1
|
Ukleev V, Leroy L, Mincigrucci R, De Angelis D, Fainozzi D, Khatu NN, Paltanin E, Foglia L, Bencivenga F, Luo C, Ruske F, Radu F, Svetina C, Staub U. Transient grating spectroscopy on a DyCo 5 thin film with femtosecond extreme ultraviolet pulses. STRUCTURAL DYNAMICS (MELVILLE, N.Y.) 2024; 11:025101. [PMID: 38476300 PMCID: PMC10929737 DOI: 10.1063/4.0000223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 02/13/2024] [Indexed: 03/14/2024]
Abstract
Surface acoustic waves (SAWs) are excited by femtosecond extreme ultraviolet (EUV) transient gratings (TGs) in a room-temperature ferrimagnetic DyCo5 alloy. TGs are generated by crossing a pair of EUV pulses from a free electron laser with the wavelength of 20.8 nm matching the Co M-edge, resulting in a SAW wavelength of Λ = 44 nm. Using the pump-probe transient grating scheme in reflection geometry, the excited SAWs could be followed in the time range of -10 to 100 ps in the thin film. Coherent generation of TGs by ultrafast EUV pulses allows to excite SAW in any material and to investigate their couplings to other dynamics, such as spin waves and orbital dynamics. In contrast, we encountered challenges in detecting electronic and magnetic signals, potentially due to the dominance of the larger SAW signal and the weakened reflection signal from underlying layers. A potential solution for the latter challenge involves employing soft x-ray probes, albeit introducing additional complexities associated with the required grazing incidence geometry.
Collapse
Affiliation(s)
- Victor Ukleev
- Helmholtz-Zentrum Berlin für Materialien und Energie, D-12489 Berlin, Germany
| | - Ludmila Leroy
- Swiss Light Source, Paul Scherrer Institute, 5232 Villigen PSI, Switzerland
| | | | - Dario De Angelis
- Elettra—Sincrotrone Trieste S.C.p.A., 34149 Basovizza, Trieste, Italy
| | - Danny Fainozzi
- Elettra—Sincrotrone Trieste S.C.p.A., 34149 Basovizza, Trieste, Italy
| | | | - Ettore Paltanin
- Elettra—Sincrotrone Trieste S.C.p.A., 34149 Basovizza, Trieste, Italy
| | - Laura Foglia
- Elettra—Sincrotrone Trieste S.C.p.A., 34149 Basovizza, Trieste, Italy
| | | | - Chen Luo
- Helmholtz-Zentrum Berlin für Materialien und Energie, D-12489 Berlin, Germany
| | - Florian Ruske
- Helmholtz-Zentrum Berlin für Materialien und Energie, D-12489 Berlin, Germany
| | - Florin Radu
- Helmholtz-Zentrum Berlin für Materialien und Energie, D-12489 Berlin, Germany
| | | | - Urs Staub
- Swiss Light Source, Paul Scherrer Institute, 5232 Villigen PSI, Switzerland
| |
Collapse
|
2
|
Aryana K, Gaskins JT, Nag J, Stewart DA, Bai Z, Mukhopadhyay S, Read JC, Olson DH, Hoglund ER, Howe JM, Giri A, Grobis MK, Hopkins PE. Interface controlled thermal resistances of ultra-thin chalcogenide-based phase change memory devices. Nat Commun 2021; 12:774. [PMID: 33536411 PMCID: PMC7858634 DOI: 10.1038/s41467-020-20661-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Accepted: 12/15/2020] [Indexed: 01/30/2023] Open
Abstract
Phase change memory (PCM) is a rapidly growing technology that not only offers advancements in storage-class memories but also enables in-memory data processing to overcome the von Neumann bottleneck. In PCMs, data storage is driven by thermal excitation. However, there is limited research regarding PCM thermal properties at length scales close to the memory cell dimensions. Our work presents a new paradigm to manage thermal transport in memory cells by manipulating the interfacial thermal resistance between the phase change unit and the electrodes without incorporating additional insulating layers. Experimental measurements show a substantial change in interfacial thermal resistance as GST transitions from cubic to hexagonal crystal structure, resulting in a factor of 4 reduction in the effective thermal conductivity. Simulations reveal that interfacial resistance between PCM and its adjacent layer can reduce the reset current for 20 and 120 nm diameter devices by up to ~ 40% and ~ 50%, respectively. These thermal insights present a new opportunity to reduce power and operating currents in PCMs.
