1
|
Biswas SK, Mohanty KK, Singh V, Natrajan M, Arora M, Chakma JK, Tripathy SP. Association of CC-chemokine ligand-2 gene polymorphisms with leprosy reactions. Microbes Infect 2024; 26:105298. [PMID: 38244764 DOI: 10.1016/j.micinf.2024.105298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 12/23/2023] [Accepted: 01/08/2024] [Indexed: 01/22/2024]
Abstract
BACKGROUND C-C motif chemokine ligand 2, a gene that codes for a protein involved in inflammation. Certain SNPs in the CCL2 gene have been studied for their potential associations with susceptibility to various diseases. These SNPs may affect the production and function of the CCL2 protein, which is involved in the recruitment of immune cells to the site of inflammation. Variations in CCL2 may influence the immune response to Mycobacterium leprae infection. OBJECTIVE To investigate the association of the C-C motif chemokine ligand-2 single nucleotide polymorphisms with leprosy. METHODS CCL2 single nucleotide polymorphisms were analyzed in a total of 975 leprosy patients and 357 healthy controls. Of those, 577 leprosy and 288 healthy controls were analyzed by PCR-RFLP for CCL2 -2518 A>G, 535 leprosy and 290 controls for CCL2 -362 G>C, 295 leprosy and 240 controls for CCL2 -2134 T>G, 325 leprosy and 288 controls for CCL2 -1549 A>T SNPs by melting curve analysis using hybridization probe chemistry and detection by fluorescence resonance energy transfer (FRET) technique in Realtime PCR. The levels of CCL2, IL-12p70, IFN-γ, TNF-α, and TGF-β were estimated in sera samples and correlated with CCL2 genotypes. RESULTS The frequency of the GCT (-2518 A>G, -362 G>C, -2134 T>G) haplotype is observed to be higher in leprosy patients compared to healthy controls (P = 0.04). There was no significant difference observed in genotypic frequencies between leprosy patients and healthy controls {(-2518A>G, p = 0.53), (-362 G>C, p = 0.01), (-2134 T>G, p = 0.10)}. G allele at the -2134 site is predominant in leprosy (borderline) without any reaction (8 %) compared to borderline patients with RR reactions (2.1 %) (P = 0.03). GG genotype (p = 0.008) and G allele at -2518 (p = 0.030) of the CCL 2 gene were found to be associated with patients with ENL reaction. An elevated level of serum CCL2 was observed in leprosy patients with the -2518 AA and AG genotypes (p = 0.0001). CONCLUSIONS G allele and GG genotype at the CCL2 -2518 site are associated with a risk of ENL reactions.
Collapse
Affiliation(s)
- Sanjay Kumar Biswas
- Immunology Division, ICMR-National JALMA Institute for Leprosy and Other Mycobacterial Diseases, Dr. M. Miyazaki Marg, Agra, 282001, India.
| | - Keshar Kunja Mohanty
- Immunology Division, ICMR-National JALMA Institute for Leprosy and Other Mycobacterial Diseases, Dr. M. Miyazaki Marg, Agra, 282001, India.
| | - Vandana Singh
- Immunology Division, ICMR-National JALMA Institute for Leprosy and Other Mycobacterial Diseases, Dr. M. Miyazaki Marg, Agra, 282001, India.
| | - Mohan Natrajan
- Histopathology Division, ICMR-National JALMA Institute for Leprosy and Other Mycobacterial Diseases, Dr. M. Miyazaki Marg, Agra, 282001, India.
| | - Mamta Arora
- Clinical Division, ICMR-National JALMA Institute for Leprosy and Other Mycobacterial Diseases, Dr. M. Miyazaki Marg, Agra, 282001, India.
| | - Joy Kumar Chakma
- Clinical Division, ICMR-National JALMA Institute for Leprosy and Other Mycobacterial Diseases, Dr. M. Miyazaki Marg, Agra, 282001, India.
| | - Srikanth Prasad Tripathy
- ICMR-National JALMA Institute for Leprosy and Other Mycobacterial Diseases, Dr. M. Miyazaki Marg, Agra, 282001, India.
| |
Collapse
|
2
|
Heutz JW, Rogier C, Niemantsverdriet E, van den Eeden SJF, de Jong PHP, Lubberts E, Geluk A, van der Helm-van Mil AHM. The course of cytokine and chemokine gene expression in clinically suspect arthralgia patients during progression to inflammatory arthritis. Rheumatology (Oxford) 2024; 63:563-570. [PMID: 37280058 PMCID: PMC10836970 DOI: 10.1093/rheumatology/kead238] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 04/14/2023] [Accepted: 05/13/2023] [Indexed: 06/08/2023] Open
Abstract
OBJECTIVES Autoantibody responses increase years before the onset of inflammatory arthritis (IA) and are stable during transitioning from clinically suspect arthralgia (CSA) to IA. Cytokine and chemokine levels also increase years before IA onset. However, the course in the at-risk stage of CSA during progression to disease or non-progression is unknown. To increase the understanding of processes mediating disease development, we studied the course of cytokine, chemokine and related receptors gene expression in CSA patients during progression to IA and in CSA patients who ultimately did not develop IA. METHODS Whole-blood RNA expression of 37 inflammatory cytokines, chemokines and related receptors was determined by dual-colour reverse transcription multiplex ligation-dependent probe amplification in paired samples of CSA patients at CSA onset and either at IA development or after 24 months without IA development. ACPA-positive and ACPA-negative CSA patients developing IA were compared at CSA onset and during progression to IA. Generalised estimating equations tested changes over time. A false discovery rate approach was applied. RESULTS None of the cytokine/chemokine genes significantly changed in expression between CSA onset and IA development. In CSA patients without IA development, G-CSF expression decreased (P = 0.001), whereas CCR6 and TNIP1 expression increased (P < 0.001 and P = 0.002, respectively) over a 2 year period. Expression levels in ACPA-positive and ACPA-negative CSA patients who developed IA were similar. CONCLUSION Whole-blood gene expression of assessed cytokines, chemokines and related receptors did not change significantly from CSA to IA development. This suggests that changes in expression of these molecules may not be related to the final process of developing chronicity and may have occurred preceding CSA onset. Changes in gene expression in CSA patients without IA development may provide clues for processes related to resolution.
