1
|
Hamidpour SK, Amiri M, Ketabforoush AHME, Saeedi S, Angaji A, Tavakol S. Unraveling Dysregulated Cell Signaling Pathways, Genetic and Epigenetic Mysteries of Parkinson's Disease. Mol Neurobiol 2024; 61:8928-8966. [PMID: 38573414 DOI: 10.1007/s12035-024-04128-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Accepted: 03/19/2024] [Indexed: 04/05/2024]
Abstract
Parkinson's disease (PD) is a prevalent and burdensome neurodegenerative disorder that has been extensively researched to understand its complex etiology, diagnosis, and treatment. The interplay between genetic and environmental factors in PD makes its pathophysiology difficult to comprehend, emphasizing the need for further investigation into genetic and epigenetic markers involved in the disease. Early diagnosis is crucial for optimal management of the disease, and the development of novel diagnostic biomarkers is ongoing. Although many efforts have been made in the field of recognition and interpretation of the mechanisms involved in the pathophysiology of the disease, the current knowledge about PD is just the tip of the iceberg. By scrutinizing genetic and epigenetic patterns underlying PD, new avenues can be opened for dissecting the pathology of the disorder, leading to more precise and efficient diagnostic and therapeutic approaches. This review emphasizes the importance of studying dysregulated cell signaling pathways and molecular processes associated with genes and epigenetic alterations in understanding PD, paving the way for the development of novel therapeutic strategies to combat this devastating disease.
Collapse
Affiliation(s)
- Shayesteh Kokabi Hamidpour
- Department of Cell and Molecular Biology, Faculty of Biological Science, Kharazmi University, Tehran, Iran
| | - Mobina Amiri
- Department of Cell and Molecular Biology, Faculty of Biological Science, Kharazmi University, Tehran, Iran
| | | | - Saeedeh Saeedi
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center, Omaha, NE, USA
| | - Abdolhamid Angaji
- Department of Cell and Molecular Biology, Faculty of Biological Science, Kharazmi University, Tehran, Iran
| | - Shima Tavakol
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, 1449614535, Iran.
- Department of Research and Development, Tavakol BioMimetic Technologies Company, Tehran, Iran.
| |
Collapse
|
2
|
Wang Y, Qin J, Sharma A, Dakal TC, Wang J, Pan T, Bhushan R, Chen P, Setiawan MF, Schmidt-Wolf IGH, Li F. Exploring the promise of regulator of G Protein Signaling 20: insights into potential mechanisms and prospects across solid cancers and hematological malignancies. Cancer Cell Int 2024; 24:305. [PMID: 39227952 PMCID: PMC11373255 DOI: 10.1186/s12935-024-03487-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Accepted: 08/18/2024] [Indexed: 09/05/2024] Open
Abstract
RGS (Regulator of G protein signaling) proteins have long captured the fascination of researchers due to their intricate involvement across a wide array of signaling pathways within cellular systems. Their diverse and nuanced functions have positioned them as continual subjects of scientific inquiry, especially given the implications of certain family members in various cancer types. Of particular note in this context is RGS20, whose clinical relevance and molecular significance in hepatocellular carcinoma we have recently investigated. These investigations have prompted questions into the prevalence of pathogenic mutations within the RGS20 gene and the intricate network of interacting proteins that could contribute to the complex landscape of cancer biology. In our study, we aim to unravel the mutations within the RGS20 gene and the multifaceted interplay between RGS20 and other proteins within the context of cancer. Expanding on this line of inquiry, our research is dedicated to uncovering the intricate mechanisms of RGS20 in various cancers. In particular, we have redirected our attention to examining the role of RGS20 within hematological malignancies, with a specific focus on multiple myeloma and follicular lymphoma. These hematological cancers hold significant promise for further investigation, as understanding the involvement of RGS20 in their pathogenesis could unveil novel therapeutic strategies and treatment avenues. Furthermore, our exploration has extended to encompass the latest discoveries concerning the potential involvement of RGS20 in diseases affecting the central nervous system, thereby broadening the scope of its implications beyond oncology to encompass neurobiology and related fields.
Collapse
Affiliation(s)
- Yulu Wang
- Jiangxi Provincial Key Laboratory of Hematological Diseases, Department of Hematology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| | - Jiading Qin
- Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Amit Sharma
- Department of Integrated Oncology, Center for Integrated Oncology (CIO), University Hospital of Bonn, Bonn, Germany
- Department of Neurosurgery, University Hospital of Bonn, Bonn, Germany
| | - Tikam Chand Dakal
- Department of Biotechnology, Mohanlal Sukhadia University, Udaipur, Rajasthan, India
| | - Jieyu Wang
- Jiangxi Provincial Key Laboratory of Hematological Diseases, Department of Hematology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| | - Tiantian Pan
- Jiangxi Provincial Key Laboratory of Hematological Diseases, Department of Hematology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| | - Ravi Bhushan
- Department of Zoology, M.S. College, Motihari, Bihar, India
| | - Peng Chen
- Department of Integrated Oncology, Center for Integrated Oncology (CIO), University Hospital of Bonn, Bonn, Germany
| | - Maria F Setiawan
- Department of Integrated Oncology, Center for Integrated Oncology (CIO), University Hospital of Bonn, Bonn, Germany
| | - Ingo G H Schmidt-Wolf
- Department of Integrated Oncology, Center for Integrated Oncology (CIO), University Hospital of Bonn, Bonn, Germany
| | - Fei Li
- Jiangxi Provincial Key Laboratory of Hematological Diseases, Department of Hematology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China.
| |
Collapse
|
3
|
Klokkaris A, Migdalska-Richards A. An Overview of Epigenetic Changes in the Parkinson's Disease Brain. Int J Mol Sci 2024; 25:6168. [PMID: 38892355 PMCID: PMC11172855 DOI: 10.3390/ijms25116168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Revised: 05/27/2024] [Accepted: 05/29/2024] [Indexed: 06/21/2024] Open
Abstract
Parkinson's disease is a progressive neurodegenerative disorder, predominantly of the motor system. Although some genetic components and cellular mechanisms of Parkinson's have been identified, much is still unknown. In recent years, emerging evidence has indicated that non-DNA-sequence variation (in particular epigenetic mechanisms) is likely to play a crucial role in the development and progression of the disease. Here, we present an up-to-date overview of epigenetic processes including DNA methylation, DNA hydroxymethylation, histone modifications and non-coding RNAs implicated in the brain of those with Parkinson's disease. We will also discuss the limitations of current epigenetic research in Parkinson's disease, the advantages of simultaneously studying genetics and epigenetics, and putative novel epigenetic therapies.