Collapse
Affiliation(s)
- Kiumars Aryana
- Department of Mechanical and Aerospace Engineering, University of Virginia, Charlottesville, VA, 22904, USA
| | - John T Gaskins
- Department of Mechanical and Aerospace Engineering, University of Virginia, Charlottesville, VA, 22904, USA
| | - Joyeeta Nag
- Western Digital Corporation, San Jose, CA, 95119, USA
| | | | - Zhaoqiang Bai
- Western Digital Corporation, San Jose, CA, 95119, USA
| | - Saikat Mukhopadhyay
- NRC Research Associate at Naval Research Laboratory, Washington, DC, 20375, USA
| | - John C Read
- Western Digital Corporation, San Jose, CA, 95119, USA
| | - David H Olson
- Department of Mechanical and Aerospace Engineering, University of Virginia, Charlottesville, VA, 22904, USA
| | - Eric R Hoglund
- Department of Materials Science and Engineering, University of Virginia, Charlottesville, VA, 22904, USA
| | - James M Howe
- Department of Materials Science and Engineering, University of Virginia, Charlottesville, VA, 22904, USA
| | - Ashutosh Giri
- Department of Mechanical, Industrial and Systems Engineering, University of Rhode Island, Kingston, RI, 02881, USA
| | | | - Patrick E Hopkins
- Department of Mechanical and Aerospace Engineering, University of Virginia, Charlottesville, VA, 22904, USA.
- Department of Materials Science and Engineering, University of Virginia, Charlottesville, VA, 22904, USA.
- Department of Physics, University of Virginia, Charlottesville, VA, 22904, USA.
| |
Collapse
|
3
|
Elnaggar H, Haverkort MW, Hamed MH, Dhesi SS, de Groot FMF. Tensor description of X-ray magnetic dichroism at the Fe L 2,3-edges of Fe 3O 4. JOURNAL OF SYNCHROTRON RADIATION 2021; 28:247-258. [PMID: 33399575 PMCID: PMC7842224 DOI: 10.1107/s1600577520015027] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Accepted: 11/11/2020] [Indexed: 05/27/2023]
Abstract
A procedure to build the optical conductivity tensor that describes the full magneto-optical response of the system from experimental measurements is presented. Applied to the Fe L2,3-edge of a 38.85 nm Fe3O4/SrTiO3 (001) thin-film, it is shown that the computed polarization dependence using the conductivity tensor is in excellent agreement with that experimentally measured. Furthermore, the magnetic field angular dependence is discussed using a set of fundamental spectra expanded on spherical harmonics. It is shown that the convergence of this expansion depends on the details of the ground state of the system in question and in particular on the valence-state spin-orbit coupling. While a cubic expansion up to the third order explains the angular-dependent X-ray magnetic linear dichroism of Fe3+ well, higher-order terms are required for Fe2+ when the orbital moment is not quenched.
Collapse
Affiliation(s)
- Hebatalla Elnaggar
- Debye Institute for Nanomaterials Science, Utrecht University, 99 Universiteitsweg, Utrecht 3584 CG, The Netherlands
| | - Maurits W. Haverkort
- Institute of Theoretical Physics, Heidelberg University, 19 Philosophenweg, Heidelberg 69120, Germany
| | - Mai Hussein Hamed
- Jülich Centre for Neutron Science, Forschungszentrum Juelich GmbH, Jülich 52425, Germany
- Faculty of Science, Helwan University, Cairo 11795, Egypt
| | - Sarnjeet S. Dhesi
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot OC11 0DE, United Kingdom
| | - Frank M. F. de Groot
- Debye Institute for Nanomaterials Science, Utrecht University, 99 Universiteitsweg, Utrecht 3584 CG, The Netherlands
| |
Collapse
|