Collapse
Affiliation(s)
- Judith W Heutz
- Department of Rheumatology, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Cleo Rogier
- Department of Rheumatology, Erasmus Medical Center, Rotterdam, The Netherlands
| | | | - Susan J F van den Eeden
- Department of Infectious Diseases, Leiden University Medical Center, Leiden, The Netherlands
| | - Pascal H P de Jong
- Department of Rheumatology, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Erik Lubberts
- Department of Rheumatology, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Annemieke Geluk
- Department of Infectious Diseases, Leiden University Medical Center, Leiden, The Netherlands
| | - Annette H M van der Helm-van Mil
- Department of Rheumatology, Erasmus Medical Center, Rotterdam, The Netherlands
- Department of Rheumatology, Leiden University Medical Center, Leiden, The Netherlands
| |
Collapse
|
3
|
Das M, David D, Horo I, Van Hooij A, Tió-Coma M, Geluk A, Vedithi SC. Mycobacterium leprae and host immune transcriptomic signatures for reactional states in leprosy. Front Microbiol 2023; 14:1113318. [PMID: 37051521 PMCID: PMC10083373 DOI: 10.3389/fmicb.2023.1113318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 03/03/2023] [Indexed: 03/29/2023] Open
Abstract
BackgroundMycobacterium leprae transcriptomic and human host immune gene expression signatures that demonstrate a plausible association with type I (T1R) and type II reactions (T2R) aid in early diagnosis, prevention of nerve damage and consequent demyelinating neuropathy in leprosy. The aim of the study is to identify M. leprae and host-associated gene-expression signatures that are associated with reactional states in leprosy.MethodsThe differentially expressed genes from the whole transcriptome of M. leprae were determined using genome-wide hybridization arrays with RNA extracted from skin biopsies of 20 T1R, 20 T2R and 20 non reactional controls (NR). Additionally, human immune gene-expressions were profiled using RT2-PCR profiler arrays and real-time qPCRs.ResultsThe RNA quality was optimal in 16 NR, 18 T1R and 19 T2R samples. Whole transcriptome expression array of these samples revealed significant upregulation of the genes that encode integral and intrinsic membrane proteins, hydrolases and oxidoreductases. In T1R lesional skin biopsy specimens, the top 10 significantly upregulated genes are ML2064, ML1271, ML1960, ML1220, ML2498, ML1996, ML2388, ML0429, ML2030 and ML0224 in comparison to NR. In T2R, genes ML2498, ML1526, ML0394, ML1960, ML2388, ML0429, ML0281, ML1847, ML1618 and ML1271 were significantly upregulated. We noted ML2664 was significantly upregulated in T1R and repressed in T2R. Conversely, we have not noted any genes upregulated in T2R and repressed in T1R. In both T1R and T2R, ML2388 was significantly upregulated. This gene encodes a probable membrane protein and epitope prediction using Bepipred-2.0 revealed a distinct B-cell epitope. Overexpression of ML2388 was noted consistently across the reaction samples. From the host immune gene expression profiles, genes for CXCL9, CXCL10, CXCL2, CD40LG, IL17A and CXCL11 were upregulated in T1R when compared to the NR. In T2R, CXCL10, CXCL11, CXCL9, CXCL2 and CD40LG were upregulated when compared to the NR group.ConclusionA gene set signature involving bacterial genes ML2388, ML2664, and host immune genes CXCL10 and IL-17A can be transcriptomic markers for reactional states in leprosy.