Collapse
Affiliation(s)
| | - Anna Migdalska-Richards
- Department of Clinical and Biomedical Sciences, Faculty of Health and Life Sciences, University of Exeter Medical School, University of Exeter, Exeter EX2 5DW, UK;
| |
Collapse
|
4
|
Reho P, Saez-Atienzar S, Ruffo P, Solaiman S, Shah Z, Chia R, Kaivola K, Traynor BJ, Tilley BS, Gentleman SM, Hodges AK, Aarsland D, Monuki ES, Newell KL, Woltjer R, Albert MS, Dawson TM, Rosenthal LS, Troncoso JC, Pletnikova O, Serrano GE, Beach TG, Easwaran HP, Scholz SW. Differential methylation analysis in neuropathologically confirmed dementia with Lewy bodies. Commun Biol 2024; 7:35. [PMID: 38182665 PMCID: PMC10770032 DOI: 10.1038/s42003-023-05725-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Accepted: 12/19/2023] [Indexed: 01/07/2024] Open
Abstract
Dementia with Lewy bodies (DLB) is a common form of dementia in the elderly population. We performed genome-wide DNA methylation mapping of cerebellar tissue from pathologically confirmed DLB cases and controls to study the epigenetic profile of this understudied disease. After quality control filtering, 728,197 CpG-sites in 278 cases and 172 controls were available for the analysis. We undertook an epigenome-wide association study, which found a differential methylation signature in DLB cases. Our analysis identified seven differentially methylated probes and three regions associated with DLB. The most significant CpGs were located in ARSB (cg16086807), LINC00173 (cg18800161), and MGRN1 (cg16250093). Functional enrichment evaluations found widespread epigenetic dysregulation in genes associated with neuron-to-neuron synapse, postsynaptic specialization, postsynaptic density, and CTCF-mediated synaptic plasticity. In conclusion, our study highlights the potential importance of epigenetic alterations in the pathogenesis of DLB and provides insights into the modified genes, regions and pathways that may guide therapeutic developments.
Collapse
Affiliation(s)
- Paolo Reho
- Neurodegenerative Diseases Research Unit, National Institute of Neurological Disorders and Stroke, Bethesda, MD, USA
- Laboratory of Precision Environmental Health, Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, NY, USA
| | - Sara Saez-Atienzar
- Neuromuscular Diseases Research Section, National Institute on Aging, Bethesda, MD, USA
| | - Paola Ruffo
- Neuromuscular Diseases Research Section, National Institute on Aging, Bethesda, MD, USA
- Medical Genetics Laboratory, Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Rende, Italy
| | - Sultana Solaiman
- Neurodegenerative Diseases Research Unit, National Institute of Neurological Disorders and Stroke, Bethesda, MD, USA
| | - Zalak Shah
- Neurodegenerative Diseases Research Unit, National Institute of Neurological Disorders and Stroke, Bethesda, MD, USA
| | - Ruth Chia
- Neuromuscular Diseases Research Section, National Institute on Aging, Bethesda, MD, USA
| | - Karri Kaivola
- Neurodegenerative Diseases Research Unit, National Institute of Neurological Disorders and Stroke, Bethesda, MD, USA
| | - Bryan J Traynor
- Neuromuscular Diseases Research Section, National Institute on Aging, Bethesda, MD, USA
| | - Bension S Tilley
- Neuropathology Unit, Department of Brain Sciences, Imperial College London, London, UK
| | - Steve M Gentleman
- Neuropathology Unit, Department of Brain Sciences, Imperial College London, London, UK
| | - Angela K Hodges
- Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Dag Aarsland
- Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
- Centre for Age-Related Medicine, Stavanger University Hospital, Stavanger, Norway
| | - Edwin S Monuki
- Department of Pathology & Laboratory Medicine, School of Medicine, University of California Irvine, Irvine, CA, USA
| | - Kathy L Newell
- Department of Pathology and Laboratory Medicine, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Randy Woltjer
- Department of Neurology, Oregon Health & Sciences University, Portland, OR, USA
| | - Marilyn S Albert
- Department of Neurology, Johns Hopkins University Medical Center, Baltimore, MD, USA
| | - Ted M Dawson
- Department of Neurology, Johns Hopkins University Medical Center, Baltimore, MD, USA
- Neuroregeneration and Stem Cell Programs, Institute of Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Liana S Rosenthal
- Department of Neurology, Johns Hopkins University Medical Center, Baltimore, MD, USA
| | - Juan C Troncoso
- Department of Pathology (Neuropathology), Johns Hopkins University Medical Center, Baltimore, MD, USA
| | - Olga Pletnikova
- Department of Pathology and Anatomical Sciences, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY, USA
| | - Geidy E Serrano
- Civin Laboratory for Neuropathology, Banner Sun Health Research Institute, Sun City, AZ, USA
| | - Thomas G Beach
- Civin Laboratory for Neuropathology, Banner Sun Health Research Institute, Sun City, AZ, USA
| | - Hariharan P Easwaran
- The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, MD, USA
| | - Sonja W Scholz
- Neurodegenerative Diseases Research Unit, National Institute of Neurological Disorders and Stroke, Bethesda, MD, USA.
