates excellent performance in lesion characterization, density assessment, and intervention, and exhibits promise in implant evaluation, while potential application to breast cancer screening is still controversial. • New imaging modalities such as phase-contrast breast CT, spectral breast CT, and hybrid imaging are in the progress of R & D.
Collapse
Affiliation(s)
- Yueqiang Zhu
- Department of Radiology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education, Huan-Hu-Xi Road, Ti-Yuan-Bei, Hexi District, 300060, Tianjin, China
| | - Avice M O'Connell
- Department of Imaging Sciences, University of Rochester Medical Center, 601 Elmwood Avenue, Box 648, Rochester, NY, 14642, USA
| | - Yue Ma
- Department of Radiology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education, Huan-Hu-Xi Road, Ti-Yuan-Bei, Hexi District, 300060, Tianjin, China
| | - Aidi Liu
- Department of Radiology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education, Huan-Hu-Xi Road, Ti-Yuan-Bei, Hexi District, 300060, Tianjin, China
| | - Haijie Li
- Department of Radiology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education, Huan-Hu-Xi Road, Ti-Yuan-Bei, Hexi District, 300060, Tianjin, China
| | - Yuwei Zhang
- Department of Radiology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education, Huan-Hu-Xi Road, Ti-Yuan-Bei, Hexi District, 300060, Tianjin, China
| | - Xiaohua Zhang
- Koning Corporation, Lennox Tech Enterprise Center, 150 Lucius Gordon Drive, Suite 112, West Henrietta, NY, 14586, USA
| | - Zhaoxiang Ye
- Department of Radiology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education, Huan-Hu-Xi Road, Ti-Yuan-Bei, Hexi District, 300060, Tianjin, China.
| |
Collapse
|
12
|
Pierantoni M, Silva Barreto I, Hammerman M, Verhoeven L, Törnquist E, Novak V, Mokso R, Eliasson P, Isaksson H. A quality optimization approach to image Achilles tendon microstructure by phase-contrast enhanced synchrotron micro-tomography. Sci Rep 2021; 11:17313. [PMID: 34453067 PMCID: PMC8397765 DOI: 10.1038/s41598-021-96589-w] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Accepted: 08/06/2021] [Indexed: 12/19/2022] Open
Abstract
Achilles tendons are mechanosensitive, and their complex hierarchical structure is in part the result of the mechanical stimulation conveyed by the muscles. To fully understand how their microstructure responds to mechanical loading a non-invasive approach for 3D high resolution imaging suitable for soft tissue is required. Here we propose a protocol that can capture the complex 3D organization of the Achilles tendon microstructure, using phase-contrast enhanced synchrotron micro-tomography (SR-PhC-μCT). We investigate the effects that sample preparation and imaging conditions have on the resulting image quality, by considering four types of sample preparations and two imaging setups (sub-micrometric and micrometric final pixel sizes). The image quality is assessed using four quantitative parameters. The results show that for studying tendon collagen fibers, conventional invasive sample preparations such as fixation and embedding are not necessary or advantageous. Instead, fresh frozen samples result in high-quality images that capture the complex 3D organization of tendon fibers in conditions as close as possible to natural. The comprehensive nature of this innovative study by SR-PhC-μCT breaks ground for future studies of soft complex biological tissue in 3D with high resolution in close to natural conditions, which could be further used for in situ characterization of how soft tissue responds to mechanical stimuli on a microscopic level.