Collapse
Affiliation(s)
- Madhusmita Das
- Molecular Biology and Immunology Division, Schieffelin Institute of Health Research and Leprosy Centre, Karigiri, Vellore, Tamil Nadu, India
- *Correspondence: Madhusmita Das,
| | - Diana David
- Molecular Biology and Immunology Division, Schieffelin Institute of Health Research and Leprosy Centre, Karigiri, Vellore, Tamil Nadu, India
| | - Ilse Horo
- Molecular Biology and Immunology Division, Schieffelin Institute of Health Research and Leprosy Centre, Karigiri, Vellore, Tamil Nadu, India
| | - Anouk Van Hooij
- Department of Infectious Diseases, Leiden University Medical Centre, Leiden, Netherlands
| | - Maria Tió-Coma
- Department of Infectious Diseases, Leiden University Medical Centre, Leiden, Netherlands
| | - Annemieke Geluk
- Department of Infectious Diseases, Leiden University Medical Centre, Leiden, Netherlands
| | | |
Collapse
|
4
|
Pinheiro RO, Rosa PS, Spencer JS, Soares CT. Editorial: Leprosy reactions: New knowledge on pathophysiology, diagnosis, treatment and prevention. Front Med (Lausanne) 2022; 9:1072274. [DOI: 10.3389/fmed.2022.1072274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 10/21/2022] [Indexed: 11/07/2022] Open
|
5
|
Fu X, Shi Y, Ma J, Zhang K, Wang G, Li G, Xiao L, Wang H. Advances of multiplex ligation-dependent probe amplification technology in molecular diagnostics. Biotechniques 2022; 73:205-213. [PMID: 36309987 DOI: 10.2144/btn-2022-0017] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Multiplex ligation-dependent probe amplification (MLPA) is a multiplex copy number analysis tool which is routinely used to detect large mutations in genetic diseases. With continuous modifications, MLPA has been extended for the detection of DNA methylation variation, single nucleotide polymorphisms, chromosome abnormalities and other forms of genomic variation. The combination with other techniques has even enlarged the application of MLPA in molecular diagnostics of various human diseases. In this review, the principle of MLPA-based techniques as well as their main and latest applications in clinical detection are described. It is believed that with improved automation, increased multiplexing, lower cost and the combination with other technologies, MLPA will play an increasingly important role in molecular diagnosis of human disease.
Collapse
Affiliation(s)
- Xiaoni Fu
- The National Engineering Research Center for Miniaturized Detection Systems, College of Life Science, Northwest University, Xi'an, Shaanxi, 710069, China
| | - Yinmin Shi
- The National Engineering Research Center for Miniaturized Detection Systems, College of Life Science, Northwest University, Xi'an, Shaanxi, 710069, China
| | - Jiying Ma
- The National Engineering Research Center for Miniaturized Detection Systems, College of Life Science, Northwest University, Xi'an, Shaanxi, 710069, China
| | - Kaiqian Zhang
- The National Engineering Research Center for Miniaturized Detection Systems, College of Life Science, Northwest University, Xi'an, Shaanxi, 710069, China
| | - Guowei Wang
- The National Engineering Research Center for Miniaturized Detection Systems, College of Life Science, Northwest University, Xi'an, Shaanxi, 710069, China
| | - Gang Li
- The National Engineering Research Center for Miniaturized Detection Systems, College of Life Science, Northwest University, Xi'an, Shaanxi, 710069, China
| | - Lei Xiao
- The National Engineering Research Center for Miniaturized Detection Systems, College of Life Science, Northwest University, Xi'an, Shaanxi, 710069, China
| | - Huijuan Wang
- The National Engineering Research Center for Miniaturized Detection Systems, College of Life Science, Northwest University, Xi'an, Shaanxi, 710069, China
| |
Collapse
|
6
|
Ferreira H, Leal-Calvo T, Mendes MA, Avanzi C, Busso P, Benjak A, Sales AM, Ferreira CP, de Berrêdo-Pinho M, Cole ST, Sarno EN, Moraes MO, Pinheiro RO. Gene expression patterns associated with multidrug therapy in multibacillary leprosy. Front Cell Infect Microbiol 2022; 12:917282. [PMID: 35937686 PMCID: PMC9354612 DOI: 10.3389/fcimb.2022.917282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Accepted: 06/28/2022] [Indexed: 11/13/2022] Open
Abstract
Multidrug therapy (MDT) has been successfully used in the treatment of leprosy. However, although patients are cured after the completion of MDT, leprosy reactions, permanent disability, and occasional relapse/reinfection are frequently observed in patients. The immune system of multibacillary patients (MB) is not able to mount an effective cellular immune response against M. leprae. Consequently, clearance of bacilli from the body is a slow process and after 12 doses of MDT not all MB patients reduce bacillary index (BI). In this context, we recruited MB patients at the uptake and after 12-month of MDT. Patients were stratified according to the level of reduction of the BI after 12 doses MDT. A reduction of at least one log in BI was necessary to be considered a responder patient. We evaluated the pattern of host gene expression in skin samples with RNA sequencing before and after MDT and between samples from patients with or without one log reduction in BI. Our results demonstrated that after 12 doses of MDT there was a reduction in genes associated with lipid metabolism, inflammatory response, and cellular immune response among responders (APOBEC3A, LGALS17A, CXCL13, CXCL9, CALHM6, and IFNG). Also, by comparing MB patients with lower BI reduction versus responder patients, we identified high expression of CDH19, TMPRSS4, PAX3, FA2H, HLA-V, FABP7, and SERPINA11 before MDT. From the most differentially expressed genes, we observed that MDT modulates pathways related to immune response and lipid metabolism in skin cells from MB patients after MDT, with higher expression of genes like CYP11A1, that are associated with cholesterol metabolism in the group with the worst response to treatment. Altogether, the data presented contribute to elucidate gene signatures and identify differentially expressed genes associated with MDT outcomes in MB patients.