- Department of Neurology, Johns Hopkins University Medical Center, Baltimore, MD, USA.
| |
Collapse
|
5
|
Berthouzoz E, Lazarevic V, Zekeridou A, Castro M, Debove I, Aybek S, Schrenzel J, Burkhard PR, Fleury V. Oral and intestinal dysbiosis in Parkinson's disease. Rev Neurol (Paris) 2023; 179:937-946. [PMID: 36934020 DOI: 10.1016/j.neurol.2022.12.010] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 10/29/2022] [Accepted: 12/10/2022] [Indexed: 03/18/2023]
Abstract
The suspicion of an origin of Parkinson's disease (PD) at the periphery of the body and the involvement of environmental risk factors in the pathogenesis of PD have directed the attention of the scientific community towards the microbiota. The microbiota represents all the microorganisms residing both in and on a host. It plays an essential role in the physiological functioning of the host. In this article, we review the dysbiosis repeatedly demonstrated in PD and how it influences PD symptoms. Dysbiosis is associated with both motor and non-motor PD symptoms. In animal models, dysbiosis only promotes symptoms in individuals genetically susceptible to Parkinson's disease, suggesting that dysbiosis is a risk factor but not a cause of Parkinson's disease. We also review how dysbiosis contributes to the pathophysiology of PD. Dysbiosis induces numerous and complex metabolic changes, resulting in increased intestinal permeability, local and systemic inflammation, production of bacterial amyloid proteins that promote α-synuclein aggregation, as well as a decrease in short-chain fatty acid-producing bacteria that have anti-inflammatory and neuroprotective potential. In addition, we review how dysbiosis decreases the efficacy of dopaminergic treatments. We then discuss the interest of dysbiosis analysis as a biomarker of Parkinson's disease. Finally, we give an overview of how interventions modulating the gut microbiota such as dietary interventions, pro-biotics, intestinal decontamination and fecal microbiota transplantation could influence the course of PD.
Collapse
Affiliation(s)
- E Berthouzoz
- Faculty of Medicine, University of Geneva, Centre Médical Universitaire, 1211 Geneva 4, Switzerland
| | - V Lazarevic
- Faculty of Medicine, University of Geneva, Centre Médical Universitaire, 1211 Geneva 4, Switzerland; Genomic Research Laboratory, Department of Infectious Diseases, University Hospital of Geneva, 1211 Geneva 14, Switzerland
| | - A Zekeridou
- Division of Regenerative Dentistry and Periodontology, University Clinic of Dental Medicine, University of Geneva, 1211 Geneva 4, Switzerland
| | - M Castro
- Movement disorders Unit, Department of Neurology, University Hospital of Lausanne, 1011 Lausanne, Switzerland
| | - I Debove
- Movement disorders Unit, Department of Neurology, Inselspital, 3010 Bern, Switzerland
| | - S Aybek
- Psychosomatic Medicine Unit, Department of Neurology, Inselspital, 3010 Bern, Switzerland
| | - J Schrenzel
- Faculty of Medicine, University of Geneva, Centre Médical Universitaire, 1211 Geneva 4, Switzerland; Genomic Research Laboratory, Department of Infectious Diseases, University Hospital of Geneva, 1211 Geneva 14, Switzerland
| | - P R Burkhard
- Faculty of Medicine, University of Geneva, Centre Médical Universitaire, 1211 Geneva 4, Switzerland; Movement disorders Unit, Division of Neurology, Department of Clinical Neurosciences, University Hospital of Geneva, 1211 Geneva 14, Switzerland
| | - V Fleury
- Faculty of Medicine, University of Geneva, Centre Médical Universitaire, 1211 Geneva 4, Switzerland; Movement disorders Unit, Division of Neurology, Department of Clinical Neurosciences, University Hospital of Geneva, 1211 Geneva 14, Switzerland.
| |
Collapse
|
6
|
Kung PJ, Elsayed I, Reyes-Pérez P, Bandres-Ciga S. Immunogenetic Determinants of Parkinson’s Disease Etiology. JOURNAL OF PARKINSON'S DISEASE 2022; 12:S13-S27. [PMID: 35367971 PMCID: PMC9535568 DOI: 10.3233/jpd-223176] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Parkinson’s disease (PD) is increasingly recognised as a systemic disorder in which inflammation might play a causative role rather than being a consequence or an epiphenomenon of the neurodegenerative process. Although growing genetic evidence links the central and peripheral immune system with both monogenic and sporadic PD, our understanding on how the immune system contributes to PD pathogenesis remains a daunting challenge. In this review, we discuss recent literature aimed at exploring the role of known genes and susceptibility loci to PD pathogenesis through immune system related mechanisms. Furthermore, we outline shared genetic etiologies and interrelations between PD and autoimmune diseases and underlining challenges and limitations faced in the translation of relevant allelic and regulatory risk loci to immune-pathological mechanisms. Lastly, with the field of immunogenetics expanding rapidly, we place these insights into a future context highlighting the prospect of immune modulation as a promising disease-modifying strategy.
Collapse
Affiliation(s)
- Pin-Jui Kung
- Genome and Systems Biology Degree Program, National Taiwan University and Academia Sinica, Taipei, Taiwan
| | - Inas Elsayed
- Faculty of Pharmacy, University of Gezira, Wad Medani, Sudan
- International Parkinson Disease Genomics Consortium (IPDGC)-Africa, University of Gezira, Wad Medani, Sudan
| | - Paula Reyes-Pérez
- Laboratorio Internacional de Investigacion sobre el Genoma Humano, Universidad Autonoma de México, Queretaro, Mexico
| | - Sara Bandres-Ciga
- Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
7
|
Prediction of genetic alteration of phospholipase C isozymes in brain disorders: Studies with deep learning. Adv Biol Regul 2021; 82:100833. [PMID: 34773889 DOI: 10.1016/j.jbior.2021.100833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 10/15/2021] [Accepted: 10/19/2021] [Indexed: 11/22/2022]
Abstract
Genetic mutations leading to the development of various diseases, such as cancer, diabetes, and neurodegenerative disorders, can be attributed to multiple mechanisms and exposure to diverse environments. These disorders further increase gene mutation rates and affect the activity of translated proteins, both phenomena associated with cellular responses. Therefore, maintaining the integrity of genetic and epigenetic information is critical for disease suppression and prevention. With the advent of genome sequencing technologies, large-scale genomic data-based machine learning tools, including deep learning, have been used to predict and identify somatic inactivation or negative dominant expression of target genes in various diseases. Although deep learning studies have recently been highlighted for their ability to distinguish between the genetic information of diseases, conventional wisdom is also necessary to explain the correlation between genotype and phenotype. Herein, we summarize the current understanding of phosphoinositide-specific phospholipase C isozymes (PLCs) and an overview of their associations with genetic variation, as well as their emerging roles in several diseases. We also predicted and discussed new findings of cryptic PLC splice variants by deep learning and the clinical implications of the PLC genetic variations predicted using these tools.