Collapse
Affiliation(s)
- Maria Pierantoni
- Department of Biomedical Engineering, Lund University, Box 118, 221 00, Lund, Sweden.
| | | | - Malin Hammerman
- Department of Biomedical Engineering, Lund University, Box 118, 221 00, Lund, Sweden
- Department of Biomedical and Clinical Sciences, Linköping University, 581 83, Linköping, Sweden
| | - Lissa Verhoeven
- Department of Biomedical Engineering, Lund University, Box 118, 221 00, Lund, Sweden
| | - Elin Törnquist
- Department of Biomedical Engineering, Lund University, Box 118, 221 00, Lund, Sweden
| | - Vladimir Novak
- Swiss Light Source, Paul Scherrer Institute, 5232, Villigen, Switzerland
| | - Rajmund Mokso
- Swiss Light Source, Paul Scherrer Institute, 5232, Villigen, Switzerland
- Division of Solid Mechanics, Lund University, Box 118, 221 00, Lund, Sweden
| | - Pernilla Eliasson
- Department of Biomedical and Clinical Sciences, Linköping University, 581 83, Linköping, Sweden
| | - Hanna Isaksson
- Department of Biomedical Engineering, Lund University, Box 118, 221 00, Lund, Sweden
| |
Collapse
|
13
|
Brombal L, Arana Peña LM, Arfelli F, Longo R, Brun F, Contillo A, Di Lillo F, Tromba G, Di Trapani V, Donato S, Menk RH, Rigon L. Motion artifacts assessment and correction using optical tracking in synchrotron radiation breast CT. Med Phys 2021; 48:5343-5355. [PMID: 34252212 PMCID: PMC9291820 DOI: 10.1002/mp.15084] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 05/12/2021] [Accepted: 06/21/2021] [Indexed: 11/23/2022] Open
Abstract
Purpose The SYRMA‐3D collaboration is setting up a breast computed tomography (bCT) clinical program at the Elettra synchrotron radiation facility in Trieste, Italy. Unlike the few dedicated scanners available at hospitals, synchrotron radiation bCT requires the patient's rotation, which in turn implies a long scan duration (from tens of seconds to few minutes). At the same time, it allows the achievement of high spatial resolution. These features make synchrotron radiation bCT prone to motion artifacts. This article aims at assessing and compensating for motion artifacts through an optical tracking approach. Methods In this study, patients’ movements due to breathing have been first assessed on seven volunteers and then simulated during the CT scans of a breast phantom and a surgical specimen, by adding a periodic oscillatory motion (constant speed, 1 mm amplitude, 12 cycles/minute). CT scans were carried out at 28 keV with a mean glandular dose of 5 mGy. Motion artifacts were evaluated and a correction algorithm based on the optical tracking of fiducial marks was introduced. A quantitative analysis based on the structural similarity (SSIM) index and the normalized mean square error (nMSE) was performed on the reconstructed CT images. Results CT images reconstructed through the optical tracking procedure were found to be as good as the motionless reference image. Moreover, the analysis of SSIM and nMSE demonstrated that an uncorrected motion of the order of the system's point spread function (around 0.1 mm in the present case) can be tolerated. Conclusions Results suggest that a motion correction procedure based on an optical tracking system would be beneficial in synchrotron radiation bCT.
Collapse
Affiliation(s)
- Luca Brombal
- Department of Physics, University of Trieste, Trieste, Italy.,Division of Trieste, Istituto Nazionale di Fisica Nucleare, Trieste, Italy
| | - Lucia Mariel Arana Peña
- Department of Physics, University of Trieste, Trieste, Italy.,Division of Trieste, Istituto Nazionale di Fisica Nucleare, Trieste, Italy
| | - Fulvia Arfelli
- Department of Physics, University of Trieste, Trieste, Italy.,Division of Trieste, Istituto Nazionale di Fisica Nucleare, Trieste, Italy
| | - Renata Longo
- Department of Physics, University of Trieste, Trieste, Italy.,Division of Trieste, Istituto Nazionale di Fisica Nucleare, Trieste, Italy
| | - Francesco Brun
- Division of Trieste, Istituto Nazionale di Fisica Nucleare, Trieste, Italy.,Department of Engineering and Architecture, University of Trieste, Trieste, Italy
| | | | | | | | - Vittorio Di Trapani
- Department of Physical sciences, Earth and environment, University of Siena, Siena, Italy.,Division of Pisa, Istituto Nazionale di Fisica Nucleare, Pisa, Italy
| | - Sandro Donato
- Department of Physics, University of Calabria, Arcavacata di Rende, Cosenza, Italy.,Division of Frascati, Istituto Nazionale di Fisca Nucleare, Frascati, Rome, Italy
| | - Ralf Hendrik Menk
- Division of Trieste, Istituto Nazionale di Fisica Nucleare, Trieste, Italy.,Elettra-Sincrotrone Trieste S.C.p.A., Trieste, Italy.,Department of Medical Imaging, University of Saskatchewan, Saskatoon, Canada