Collapse
Affiliation(s)
- Helen Ferreira
- Leprosy Laboratory, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| | - Thyago Leal-Calvo
- Leprosy Laboratory, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| | - Mayara Abud Mendes
- Leprosy Laboratory, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| | - Charlotte Avanzi
- Global Health Institute, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Philippe Busso
- Global Health Institute, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Andrej Benjak
- Global Health Institute, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Anna Maria Sales
- Leprosy Laboratory, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| | - Cássio Porto Ferreira
- Leprosy Laboratory, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| | - Márcia de Berrêdo-Pinho
- Cellular Microbiology Laboratory, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| | - Stewart Thomas Cole
- Global Health Institute, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
- Institut Pasteur, Paris, France
| | - Euzenir Nunes Sarno
- Leprosy Laboratory, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| | - Milton Ozório Moraes
- Leprosy Laboratory, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| | - Roberta Olmo Pinheiro
- Leprosy Laboratory, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
- *Correspondence: Roberta Olmo Pinheiro,
| |
Collapse
|
7
|
Rosa TLSA, Mendes MA, Linhares NRC, Rodrigues TF, Dias AA, Leal-Calvo T, Gandini M, Ferreira H, Costa FDMR, Sales AM, Amadeu TP, Schmitz V, Pinheiro RO, Rodrigues LS, Moraes MO, Pessolani MCV. The Type I Interferon Pathway Is Upregulated in the Cutaneous Lesions and Blood of Multibacillary Leprosy Patients With Erythema Nodosum Leprosum. Front Med (Lausanne) 2022; 9:899998. [PMID: 35733868 PMCID: PMC9208291 DOI: 10.3389/fmed.2022.899998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Accepted: 05/16/2022] [Indexed: 11/16/2022] Open
Abstract
In leprosy patients, acute inflammatory episodes, known as erythema nodosum leprosum (ENL), are responsible for high morbidity and tissue damage that occur during the course of Mycobacterium leprae infection. In a previous study, we showed evidence implicating DNA-sensing via TLR9 as an important inflammatory pathway in ENL. A likely important consequence of TLR9 pathway activation is the production of type I interferons (IFN-I) by plasmacytoid dendritic cells (pDCs), also implicated in the pathogenesis of several chronic inflammatory diseases. In this study, we investigated whether the IFN-I pathway is activated during ENL. Blood samples and skin lesions from multibacillary patients diagnosed with ENL were collected and the expression of genes of the IFN-I pathway and interferon-stimulated genes were compared with samples collected from non-reactional multibacillary (NR) patients. Whole blood RNAseq analysis suggested higher activation of the IFN-I pathway in ENL patients, confirmed by RT-qPCR. Likewise, significantly higher mRNA levels of IFN-I-related genes were detected in ENL skin biopsies when compared to NR patient lesions. During thalidomide administration, the drug of choice for ENL treatment, a decrease in the mRNA and protein levels of some of these genes both in the skin and blood was observed. Indeed, in vitro assays showed that thalidomide was able to block the secretion of IFN-I by peripheral blood mononuclear cells in response to M. leprae sonicate or CpG-A, a TLR9 ligand. Finally, the decreased frequencies of peripheral pDCs in ENL patients, along with the higher TLR9 expression in ENL pDCs and the enrichment of CD123+ cells in ENL skin lesions, suggest the involvement of these cells as IFN-I producers in this type of reaction. Taken together, our data point to the involvement of the pDC/type I IFN pathway in the pathogenesis of ENL, opening new avenues in identifying biomarkers for early diagnosis and new therapeutic targets for the better management of this reactional episode.
Collapse
Affiliation(s)
| | - Mayara Abud Mendes
- Laboratory of Leprosy, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| | - Natasha Ribeiro Cardoso Linhares
- Laboratory of Cellular Microbiology, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
- Laboratory of Immunopathology, Medical Science Faculty, Rio de Janeiro State University, Rio de Janeiro, Brazil
| | - Thais Fernanda Rodrigues
- Laboratory of Cellular Microbiology, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| | - André Alves Dias
- Laboratory of Cellular Microbiology, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| | - Thyago Leal-Calvo
- Laboratory of Leprosy, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| | - Mariana Gandini
- Laboratory of Cellular Microbiology, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| | - Helen Ferreira
- Laboratory of Leprosy, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| | | | - Anna Maria Sales
- Laboratory of Leprosy, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| | - Thaís Porto Amadeu
- Laboratory of Immunopathology, Medical Science Faculty, Rio de Janeiro State University, Rio de Janeiro, Brazil
| | - Veronica Schmitz
- Laboratory of Leprosy, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| | - Roberta Olmo Pinheiro
- Laboratory of Leprosy, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| | - Luciana Silva Rodrigues
- Laboratory of Immunopathology, Medical Science Faculty, Rio de Janeiro State University, Rio de Janeiro, Brazil
| | - Milton Ozório Moraes
- Laboratory of Leprosy, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| | - Maria Cristina Vidal Pessolani
- Laboratory of Cellular Microbiology, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
- *Correspondence: Maria Cristina Vidal Pessolani,
| |
Collapse
|
8
|