Collapse
|
8
|
PPAR-Responsive Elements Enriched with Alu Repeats May Contribute to Distinctive PPARγ-DNMT1 Interactions in the Genome. Cancers (Basel) 2021; 13:cancers13163993. [PMID: 34439147 PMCID: PMC8391462 DOI: 10.3390/cancers13163993] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 08/02/2021] [Accepted: 08/05/2021] [Indexed: 01/11/2023] Open
Abstract
Simple Summary This study aimed to explore the potential role of PPARγ–DNMT1 interaction through PPAR-responsive elements (PPREs), which we have found to be enriched with Alu repeats. Apart from protein–protein interactions and co-expression in multiple cancer types, we exclusively described a prognostic role for PPARγ in uveal melanoma (UM). Abstract Background: PPARγ (peroxisome proliferator-activated receptor gamma) is involved in the pathology of numerous diseases, including UM and other types of cancer. Emerging evidence suggests that an interaction between PPARγ and DNMTs (DNA methyltransferase) plays a role in cancer that is yet to be defined. Methods: The configuration of the repeating elements was performed with CAP3 and MAFFT, and the structural modelling was conducted with HDOCK. An evolutionary action scores algorithm was used to identify oncogenic variants. A systematic bioinformatic appraisal of PPARγ and DNMT1 was performed across 29 tumor types and UM available in The Cancer Genome Atlas (TCGA). Results: PPAR-responsive elements (PPREs) enriched with Alu repeats are associated with different genomic regions, particularly the promotor region of DNMT1. PPARγ–DNMT1 co-expression is significantly associated with several cancers. C-terminals of PPARγ and DNMT1 appear to be the potential protein–protein interaction sites where disease-specific mutations may directly impair the respective protein functions. Furthermore, PPARγ expression could be identified as an additional prognostic marker for UM. Conclusions: We hypothesize that the function of PPARγ requires an additional contribution of Alu repeats which may directly influence the DNMT1 network. Regarding UM, PPARγ appears to be an additional discriminatory prognostic marker, in particular in disomy 3 tumors.
Collapse
|
9
|
Sharma A, Müller J, Schuetze K, Rolfes V, Bissinger R, Rosero N, Ahmad A, Franklin BS, Zur B, Fröhlich H, Lang F, Oldenburg J, Pötzsch B, Wüllner U. Comprehensive Profiling of Blood Coagulation and Fibrinolysis Marker Reveals Elevated Plasmin-Antiplasmin Complexes in Parkinson's Disease. BIOLOGY 2021; 10:716. [PMID: 34439949 PMCID: PMC8389253 DOI: 10.3390/biology10080716] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 07/22/2021] [Accepted: 07/22/2021] [Indexed: 01/22/2023]
Abstract
Parkinson's disease (PD) is the second most common age-related neurodegenerative disease. Accumulating evidence demonstrates that alpha-synuclein (α-Syn), an apparently predominant neuronal protein, is a major contributor to PD pathology. As α-Syn is also highly abundant in blood, particularly in red blood cells (RBCs) and platelets, this in turn raises the question on the function of presumably dysfunctional α-Syn in "peripheral" cells and its putative effect on the other enclosed constituents. Herein, we detected the internal variance in erythrocytes of PD patients by Raman spectroscopy, but no measurable amount of erythrocytic behavioural change (eryptosis) or any haemoglobin variation was noticed. An elevated level of plasmin-antiplasmin complexes (PAP) was observed in the plasma of PD patients, indicating activation of the fibrinolytic system, but platelet activation after thrombin stimulation was not altered. Sex-specific patterns were noticed for blood coagulation factor XIII and factor XII activity in PD patients. Additionally, the alterations in homocysteine levels which have often been observed in PD patients were found to be independent from L-DOPA usage and PAP levels. Furthermore, a selective gene expression analysis identified subsets of genes related to different blood-associated compartments (RBCs, platelets, coagulation-fibrinolysis) also involved in PD-related pathways.
Collapse
Affiliation(s)
- Amit Sharma
- Department of Neurology, University Hospital Bonn, 53127 Bonn, Germany;
| | - Jens Müller
- Institute of Experimental Hematology and Transfusion Medicine, University Hospital Bonn, 53127 Bonn, Germany; (J.M.); (J.O.); (B.P.)
| | | | - Verena Rolfes
- Institute of Innate Immunity, University Hospital Bonn, 53127 Bonn, Germany; (V.R.); (N.R.); (B.S.F.)
| | - Rosi Bissinger
- Department of Internal Medicine IV, Eberhard Karl University, 72076 Tuebingen, Germany;
| | - Nathalia Rosero
- Institute of Innate Immunity, University Hospital Bonn, 53127 Bonn, Germany; (V.R.); (N.R.); (B.S.F.)
| | - Ashar Ahmad
- Bonn-Aachen International Center for IT (B-IT), University Hospital Bonn, 53115 Bonn, Germany; (A.A.); (H.F.)
| | - Bernardo S Franklin
- Institute of Innate Immunity, University Hospital Bonn, 53127 Bonn, Germany; (V.R.); (N.R.); (B.S.F.)
| | - Berndt Zur
- Central Laboratory of the Rheinland Klinikum Neuss, 41464 Neuss, Germany;
| | - Holger Fröhlich
- Bonn-Aachen International Center for IT (B-IT), University Hospital Bonn, 53115 Bonn, Germany; (A.A.); (H.F.)
| | - Florian Lang
- Department of Physiology, Eberhard Karls University, 72076 Tuebingen, Germany;
| | - Johannes Oldenburg
- Institute of Experimental Hematology and Transfusion Medicine, University Hospital Bonn, 53127 Bonn, Germany; (J.M.); (J.O.); (B.P.)
| | - Bernd Pötzsch
- Institute of Experimental Hematology and Transfusion Medicine, University Hospital Bonn, 53127 Bonn, Germany; (J.M.); (J.O.); (B.P.)