| | - Luigi Rigon
- Department of Physics, University of Trieste, Trieste, Italy.,Division of Trieste, Istituto Nazionale di Fisica Nucleare, Trieste, Italy
| |
Collapse
|
14
|
A phantom study to contrast and compare polymer and gold fiducial markers in radiotherapy simulation imaging. Sci Rep 2021; 11:8931. [PMID: 33903651 PMCID: PMC8076319 DOI: 10.1038/s41598-021-88300-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Accepted: 04/06/2021] [Indexed: 11/15/2022] Open
Abstract
To assess visibility and artifact characteristics of polymer fiducials compared to standard gold fiducials for radiotherapy CT and MRI simulation. Three gold and three polymer fiducials were inserted into a CT and MRI tissue-equivalent phantom that approximated the prostate cancer radiotherapy configuration. The phantom and fiducials were imaged on CT and MRI. Images were assessed in terms of fiducial visibility and artifact. ImageJ was employed to quantify the pixel gray-scale of each fiducial and artifact. Fiducial gray-scale histograms and profiles were generated for analysis. Objective measurements of the contrast-to-noise ratio (CNR), signal-to-noise ratio (SNR), and artifact index (AI) were calculated. The CT images showed that the gold fiducials are visually brighter, with greater contrast than the polymer. The higher peak values illustrate this in the line profiles. However, they produce bright radiating and dark shadowing artifacts. This is depicted by the greater width of line profiles and the disruption of phantom area profiles. Quantitatively this results in greater percentile ranges of the histograms. Furthermore, for CT, gold had a higher CNR than polymer, relative to the phantom. However, the gold CNR and SNR were degraded by the greater artifact and thus AI. Both fiducials were visible on MRI and had similar histograms and profiles that were also reflected in comparable CNR, SNR and AI. Polymer fiducials were well visualized in a phantom on CT and MR and produce less artifact than the gold fiducials. Polymer markers could enhance the quality and accuracy of radiotherapy co-registration and planning but require clinical confirmation.
Collapse
|
15
|
Ghani MU, Wu X, Fajardo LL, Jing Z, Wong MD, Zheng B, Omoumi F, Li Y, Yan A, Jenkins P, Hillis SL, Linstroth L, Liu H. Development and preclinical evaluation of a patient-specific high energy x-ray phase sensitive breast tomosynthesis system. Med Phys 2021; 48:2511-2520. [PMID: 33523479 DOI: 10.1002/mp.14743] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 01/19/2021] [Accepted: 01/20/2021] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND This article reports the first x-ray phase sensitive breast tomosynthesis (PBT) system that is aimed for direct translation to clinical practice for the diagnosis of breast cancer. PURPOSE To report the preclinical evaluation and comparison of the newly built PBT system with a conventional digital breast tomosynthesis (DBT) system. METHODS AND MATERIALS The PBT system is developed based on a comprehensive inline phase contrast theoretical model. The system consists of a polyenergetic microfocus x-ray source and a flat panel detector mounted on an arm that is attached to a rotating gantry. It acquires nine projections over a 15° angular span in a stop-and-shoot manner. A dedicated phase retrieval algorithm is integrated with a filtered back-projection method that reconstructs tomographic slices. The American College of Radiology (ACR) accreditation phantom, a contrast detail (CD) phantom and mastectomy tissue samples were imaged at the same glandular dose levels by both the PBT and a standard of care DBT system for image quality characterizations and comparisons. RESULTS The PBT imaging scores with the ACR phantom are in good to excellent range and meet the quality assurance criteria set by the Mammography Quality Standard Act. The CD phantom image comparison and associated statistical analyses from two-alternative forced-choice reader studies confirm the improvement offered by the PBT system in terms of contrast resolution, spatial resolution, and conspicuity. The artifact spread function (ASF) analyses revealed a sizable lateral spread of metal artifacts in PBT slices as compared to DBT slices. Signal-to-noise ratio values for various inserts of the ACR and CD phantoms further validated the superiority of the PBT system. Mastectomy sample images acquired by the PBT system showed a superior depiction of microcalcifications vs the DBT system. CONCLUSION The PBT imaging technology can be clinically employed for improving the accuracy of breast cancer screening and diagnosis.