Yuan YH, Liu J, You YG, Chen XH, Yuan LC, Wen Y, Li HY, Zhang Y. Transcriptomic Analysis of Mycobacterium leprae-Stimulated Response in Peripheral Blood Mononuclear Cells Reveal Potential Biomarkers for Early Diagnosis of Leprosy. Front Cell Infect Microbiol 2022; 11:714396. [PMID: 34993156 PMCID: PMC8724050 DOI: 10.3389/fcimb.2021.714396] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Accepted: 08/18/2021] [Indexed: 11/16/2022] Open
Abstract
We aimed to identify an unique host transcriptional signature in peripheral blood mononuclear cells (PBMCs) in response to Mycobacterium leprae antigens to distinguish between patients with leprosy and non-leprosy controls for early diagnosis of the disease. Sixteen individuals were enrolled in the discovery cohort [eight patients with leprosy, comprising four multibacillary (MB) and four paucibacillary (PB); and eight non-leprosy controls, comprising four healthy house contacts (HHCs) and four endemic controls (ECs)]. The differences in the transcriptome response of PBMCs to M. leprae sonicate antigen were evaluated between leprosy patients and non-leprosy controls, and 12 differentially expressed genes (CCL2/MCP-1, IL-8, JAKM, ATP, ND1, SERP, FLJ10489, LINC00659, LOC34487, LOC101928143, MIR22, and NCF1C) were identified. The accuracy of the 12 differentially expressed genes was further validated for the diagnosis of leprosy using real-time quantitative PCR in 82 individuals (13 MB, 10 PB, 37 HHCs, and 22 ECs) in the validation cohort. We found that a 5 gene signature set IL-8, CCL2/MCP-1, SERP, LINC00659 and FLJ10489 had a suitable performance in discriminating leprosy from ECs. In addition, elevated expression of IL-8, CCL2/MCP-1, SERP and LINC00659 was associated with MB diagnosis compared with ECs, whereas increased expression of IL-8, CCL2/MCP-1, SERP and FLJ10489 was found to be useful biomarkers for PB diagnosis from ECs. Moreover, we found decreased expression of NCF1C among leprosy patients could distinguish leprosy from HHCs, whereas higher expression of CCL2 among MB than PB could distinguish different leprosy patients. In conclusion, among the 12 candidate host genes identified, a three gene signature IL-8, CCL2/MCP-1, and SERP showed the best performance in distinguishing leprosy patients from healthy controls. These findings may have implications for developing a rapid blood-based test for early diagnosis of leprosy.
Collapse
Affiliation(s)
- You-Hua Yuan
- Department of Clinical Microbiology, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University and People's Hospital of Henan University, Zhengzhou, China
| | - Jian Liu
- Beijing Tropical Medicine Research Institute, Beijing Friendship Hospital, Capital Medical University, Beijing, China.,Beijing Key Laboratory for Research on Prevention and Treatment of Tropical Diseases, Capital Medical University, Beijing, China
| | - Yuan-Gang You
- Beijing Tropical Medicine Research Institute, Beijing Friendship Hospital, Capital Medical University, Beijing, China.,Beijing Key Laboratory for Research on Prevention and Treatment of Tropical Diseases, Capital Medical University, Beijing, China
| | - Xiao-Hua Chen
- Beijing Tropical Medicine Research Institute, Beijing Friendship Hospital, Capital Medical University, Beijing, China.,Beijing Key Laboratory for Research on Prevention and Treatment of Tropical Diseases, Capital Medical University, Beijing, China
| | - Lian-Chao Yuan
- Beijing Tropical Medicine Research Institute, Beijing Friendship Hospital, Capital Medical University, Beijing, China.,Beijing Key Laboratory for Research on Prevention and Treatment of Tropical Diseases, Capital Medical University, Beijing, China
| | - Yan Wen
- Beijing Tropical Medicine Research Institute, Beijing Friendship Hospital, Capital Medical University, Beijing, China.,Beijing Key Laboratory for Research on Prevention and Treatment of Tropical Diseases, Capital Medical University, Beijing, China
| | - Huan Ying Li
- Beijing Tropical Medicine Research Institute, Beijing Friendship Hospital, Capital Medical University, Beijing, China.,Beijing Key Laboratory for Research on Prevention and Treatment of Tropical Diseases, Capital Medical University, Beijing, China
| | - Ying Zhang
- State Key Laboratory for the Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
9
|
Leal-Calvo T, Avanzi C, Mendes MA, Benjak A, Busso P, Pinheiro RO, Sarno EN, Cole ST, Moraes MO. A new paradigm for leprosy diagnosis based on host gene expression. PLoS Pathog 2021; 17:e1009972. [PMID: 34695167 PMCID: PMC8568100 DOI: 10.1371/journal.ppat.1009972] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 11/04/2021] [Accepted: 09/28/2021] [Indexed: 11/18/2022] Open
Abstract
Transcriptional profiling is a powerful tool to investigate and detect human diseases. In this study, we used bulk RNA-sequencing (RNA-Seq) to compare the transcriptomes in skin lesions of leprosy patients or controls affected by other dermal conditions such as granuloma annulare, a confounder for paucibacillary leprosy. We identified five genes capable of accurately distinguishing multibacillary and paucibacillary leprosy from other skin conditions. Indoleamine 2,3-dioxygenase 1 (IDO1) expression alone was highly discriminatory, followed by TLR10, BLK, CD38, and SLAMF7, whereas the HS3ST2 and CD40LG mRNA separated multi- and paucibacillary leprosy. Finally, from the main differentially expressed genes (DEG) and enriched pathways, we conclude that paucibacillary disease is characterized by epithelioid transformation and granuloma formation, with an exacerbated cellular immune response, while multibacillary leprosy features epithelial-mesenchymal transition with phagocytic and lipid biogenesis patterns in the skin. These findings will help catalyze the development of better diagnostic tools and potential host-based therapeutic interventions. Finally, our data may help elucidate host-pathogen interplay driving disease clinical manifestations.