| | - Ullrich Wüllner
- Department of Neurology, University Hospital Bonn, 53127 Bonn, Germany;
- German Center for Neurodegenerative Diseases (DZNE), 53127 Bonn, Germany
| |
Collapse
|
10
|
Sharma A, Liu H, Herwig-Carl MC, Chand Dakal T, Schmidt-Wolf IGH. Epigenetic Regulatory Enzymes: mutation Prevalence and Coexistence in Cancers. Cancer Invest 2021; 39:257-273. [PMID: 33411587 DOI: 10.1080/07357907.2021.1872593] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Epigenetic regulation is an important layer of transcriptional control with the particularity to affect the broad spectrum of genome. Over the years, largely due to the substantial number of recurrent mutations, there have been hundreds of novel driver genes characterized in various cancers. Additionally, the relative contribution of two dysregulated epigenomic entities (DNA methylation and histone modifications) that gradually drive the cancer phenotype remains in the research focus. However, a complex scenario arises when the disease phenotype does not harbor any relevant mutation or an abnormal transcription level. Although the cancer landscape involves the contribution of multiple genetic and non-genetic factors, herein, we discuss specifically the mutation spectrum of epigenetically-related enzymes in cancer. In addition, we address the coexistence of these two epigenetic entities in malignant human diseases, especially cancer. We suggest that the study of epigenetically-related somatic mutations in the early cellular differentiation stage of embryonic development might help to understand their later-staged footprints in the cancer genome. Furthermore, understanding the co-occurrence and/or inverse association of different disease types and redefining the general definition of "healthy" controls could provide insights into the genome reorganization.
Collapse
Affiliation(s)
- Amit Sharma
- Department of Integrated Oncology, CIO Bonn, University Hospital Bonn, Bonn, Germany.,Department of Neurology, University Hospital Bonn, Bonn, Germany
| | - Hongde Liu
- State Key Laboratory of Bioelectronics, School of Biological Science & Medical Engineering, Southeast University, Nanjing, China
| | | | - Tikam Chand Dakal
- Department of Biotechnology, Mohanlal Sukhadia University, Rajasthan, India
| | - Ingo G H Schmidt-Wolf
- Department of Integrated Oncology, CIO Bonn, University Hospital Bonn, Bonn, Germany
| |
Collapse
|
11
|
Saul D, Kosinsky RL. Epigenetics of Aging and Aging-Associated Diseases. Int J Mol Sci 2021; 22:ijms22010401. [PMID: 33401659 PMCID: PMC7794926 DOI: 10.3390/ijms22010401] [Citation(s) in RCA: 98] [Impact Index Per Article: 32.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 12/19/2020] [Accepted: 12/26/2020] [Indexed: 12/17/2022] Open
Abstract
Aging represents the multifactorial decline in physiological function of every living organism. Over the past decades, several hallmarks of aging have been defined, including epigenetic deregulation. Indeed, multiple epigenetic events were found altered across different species during aging. Epigenetic changes directly contributing to aging and aging-related diseases include the accumulation of histone variants, changes in chromatin accessibility, loss of histones and heterochromatin, aberrant histone modifications, and deregulated expression/activity of miRNAs. As a consequence, cellular processes are affected, which results in the development or progression of several human pathologies, including cancer, diabetes, osteoporosis, and neurodegenerative disorders. In this review, we focus on epigenetic mechanisms underlying aging-related processes in various species and describe how these deregulations contribute to human diseases.
Collapse
Affiliation(s)
- Dominik Saul
- Kogod Center on Aging and Division of Endocrinology, Mayo Clinic, 200 First St SW, Rochester, MN 55905, USA;
- Department of Trauma, Orthopedics and Reconstructive Surgery, Georg-August-University of Goettingen, 37075 Goettingen, Germany
| | - Robyn Laura Kosinsky
- Division of Gastroenterology and Hepatology, Mayo Clinic, 200 First St SW, Rochester, MN 55905, USA
- Correspondence: ; Tel.: +1-507-293-2386
| |
Collapse
|
12
|
Mathur R, Sharma L, Dhabhai B, Menon AM, Sharma A, Sharma NK, Dakal TC. Predicting the functional consequences of genetic variants in co-stimulatory ligand B7-1 using in-silico approaches. Hum Immunol 2020; 82:103-120. [PMID: 33358455 DOI: 10.1016/j.humimm.2020.12.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 11/27/2020] [Accepted: 12/02/2020] [Indexed: 11/16/2022]
Abstract
The purpose of this research is to identify and characterize deleterious genetic variants in the co-stimulatory ligand B7-1, also known as the human cluster of differentiation CD80 marker. The B7-1 ligand and the major histocompatibility complex class II (MHC II) molecules are the main determinants that provide B-cells the required competency to act as antigen presenting cells. For this, participation of both MHC class II molecules and CD80 is required. The interaction of the CD80 ligand with CD28 on the surface 7 of TH cells plays a key role in the activation of TH cells and progression of B cells through the S phase, hence, leading to their proliferation in mitosis. A set of 2313 genetic variants in the B7-1 ligand have been mapped and retrieved from dbSNP database. Subsequently, 150 non-synonymous single nucleotide polymorphisms (nsSNPs) were mapped and subjected to the sequence and structural homology based predictions, which were further analyzed for protein stability and the disease phenotypes. Finally, we identified 7 potentially damaging nsSNPs in the B7-1 ligand that may affect its interaction with the cognitive receptor CD28, hence, may also interfere with TH cell activation and B cell proliferation. We propose that subsequent experimental analyses (stability, expression and interactions) on these proteins can provide a deep understanding about the effect of these variants on the structure and function of CD80.
Collapse
Affiliation(s)
- Riya Mathur
- Department of Biosciences, Manipal University Jaipur, Jaipur 303007, Rajasthan, India
| | - Loveena Sharma
- Department of Biosciences, Manipal University Jaipur, Jaipur 303007, Rajasthan, India
| | - Bhanupriya Dhabhai
- Genome and Computational Biology Lab, Department of Biotechnology, Mohanlal Sukhadia University, Udaipur 313001, Rajasthan, India
| | - Athira M Menon
- Genome and Computational Biology Lab, Department of Biotechnology, Mohanlal Sukhadia University, Udaipur 313001, Rajasthan, India
| | - Amit Sharma
- Department of Integrated Oncology, University Hospital Bonn, Bonn, Germany; Department of Neurology, University Hospital Bonn, Bonn, Germany
| | - Narendra Kumar Sharma
- Department of Bioscience and Biotechnology, Banasthali Vidyapith, Tonk 304022, Raj., India
| | - Tikam Chand Dakal
- Department of Biosciences, Manipal University Jaipur, Jaipur 303007, Rajasthan, India; Genome and Computational Biology Lab, Department of Biotechnology, Mohanlal Sukhadia University, Udaipur 313001, Rajasthan, India.