Collapse
Affiliation(s)
- Muhammad U Ghani
- Advanced Medical Imaging Center and School of Electrical and Computer Engineering, University of Oklahoma, Norman, OK, 73019, USA
| | - Xizeng Wu
- Department of Radiology, University of Alabama at Birmingham, Birmingham, AL, 35249, USA
| | - Laurie L Fajardo
- Department of Radiology and Imaging Sciences, University of Utah, Salt Lake City, UT, 84132, USA
| | | | - Molly D Wong
- Advanced Medical Imaging Center and School of Electrical and Computer Engineering, University of Oklahoma, Norman, OK, 73019, USA
| | - Bin Zheng
- Advanced Medical Imaging Center and School of Electrical and Computer Engineering, University of Oklahoma, Norman, OK, 73019, USA
| | - Farid Omoumi
- Advanced Medical Imaging Center and School of Electrical and Computer Engineering, University of Oklahoma, Norman, OK, 73019, USA
| | - Yuhua Li
- Advanced Medical Imaging Center and School of Electrical and Computer Engineering, University of Oklahoma, Norman, OK, 73019, USA
| | - Aimin Yan
- Department of Radiology, University of Alabama at Birmingham, Birmingham, AL, 35249, USA
| | - Peter Jenkins
- Department of Radiology and Imaging Sciences, University of Utah, Salt Lake City, UT, 84132, USA
| | - Stephen L Hillis
- Department of Radiology and Biostatistics, University of Iowa, Iowa City, IA, 52242, USA
| | - Laura Linstroth
- Department of Radiology and Imaging Sciences, University of Utah, Salt Lake City, UT, 84132, USA
| | - Hong Liu
- Advanced Medical Imaging Center and School of Electrical and Computer Engineering, University of Oklahoma, Norman, OK, 73019, USA
| |
Collapse
|
16
|
X-ray dark-field phase-contrast imaging: Origins of the concept to practical implementation and applications. Phys Med 2020; 79:188-208. [PMID: 33342666 DOI: 10.1016/j.ejmp.2020.11.034] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Revised: 11/13/2020] [Accepted: 11/26/2020] [Indexed: 12/18/2022] Open
Abstract
The basic idea of X-ray dark-field imaging (XDFI), first presented in 2000, was based on the concepts used in an X-ray interferometer. In this article, we review 20 years of developments in our theoretical understanding, scientific instrumentation, and experimental demonstration of XDFI and its applications to medical imaging. We first describe the concepts underlying XDFI that are responsible for imparting phase contrast information in projection X-ray images. We then review the algorithms that can convert these projection phase images into three-dimensional tomographic slices. Various implementations of computed tomography reconstructions algorithms for XDFI data are discussed. The next four sections describe and illustrate potential applications of XDFI in pathology, musculoskeletal imaging, oncologic imaging, and neuroimaging. The sample applications that are presented illustrate potential use scenarios for XDFI in histopathology and other clinical applications. Finally, the last section presents future perspectives and potential technical developments that can make XDFI an even more powerful tool.