Collapse
Affiliation(s)
- Thyago Leal-Calvo
- Laboratório de Hanseníase, Instituto Oswaldo Cruz, FIOCRUZ, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Charlotte Avanzi
- Global Health Institute, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Mayara Abud Mendes
- Laboratório de Hanseníase, Instituto Oswaldo Cruz, FIOCRUZ, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Andrej Benjak
- Global Health Institute, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Philippe Busso
- Global Health Institute, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Roberta Olmo Pinheiro
- Laboratório de Hanseníase, Instituto Oswaldo Cruz, FIOCRUZ, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Euzenir Nunes Sarno
- Laboratório de Hanseníase, Instituto Oswaldo Cruz, FIOCRUZ, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Stewart Thomas Cole
- Global Health Institute, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
- Institut Pasteur, Paris, France
| | - Milton Ozório Moraes
- Laboratório de Hanseníase, Instituto Oswaldo Cruz, FIOCRUZ, Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
10
|
Silva BJDA, Bittencourt TL, Leal-Calvo T, Mendes MA, Prata RBDS, Barbosa MGDM, Andrade PR, Côrte-Real S, Sperandio da Silva GM, Moraes MO, Sarno EN, Pinheiro RO. Autophagy-Associated IL-15 Production Is Involved in the Pathogenesis of Leprosy Type 1 Reaction. Cells 2021; 10:2215. [PMID: 34571865 PMCID: PMC8468917 DOI: 10.3390/cells10092215] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Revised: 06/09/2021] [Accepted: 06/10/2021] [Indexed: 01/18/2023] Open
Abstract
Leprosy reactional episodes are acute inflammatory events that may occur during the clinical course of the disease. Type 1 reaction (T1R) is associated with an increase in neural damage, and the understanding of the molecular pathways related to T1R onset is pivotal for the development of strategies that may effectively control the reaction. Interferon-gamma (IFN-γ) is a key cytokine associated with T1R onset and is also associated with autophagy induction. Here, we evaluated the modulation of the autophagy pathway in Mycobacterium leprae-stimulated cells in the presence or absence of IFN-γ. We observed that IFN-γ treatment promoted autophagy activation and increased the expression of genes related to the formation of phagosomes, autophagy regulation and function, or lysosomal pathways in M. leprae-stimulated cells. IFN-γ increased interleukin (IL)-15 secretion in M. leprae-stimulated THP-1 cells in a process associated with autophagy activation. We also observed higher IL15 gene expression in multibacillary (MB) patients who later developed T1R during clinical follow-up when compared to MB patients who did not develop the episode. By overlapping gene expression patterns, we observed 13 common elements shared between T1R skin lesion cells and THP-1 cells stimulated with both M. leprae and IFN-γ. Among these genes, the autophagy regulator Translocated Promoter Region, Nuclear Basket Protein (TPR) was significantly increased in T1R cells when compared with non-reactional MB cells. Overall, our results indicate that IFN-γ may induce a TPR-mediated autophagy transcriptional program in M. leprae-stimulated cells similar to that observed in skin cells during T1R by a pathway that involves IL-15 production, suggesting the involvement of this cytokine in the pathogenesis of T1R.
Collapse
Affiliation(s)
- Bruno Jorge de Andrade Silva
- Leprosy Laboratory, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, FIOCRUZ, Rio de Janeiro 21040-360, Brazil; (B.J.d.A.S.); (T.L.B.); (T.L.-C.); (M.A.M.); (R.B.d.S.P.); (M.G.d.M.B.); (P.R.A.); (M.O.M.); (E.N.S.)
| | - Tamiris Lameira Bittencourt
- Leprosy Laboratory, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, FIOCRUZ, Rio de Janeiro 21040-360, Brazil; (B.J.d.A.S.); (T.L.B.); (T.L.-C.); (M.A.M.); (R.B.d.S.P.); (M.G.d.M.B.); (P.R.A.); (M.O.M.); (E.N.S.)
| | - Thyago Leal-Calvo
- Leprosy Laboratory, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, FIOCRUZ, Rio de Janeiro 21040-360, Brazil; (B.J.d.A.S.); (T.L.B.); (T.L.-C.); (M.A.M.); (R.B.d.S.P.); (M.G.d.M.B.); (P.R.A.); (M.O.M.); (E.N.S.)
| | - Mayara Abud Mendes
- Leprosy Laboratory, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, FIOCRUZ, Rio de Janeiro 21040-360, Brazil; (B.J.d.A.S.); (T.L.B.); (T.L.-C.); (M.A.M.); (R.B.d.S.P.); (M.G.d.M.B.); (P.R.A.); (M.O.M.); (E.N.S.)
| | - Rhana Berto da Silva Prata
- Leprosy Laboratory, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, FIOCRUZ, Rio de Janeiro 21040-360, Brazil; (B.J.d.A.S.); (T.L.B.); (T.L.-C.); (M.A.M.); (R.B.d.S.P.); (M.G.d.M.B.); (P.R.A.); (M.O.M.); (E.N.S.)
| | - Mayara Garcia de Mattos Barbosa
- Leprosy Laboratory, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, FIOCRUZ, Rio de Janeiro 21040-360, Brazil; (B.J.d.A.S.); (T.L.B.); (T.L.-C.); (M.A.M.); (R.B.d.S.P.); (M.G.d.M.B.); (P.R.A.); (M.O.M.); (E.N.S.)