| |
Collapse
|
13
|
Li Y, Hao S, Zhang H, Mao W, Xue J, Zhang Y, Cai Y, Chan P. Hypomethylation of SNCA in Idiopathic REM Sleep Behavior Disorder Associated With Phenoconversion. Mov Disord 2020; 36:955-962. [PMID: 33340152 DOI: 10.1002/mds.28421] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 10/21/2020] [Accepted: 11/20/2020] [Indexed: 11/12/2022] Open
Abstract
BACKGROUND Hypomethylation of intron 1 of the α-synuclein (SNCA) gene has been extensively reported in the blood of patients with α-synucleinopathies. Idiopathic rapid eye movement sleep behavior disorder represents a prodromal stage of α-synucleinopathies. Methylation of α-synuclein intron 1 in idiopathic rapid eye movement sleep behavior disorder patients is largely unexplored. The objective of the current study was to assess blood α-synuclein intron 1 methylation in patients and to explore it as a potential biomarker to predict phenoconversion and monitor disease progression. METHODS Seventy-eight polysomnography-confirmed patients and 74 healthy controls were enrolled. After an average of 3.75 years of follow up, 16 patients converted to neurodegenerative diseases (converters), whereas 59 did not (nonconverters). Blood DNA was obtained at baseline from all participants, as well as at the follow-up visit for 27 patients. DNA methylation levels were determined using bisulfite pyrosequencing methods and were compared between patients and healthy controls, converters and nonconverters, and baseline and follow-up visits. RESULTS Hypomethylation at cytosine-phosphate-guanine 10, 11, 12, 13, and 17 was found in patients compared with healthy controls. Hypomethylation at cytosine-phosphate-guanine 17 was associated with an increased risk of clinical phenoconversion, which was further enhanced with the presence of subtle motor abnormalities. In addition, it appeared that later reduction in methylation levels at cytosine-phosphate-guanine 14, 15, and 16 was associated with disease progression. CONCLUSIONS Peripheral blood α-synuclein intron 1 was hypomethylated in idiopathic rapid eye movement sleep behavior disorder patients. α-Synuclein methylation levels may be useful biomarkers to screen patients, predict phenoconversion, and monitor disease progression. © 2020 International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Yuan Li
- Department of Neurology, Xuanwu Hospital of Capital Medical University, Beijing, China.,Department of Neurobiology, Xuanwu Hospital of Capital Medical University, Beijing, China
| | - Shuwen Hao
- Department of Neurobiology, Xuanwu Hospital of Capital Medical University, Beijing, China.,Key Laboratory for Neurodegenerative Diseases of the Ministry of Education, Beijing Key Laboratory on Parkinson's Disease, Parkinson's Disease Center for Beijing Institute on Brain Disorders, Clinical and Research Center for Parkinson's Disease of Capital Medical University, Beijing, China
| | - Hui Zhang
- Department of Neurology, Xuanwu Hospital of Capital Medical University, Beijing, China.,Department of Neurobiology, Xuanwu Hospital of Capital Medical University, Beijing, China
| | - Wei Mao
- Department of Neurology, Xuanwu Hospital of Capital Medical University, Beijing, China
| | - Jinhua Xue
- Department of Neurobiology, Xuanwu Hospital of Capital Medical University, Beijing, China.,Key Laboratory for Neurodegenerative Diseases of the Ministry of Education, Beijing Key Laboratory on Parkinson's Disease, Parkinson's Disease Center for Beijing Institute on Brain Disorders, Clinical and Research Center for Parkinson's Disease of Capital Medical University, Beijing, China
| | - Yanli Zhang
- Department of Neurobiology, Xuanwu Hospital of Capital Medical University, Beijing, China.,Key Laboratory for Neurodegenerative Diseases of the Ministry of Education, Beijing Key Laboratory on Parkinson's Disease, Parkinson's Disease Center for Beijing Institute on Brain Disorders, Clinical and Research Center for Parkinson's Disease of Capital Medical University, Beijing, China
| | - Yanning Cai
- Department of Neurobiology, Xuanwu Hospital of Capital Medical University, Beijing, China.,Key Laboratory for Neurodegenerative Diseases of the Ministry of Education, Beijing Key Laboratory on Parkinson's Disease, Parkinson's Disease Center for Beijing Institute on Brain Disorders, Clinical and Research Center for Parkinson's Disease of Capital Medical University, Beijing, China.,Department of Biobank, Xuanwu Hospital of Capital Medical University, Beijing, China
| | - Piu Chan
- Department of Neurology, Xuanwu Hospital of Capital Medical University, Beijing, China.,Department of Neurobiology, Xuanwu Hospital of Capital Medical University, Beijing, China.,Key Laboratory for Neurodegenerative Diseases of the Ministry of Education, Beijing Key Laboratory on Parkinson's Disease, Parkinson's Disease Center for Beijing Institute on Brain Disorders, Clinical and Research Center for Parkinson's Disease of Capital Medical University, Beijing, China.,National Clinical Research Center for Geriatric Disorders, Beijing, China
| |
Collapse
|
14
|
Zhao A, Li Y, Niu M, Li G, Luo N, Zhou L, Kang W, Liu J. SNCA Hypomethylation in Rapid Eye Movement Sleep Behavior Disorder Is a Potential Biomarker for Parkinson’s Disease. JOURNAL OF PARKINSONS DISEASE 2020; 10:1023-1031. [PMID: 32444558 DOI: 10.3233/jpd-201912] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Aonan Zhao
- Department of Neurology and Institute of Neurology, Ruijin Hospital affiliated with the Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yuanyuan Li
- Department of Neurology and Institute of Neurology, Ruijin Hospital affiliated with the Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Mengyue Niu
- Department of Neurology and Institute of Neurology, Ruijin Hospital affiliated with the Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Guanglu Li
- Department of Neurology and Institute of Neurology, Ruijin Hospital affiliated with the Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ningdi Luo
- Department of Neurology and Institute of Neurology, Ruijin Hospital affiliated with the Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Liche Zhou