Collapse
|
17
|
Recent advances in X-ray imaging of breast tissue: From two- to three-dimensional imaging. Phys Med 2020; 79:69-79. [PMID: 33171371 DOI: 10.1016/j.ejmp.2020.10.025] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/05/2020] [Revised: 10/13/2020] [Accepted: 10/24/2020] [Indexed: 11/20/2022] Open
Abstract
Breast cancer is a globally widespread disease whose detection has already been significantly improved by the introduction of screening programs. Nevertheless, mammography suffers from low soft tissue contrast and the superposition of diagnostically relevant anatomical structures as well as from low values for sensitivity and specificity especially for dense breast tissue. In recent years, two techniques for X-ray breast imaging have been developed that bring advances for the early detection of breast cancer. Grating-based phase-contrast mammography is a new imaging technique that is able to provide three image modalities simultaneously (absorption-contrast, phase-contrast and dark-field signal). Thus, an enhanced detection and delineation of cancerous structures in the phase-contrast image and an improved visualization and characterization of microcalcifications in the dark-field image is possible. Furthermore, latest studies about this approach show that dose-compatible imaging with polychromatic X-ray sources is feasible. In order to additionally overcome the limitations of projection-based imaging, efforts were also made towards the development of breast computed tomography (BCT), which recently led to the first clinical installation of an absorption-based BCT system. Further research combining the benefits of both imaging technologies is currently in progress. This review article summarizes the latest advances in phase-contrast imaging for the female breast (projection-based and three-dimensional view) with special focus on possible clinical implementations in the future.
Collapse
|
18
|
Functional lung imaging with synchrotron radiation: Methods and preclinical applications. Phys Med 2020; 79:22-35. [PMID: 33070047 DOI: 10.1016/j.ejmp.2020.10.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 09/30/2020] [Accepted: 10/03/2020] [Indexed: 01/05/2023] Open
Abstract
Many lung disease processes are characterized by structural and functional heterogeneity that is not directly appreciable with traditional physiological measurements. Experimental methods and lung function modeling to study regional lung function are crucial for better understanding of disease mechanisms and for targeting treatment. Synchrotron radiation offers useful properties to this end: coherence, utilized in phase-contrast imaging, and high flux and a wide energy spectrum which allow the selection of very narrow energy bands of radiation, thus allowing imaging at very specific energies. K-edge subtraction imaging (KES) has thus been developed at synchrotrons for both human and small animal imaging. The unique properties of synchrotron radiation extend X-ray computed tomography (CT) capabilities to quantitatively assess lung morphology, and also to map regional lung ventilation, perfusion, inflammation and biomechanical properties, with microscopic spatial resolution. Four-dimensional imaging, allows the investigation of the dynamics of regional lung functional parameters simultaneously with structural deformation of the lung as a function of time. This review summarizes synchrotron radiation imaging methods and overviews examples of its application in the study of disease mechanisms in preclinical animal models, as well as the potential for clinical translation both through the knowledge gained using these techniques and transfer of imaging technology to laboratory X-ray sources.
Collapse
|
19
|
Synchrotron radiation imaging analysis of neural damage in mouse soleus muscle. Sci Rep 2020; 10:4555. [PMID: 32165699 PMCID: PMC7067770 DOI: 10.1038/s41598-020-61599-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Accepted: 02/27/2020] [Indexed: 11/17/2022] Open
Abstract
Damage to lower limb muscles requires accurate analysis of the muscular condition via objective microscopic diagnosis. However, microscopic tissue analysis may cause deformation of the tissue structure due to injury induced by external factors during tissue sectioning. To substantiate these muscle injuries, we used synchrotron X-ray imaging technology to project extremely small objects, provide three-dimensional microstructural analysis as extracted samples. In this study, we used mice as experimental animals to create soleus muscle models with various nerve injuries. We morphologically analyzed and quantified the damaged Section and Crush muscles, respectively, via three-dimensional visualization using synchrotron radiation X-ray imaging to diagnose muscle injury. Results of this study can also be used as basic data in the medical imaging field.
Collapse
|