| | - Priscila Ribeiro Andrade
- Leprosy Laboratory, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, FIOCRUZ, Rio de Janeiro 21040-360, Brazil; (B.J.d.A.S.); (T.L.B.); (T.L.-C.); (M.A.M.); (R.B.d.S.P.); (M.G.d.M.B.); (P.R.A.); (M.O.M.); (E.N.S.)
| | - Suzana Côrte-Real
- Structural Biology Laboratory, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, FIOCRUZ, Rio de Janeiro 21040-360, Brazil;
| | | | - Milton Ozório Moraes
- Leprosy Laboratory, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, FIOCRUZ, Rio de Janeiro 21040-360, Brazil; (B.J.d.A.S.); (T.L.B.); (T.L.-C.); (M.A.M.); (R.B.d.S.P.); (M.G.d.M.B.); (P.R.A.); (M.O.M.); (E.N.S.)
| | - Euzenir Nunes Sarno
- Leprosy Laboratory, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, FIOCRUZ, Rio de Janeiro 21040-360, Brazil; (B.J.d.A.S.); (T.L.B.); (T.L.-C.); (M.A.M.); (R.B.d.S.P.); (M.G.d.M.B.); (P.R.A.); (M.O.M.); (E.N.S.)
| | - Roberta Olmo Pinheiro
- Leprosy Laboratory, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, FIOCRUZ, Rio de Janeiro 21040-360, Brazil; (B.J.d.A.S.); (T.L.B.); (T.L.-C.); (M.A.M.); (R.B.d.S.P.); (M.G.d.M.B.); (P.R.A.); (M.O.M.); (E.N.S.)
| |
Collapse
|
11
|
Tió-Coma M, Kiełbasa SM, van den Eeden SJF, Mei H, Roy JC, Wallinga J, Khatun M, Soren S, Chowdhury AS, Alam K, van Hooij A, Richardus JH, Geluk A. Blood RNA signature RISK4LEP predicts leprosy years before clinical onset. EBioMedicine 2021; 68:103379. [PMID: 34090257 PMCID: PMC8182229 DOI: 10.1016/j.ebiom.2021.103379] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 04/16/2021] [Accepted: 04/19/2021] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Leprosy, a chronic infectious disease caused by Mycobacterium leprae, is often late- or misdiagnosed leading to irreversible disabilities. Blood transcriptomic biomarkers that prospectively predict those who progress to leprosy (progressors) would allow early diagnosis, better treatment outcomes and facilitate interventions aimed at stopping bacterial transmission. To identify potential risk signatures of leprosy, we collected whole blood of household contacts (HC, n=5,352) of leprosy patients, including individuals who were diagnosed with leprosy 4-61 months after sample collection. METHODS We investigated differential gene expression (DGE) by RNA-Seq between progressors before presence of symptoms (n=40) and HC (n=40), as well as longitudinal DGE within each progressor. A prospective leprosy signature was identified using a machine learning approach (Random Forest) and validated using reverse transcription quantitative PCR (RT-qPCR). FINDINGS Although no significant intra-individual longitudinal variation within leprosy progressors was identified, 1,613 genes were differentially expressed in progressors before diagnosis compared to HC. We identified a 13-gene prospective risk signature with an Area Under the Curve (AUC) of 95.2%. Validation of this RNA-Seq signature in an additional set of progressors (n=43) and HC (n=43) by RT-qPCR, resulted in a final 4-gene signature, designated RISK4LEP (MT-ND2, REX1BD, TPGS1, UBC) (AUC=86.4%). INTERPRETATION This study identifies for the first time a prospective transcriptional risk signature in blood predicting development of leprosy 4 to 61 months before clinical diagnosis. Assessment of this signature in contacts of leprosy patients can function as an adjunct diagnostic tool to target implementation of interventions to restrain leprosy development. FUNDING This study was supported by R2STOP Research grant, the Order of Malta-Grants-for-Leprosy-Research, the Q.M. Gastmann-Wichers Foundation and the Leprosy Research Initiative (LRI) together with the Turing Foundation (ILEP# 702.02.73 and # 703.15.07).
Collapse
Affiliation(s)
- Maria Tió-Coma
- Department of Infectious Diseases and Leiden University Medical Center, Leiden, The Netherlands
| | - Szymon M Kiełbasa
- Department of Biomedical Data Sciences, Leiden University Medical Center, Leiden, The Netherlands
| | - Susan J F van den Eeden
- Department of Infectious Diseases and Leiden University Medical Center, Leiden, The Netherlands
| | - Hailiang Mei
- Department of Biomedical Data Sciences, Leiden University Medical Center, Leiden, The Netherlands
| | - Johan Chandra Roy
- Rural Health Program, The Leprosy Mission International Bangladesh, Nilphamari, Bangladesh
| | - Jacco Wallinga
- Department of Biomedical Data Sciences, Leiden University Medical Center, Leiden, The Netherlands; Centre for Infectious Disease Control, National Institute for Public Health and the Environment, Bilthoven, The Netherlands
| | - Marufa Khatun
- Rural Health Program, The Leprosy Mission International Bangladesh, Nilphamari, Bangladesh
| | - Sontosh Soren
- Rural Health Program, The Leprosy Mission International Bangladesh, Nilphamari, Bangladesh
| | - Abu Sufian Chowdhury
- Rural Health Program, The Leprosy Mission International Bangladesh, Nilphamari, Bangladesh
| | - Khorshed Alam
- Rural Health Program, The Leprosy Mission International Bangladesh, Nilphamari, Bangladesh
| | - Anouk van Hooij
- Department of Infectious Diseases and Leiden University Medical Center, Leiden, The Netherlands
| | - Jan Hendrik Richardus
- Department of Public Health, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Annemieke Geluk
- Department of Infectious Diseases and Leiden University Medical Center, Leiden, The Netherlands.