- Department of Neurology and Institute of Neurology, Ruijin Hospital affiliated with the Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Wenyan Kang
- Department of Neurology, Ruijin Hospital North affiliated to Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Jun Liu
- Department of Neurology and Institute of Neurology, Ruijin Hospital affiliated with the Shanghai Jiao Tong University School of Medicine, Shanghai, China
- CAS Center for Excellence in Brain Science and Intelligence Technology, Ruijin Hospital affiliated to Shanghai Jiaotong University School of Medicine, Shanghai, China
| |
Collapse
|
15
|
Epigenetics in Lewy Body Diseases: Impact on Gene Expression, Utility as a Biomarker, and Possibilities for Therapy. Int J Mol Sci 2020; 21:ijms21134718. [PMID: 32630630 PMCID: PMC7369933 DOI: 10.3390/ijms21134718] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Revised: 06/29/2020] [Accepted: 06/30/2020] [Indexed: 02/07/2023] Open
Abstract
Lewy body disorders (LBD) include Parkinson's disease (PD) and dementia with Lewy bodies (DLB). They are synucleinopathies with a heterogeneous clinical manifestation. As a cause of neuropathological overlap with other neurodegenerative diseases, the establishment of a correct clinical diagnosis is still challenging, and clinical management may be difficult. The combination of genetic variation and epigenetic changes comprising gene expression-modulating DNA methylation and histone alterations modifies the phenotype, disease course, and susceptibility to disease. In this review, we summarize the results achieved in the deciphering of the LBD epigenome. To provide an appropriate context, first LBD genetics is briefly outlined. Afterwards, a detailed review of epigenetic modifications identified for LBD in human cells, postmortem, and peripheral tissues is provided. We also focus on the difficulty of identifying epigenome-related biomarker candidates and discuss the results obtained so far. Additionally, epigenetic changes as therapeutic targets, as well as different epigenome-based treatments, are revised. The number of studies focusing on PD is relatively limited and practically inexistent for DLB. There is a lack of replication studies, and some results are even contradictory, probably due to differences in sample collection and analytical techniques. In summary, we show the current achievements and directions for future research.
Collapse
|
16
|
Ohnmacht J, May P, Sinkkonen L, Krüger R. Missing heritability in Parkinson's disease: the emerging role of non-coding genetic variation. J Neural Transm (Vienna) 2020; 127:729-748. [PMID: 32248367 PMCID: PMC7242266 DOI: 10.1007/s00702-020-02184-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Accepted: 03/24/2020] [Indexed: 02/01/2023]
Abstract
Parkinson's disease (PD) is a neurodegenerative disorder caused by a complex interplay of genetic and environmental factors. For the stratification of PD patients and the development of advanced clinical trials, including causative treatments, a better understanding of the underlying genetic architecture of PD is required. Despite substantial efforts, genome-wide association studies have not been able to explain most of the observed heritability. The majority of PD-associated genetic variants are located in non-coding regions of the genome. A systematic assessment of their functional role is hampered by our incomplete understanding of genotype-phenotype correlations, for example through differential regulation of gene expression. Here, the recent progress and remaining challenges for the elucidation of the role of non-coding genetic variants is reviewed with a focus on PD as a complex disease with multifactorial origins. The function of gene regulatory elements and the impact of non-coding variants on them, and the means to map these elements on a genome-wide level, will be delineated. Moreover, examples of how the integration of functional genomic annotations can serve to identify disease-associated pathways and to prioritize disease- and cell type-specific regulatory variants will be given. Finally, strategies for functional validation and considerations for suitable model systems are outlined. Together this emphasizes the contribution of rare and common genetic variants to the complex pathogenesis of PD and points to remaining challenges for the dissection of genetic complexity that may allow for better stratification, improved diagnostics and more targeted treatments for PD in the future.
Collapse
Affiliation(s)
- Jochen Ohnmacht
- LCSB, University of Luxembourg, Belvaux, Luxembourg
- Department of Life Sciences and Medicine (DLSM), University of Luxembourg, Belvaux, Luxembourg
| | - Patrick May
- LCSB, University of Luxembourg, Belvaux, Luxembourg
| | - Lasse Sinkkonen
- Department of Life Sciences and Medicine (DLSM), University of Luxembourg, Belvaux, Luxembourg
| | - Rejko Krüger
- LCSB, University of Luxembourg, Belvaux, Luxembourg.
- Luxembourg Institute of Health (LIH), Transversal Translational Medicine, Strassen, Luxembourg.
- Parkinson Research Clinic, Centre Hospitalier de Luxembourg (CHL), Luxembourg, Luxembourg.
| |
Collapse
|
17
|
Sharma A, Reutter H, Ellinger J. DNA Methylation and Bladder Cancer: Where Genotype does not Predict Phenotype. Curr Genomics 2020; 21:34-36. [PMID: 32655296 PMCID: PMC7324896 DOI: 10.2174/1389202921666200102163422] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Revised: 12/12/2019] [Accepted: 12/12/2019] [Indexed: 12/12/2022] Open
Abstract
Nearly three decades ago, the association between Bladder cancer (BC) and DNA methylation has initially been reported. Indeed, in the recent years, the mechanism connecting these two has gained deeper insights. Still, the mediocre performance of DNA methylation markers in the clinics raises the major concern. Strikingly, whether it is the inter-individual methylation variations or the paucity of knowledge about methylation fingerprints lying within histologically distinct subtypes of BC requires critical discussion. In the future, besides identifying the initial causative factors, it will be important to illustrate the cascade of events that determines the fraction of the genome to convey altered methylation patterns specific towards each cancer type.