| |
Collapse
|
12
|
Geluk A. All mycobacteria are inventive, but some are more Daedalean than others. Immunol Rev 2021; 301:5-9. [PMID: 33987855 DOI: 10.1111/imr.12970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Annemieke Geluk
- Department of Infectious Diseases, Leiden University Medical Center, Leiden, The Netherlands
| |
Collapse
|
13
|
Adams LB. Susceptibility and resistance in leprosy: Studies in the mouse model. Immunol Rev 2021; 301:157-174. [PMID: 33660297 PMCID: PMC8252540 DOI: 10.1111/imr.12960] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 02/01/2021] [Accepted: 02/02/2021] [Indexed: 12/24/2022]
Abstract
Leprosy is a chronic granulomatous infectious disease caused by the pathogen, Mycobacterium leprae, and the more recently discovered, M. lepromatosis. Described in 1873, M. leprae was among the first microorganisms to be proposed as a cause of a human infectious disease. As an obligate intracellular bacterium, it has still not thus far been reproducibly cultivated in axenic medium or cell cultures. Shepard's mouse footpad assay, therefore, was truly a breakthrough in leprosy research. The generation of immunosuppressed and genetically engineered mice, along with advances in molecular and cellular techniques, has since offered more tools for the study of the M. leprae–induced granuloma. While far from perfect, these new mouse models have provided insights into the immunoregulatory mechanisms responsible for the spectrum of this complex disease.
Collapse
Affiliation(s)
- Linda B Adams
- Department of Health and Human Services, Health Resources and Services Administration, Healthcare Systems Bureau, National Hansen's Disease Programs Laboratory Research Branch, Baton Rouge, LA, USA
| |
Collapse
|
14
|
Niemantsverdriet E, van den Akker EB, Boeters DM, van den Eeden SJF, Geluk A, van der Helm-van Mil AHM. Gene expression identifies patients who develop inflammatory arthritis in a clinically suspect arthralgia cohort. Arthritis Res Ther 2020; 22:266. [PMID: 33168080 PMCID: PMC7653888 DOI: 10.1186/s13075-020-02361-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Accepted: 10/22/2020] [Indexed: 02/02/2023] Open
Abstract
BACKGROUND Established rheumatoid arthritis (RA) patients display differentially expressed genes coding for cytokine/chemokine-mediated immunity compared to healthy controls. It is unclear, however, if in the pre-arthritis phase of clinically suspect arthralgia (CSA) expression of immune genes differ between patients who do or do not develop clinically evident inflammatory arthritis (IA). METHODS Two hundred thirty-six consecutive patients presenting with arthralgia clinically suspected for progression to RA were followed until IA development or else for median 24 months (IQR 12-26). Baseline whole blood RNA expression was determined for a previously identified set of 133 genes associated with the innate and adaptive immune system by dual-color reverse-transcription multiplex ligation-dependent probe amplification (dcRT-MLPA) profiling. Cox proportional hazard models were used. RESULTS Twenty percent of CSA patients developed IA. After correction for multiple testing, expression levels of six genes (IFNG, PHEX, IGF-1, IL-7R, CD19, CCR7) at the time of presentation were associated with progression to IA. PHEX and IGF-1 were highly correlated with each other (ρ = 0.97). In multivariable analysis correcting for the different genes, expressions of IL-7R and IGF-1 were independently associated with IA development (p = 0.025, p = 0.046, respectively). Moreover, IL-7R and IGF-1 remained significantly associated even after correction for known predictors (ACPA, CRP, imaging-detected subclinical joint inflammation; p = 0.039, p = 0.005, respectively). These genes are also associated with RA development. CONCLUSIONS IL-7R and IGF-1 were differentially expressed between CSA patients who did or did not progress to IA, independent from regularly used predictors. These biomarkers may become helpful in prognostication of CSA patients. Furthermore, because both genes are associated with T cell functioning, T cell dysregulation may mediate progression from arthralgia to arthritis.
Collapse
Affiliation(s)
- Ellis Niemantsverdriet
- Department of Rheumatology, Leiden University Medical Center, PO Box 9600, Leiden, 2300 RC, The Netherlands.
| | - Erik B van den Akker
- Department of Biomedical Data Sciences, Leiden University Medical Center, Leiden, The Netherlands.,Pattern Recognition & Bioinformatics, Delft University of Technology, Delft, The Netherlands
| | - Debbie M Boeters
- Department of Rheumatology, Leiden University Medical Center, PO Box 9600, Leiden, 2300 RC, The Netherlands
| | - Susan J F van den Eeden
- Department of Infectious Diseases/Immunohematology and Blood Transfusion, Leiden University Medical Center, Leiden, The Netherlands
| | - Annemieke Geluk
- Department of Infectious Diseases/Immunohematology and Blood Transfusion, Leiden University Medical Center, Leiden, The Netherlands
| | - Annette H M van der Helm-van Mil
- Department of Rheumatology, Leiden University Medical Center, PO Box 9600, Leiden, 2300 RC, The Netherlands.,Department of Rheumatology, Erasmus Medical Center, Rotterdam, The Netherlands
| |
Collapse
|