Collapse
Affiliation(s)
- Amit Sharma
- 1Department of Ophthalmology, University Clinic Bonn, Bonn, Germany; 2Department of Neurology, University Clinic Bonn, Bonn, Germany; 3Institute of Human Genetics, University Hospital of Bonn, Bonn, Germany; 4Department of Neonatology and Pediatric Intensive Care, Children's Hospital, University of Bonn, Bonn, Germany; 5Department of Urology, University Hospital Bonn, Bonn, Germany
| | - Heiko Reutter
- 1Department of Ophthalmology, University Clinic Bonn, Bonn, Germany; 2Department of Neurology, University Clinic Bonn, Bonn, Germany; 3Institute of Human Genetics, University Hospital of Bonn, Bonn, Germany; 4Department of Neonatology and Pediatric Intensive Care, Children's Hospital, University of Bonn, Bonn, Germany; 5Department of Urology, University Hospital Bonn, Bonn, Germany
| | - Jörg Ellinger
- 1Department of Ophthalmology, University Clinic Bonn, Bonn, Germany; 2Department of Neurology, University Clinic Bonn, Bonn, Germany; 3Institute of Human Genetics, University Hospital of Bonn, Bonn, Germany; 4Department of Neonatology and Pediatric Intensive Care, Children's Hospital, University of Bonn, Bonn, Germany; 5Department of Urology, University Hospital Bonn, Bonn, Germany
| |
Collapse
|
18
|
Parkinson's disease treatment: past, present, and future. J Neural Transm (Vienna) 2020; 127:785-791. [PMID: 32172471 DOI: 10.1007/s00702-020-02167-1] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Accepted: 03/03/2020] [Indexed: 12/15/2022]
Abstract
The substantial contributions of Dr. Gerald Stern to past and current treatments for Parkinson's disease patients are reviewed, which form the foundation for an evaluation of future options to control symptoms and halt progression of the disease. These opportunities will depend on a greater understanding of the relative contributions of the environment, genetic and epigenetic influences to disease onset, and promise to emerge as strategies for improving mitochondrial function, halting accumulation of synuclein and neuromelanin, in addition to refinement of stem cell and gene therapies. Such advances will be achieved through deployment of improved models for the disease.
Collapse
|
19
|
Sharma A, Schaefer ST, Sae-Lee C, Byun HM, Wüllner U. Elevated serum mitochondrial DNA in females and lack of altered platelet mitochondrial methylation in patients with Parkinson´s disease. Int J Neurosci 2020; 131:279-282. [PMID: 32125208 DOI: 10.1080/00207454.2020.1738433] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Purpose: Mitochondrial dysfunction has long been considered in the pathogenesis of Parkinson's disease (PD). This is evident from the presence of mitochondrial DNA deletions in substantia nigra neurons and respiratory chain abnormalities in the skeletal muscle of PD patients. However, the contributing factors that potentially cause oxidative stress in PD are still elusive. To a certain extent, the identification of acquired changes in circulating mitochondrial DNA (mtDNA) content in blood samples may mirror the mitochondrial (dys-) function. Therefore, herein, we investigated the mtDNA concentrations in serum and cerebrospinal fluid (CSF) of PD patients.Materials and methods: We performed quantitative analysis (qPCR) at two mitochondrial regions (D-Loop; ATPase6) and evaluated the platelet mtDNA methylation levels (MT-TL1 ,MT-CO1, MT-CO2 and MT-CO3) by bisulfite-PCR pyrosequencing.Results: Our quantitative analysis at two mitochondrial regions (D-Loop; ATPase6) revealed an increase in mtDNA serum concentrations in PD females compared to healthy females. Of particular interest, these altered concentrations were restricted to females serum only. Thus, in males as well as CSF of PD patients no increase was detected. Additionally, mtDNA methylation in platelets isolated from the plasma of PD patients showed no altered methylation levels in the mitochondrial MT-TL1 and MT-CO1 regions. Besides, a complete lack of platelet mtDNA methylation was observed at MT-CO2 and MT-CO3 mitochondrial sites.Conclusions: Taken together, we found an increased mtDNA serum concentration exclusively in PD females. As of yet, it is unclear whether this might reflect specific changes or characteristics of female PD pathobiology. However, in context to the ongoing debate about mtDNA methylation, we could show that the mitochondrial epigenome does harbor detectable CpG methylation sites in platelets-derived DNA.
Collapse
Affiliation(s)
- Amit Sharma
- Department of Neurology, University Clinic Bonn, Bonn, Germany.,Department of Ophthalmology, University Hospital Bonn, Bonn, Germany
| | - Simon T Schaefer
- Department of Anesthesiology, University Hospital, LMU Munich, Munich, Germany
| | - Chanachai Sae-Lee
- Human Nutrition Research Centre, Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne, UK.,Research Division, Faculty of Medicine, Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Hyang-Min Byun
- Human Nutrition Research Centre, Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne, UK
| | - Ullrich Wüllner
- Department of Neurology, University Clinic Bonn, Bonn, Germany.,German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
| |
Collapse
|
20
|
Mechanistic basis of co-stimulatory CD40-CD40L ligation mediated regulation of immune responses in cancer and autoimmune disorders. Immunobiology 2019; 225:151899. [PMID: 31899051 DOI: 10.1016/j.imbio.2019.151899] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Revised: 12/12/2019] [Accepted: 12/14/2019] [Indexed: 02/08/2023]
Abstract
Generation of an accurate humoral and a cell mediated adaptive immune responsesare dictated by binding of an antigen to a T- and a B-cell receptor, respectively (first signal) followed by ligation of costimulatory molecules (second signal). CD40, a costimulatory receptor molecule, expressed mainly on antigen presenting cells, some non-immune cells and tumors, binds to CD40 ligand molecule expressed transiently on T-cells and non-immune cells under inflammatory conditions. In the past decade, the CD40-CD40L interaction has emerged as an immune-potentiating system that governs and regulates host immune response against various diseases and pathogens, failing of which results in detrimental patho-physiologies including cancer and autoimmune disorders. CD40-CD40L transduces immune signals intracellularly via TRAF-dependent and independent mechanisms and further downstream by different MAPK pathways and transcription factors such as NF-κB, p38 etc. While CD40 signaling pathway through its cognate interaction between B and T cells promotes activation and proliferation of B-cells, Ig class switching, and generation of B cell memory; however, CD40-CD40L interaction involving other APCs and non-immune cells relay distinct cell signaling resulting in production of a variety of cytokines/chemokines and cell adhesion molecules ultimately conferring host defense against pathogen. In cancer and autoimmune disorders, CD40-CD40L interaction is also responsible for aberrant expression of many disease specific markers, class I/II MHC molecules and other co-stimulatory molecules such as B7 and CD28 in cell- and disease-specific manner. In the present review, the current state of understanding about the CD40-CD40L mediated regulation of immune and non-immune cells is presented. The current paradigm is to target CD40 using agonist anti-CD40 mAbs alone or in synergistic combination with chemotherapy in order to harness or confer anti-tumor and anti-inflammatory immunity.
Collapse
|