1
|
Zhuo Z, Wang Y, Xu Y. Advancements in research on lactate dehydrogenase A in urinary system tumors. BMC Urol 2024; 24:187. [PMID: 39215270 PMCID: PMC11363645 DOI: 10.1186/s12894-024-01580-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Accepted: 08/22/2024] [Indexed: 09/04/2024] Open
Abstract
Tumors of the urinary system, such as prostate cancer, bladder cancer, and renal cell carcinoma, are among the most prevalent types of tumors. They often remain asymptomatic in their early stages, with some patients experiencing recurrence or metastasis post-surgery, leading to disease progression. Lactate dehydrogenase A (LDHA) plays a crucial role in the glycolysis pathway and is closely associated with anaerobic glycolysis in urinary system tumors. Therefore, a comprehensive investigation into the intricate mechanism of LDHA in these tumors can establish a theoretical foundation for early diagnosis and advanced treatment. This review consolidates the current research and applications of LDHA in urinary system tumors, with the aim of providing researchers with a distinct perspective.
Collapse
Affiliation(s)
- Zhiyuan Zhuo
- Department of Urology, Changhai Hospital, Naval Medical University, 168 Changhai Rd, Shanghai, 200433, China
| | - Yu Wang
- Department of Urology, Changhai Hospital, Naval Medical University, 168 Changhai Rd, Shanghai, 200433, China
| | - Yifan Xu
- Department of Urology, Changhai Hospital, Naval Medical University, 168 Changhai Rd, Shanghai, 200433, China.
| |
Collapse
|
2
|
Valcarcel-Jimenez L, Frezza C. Fumarate hydratase (FH) and cancer: a paradigm of oncometabolism. Br J Cancer 2023; 129:1546-1557. [PMID: 37689804 PMCID: PMC10645937 DOI: 10.1038/s41416-023-02412-w] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 08/10/2023] [Accepted: 08/18/2023] [Indexed: 09/11/2023] Open
Abstract
Fumarate hydratase (FH) is an enzyme of the Tricarboxylic Acid (TCA) cycle whose mutations lead to hereditary and sporadic forms of cancer. Although more than twenty years have passed since its discovery as the leading cause of the cancer syndrome Hereditary leiomyomatosis and Renal Cell Carcinoma (HLRCC), it is still unclear how the loss of FH causes cancer in a tissue-specific manner and with such aggressive behaviour. It has been shown that FH loss, via the accumulation of FH substrate fumarate, activates a series of oncogenic cascades whose contribution to transformation is still under investigation. In this review, we will summarise these recent findings in an integrated fashion and put forward the case that understanding the biology of FH and how its mutations promote transformation will be vital to establish novel paradigms of oncometabolism.
Collapse
Affiliation(s)
- Lorea Valcarcel-Jimenez
- Department of Biochemistry and Molecular Biology, Faculty of Science and Technology, UPV/EHU, University of the Basque Country (UPV/EHU), Leioa, Bizkaia, Spain.
| | - Christian Frezza
- University of Cologne, Faculty of Mathematics and Natural Sciences, Institute of Genetics, Cluster of Excellence Cellular Stress Responses in Aging-associated Diseases (CECAD), Cologne, Germany.
- University of Cologne, Faculty of Medicine and University Hospital Cologne, Cluster of Excellence Cellular Stress Responses in Aging-associated Diseases (CECAD), Cologne, Germany.
| |
Collapse
|
3
|
Findlay S, Nair R, Merrill RA, Kaiser Z, Cajelot A, Aryanpour Z, Heath J, St-Louis C, Papadopoli D, Topisirovic I, St-Pierre J, Sebag M, Kesarwala AH, Hulea L, Taylor EB, Shanmugam M, Orthwein A. The mitochondrial pyruvate carrier complex potentiates the efficacy of proteasome inhibitors in multiple myeloma. Blood Adv 2023; 7:3485-3500. [PMID: 36920785 PMCID: PMC10362273 DOI: 10.1182/bloodadvances.2022008345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 02/27/2023] [Accepted: 03/02/2023] [Indexed: 03/16/2023] Open
Abstract
Multiple myeloma (MM) is a hematological malignancy that emerges from antibody-producing plasma B cells. Proteasome inhibitors, including the US Food and Drug Administration-approved bortezomib (BTZ) and carfilzomib (CFZ), are frequently used for the treatment of patients with MM. Nevertheless, a significant proportion of patients with MM are refractory or develop resistance to this class of inhibitors, which represents a significant challenge in the clinic. Thus, identifying factors that determine the potency of proteasome inhibitors in MM is of paramount importance to bolster their efficacy in the clinic. Using genome-wide CRISPR-based screening, we identified a subunit of the mitochondrial pyruvate carrier (MPC) complex, MPC1, as a common modulator of BTZ response in 2 distinct human MM cell lines in vitro. We noticed that CRISPR-mediated deletion or pharmacological inhibition of the MPC complex enhanced BTZ/CFZ-induced MM cell death with minimal impact on cell cycle progression. In fact, targeting the MPC complex compromised the bioenergetic capacity of MM cells, which is accompanied by reduced proteasomal activity, thereby exacerbating BTZ-induced cytotoxicity in vitro. Importantly, we observed that the RNA expression levels of several regulators of pyruvate metabolism were altered in advanced stages of MM for which they correlated with poor patient prognosis. Collectively, this study highlights the importance of the MPC complex for the survival of MM cells and their responses to proteasome inhibitors. These findings establish mitochondrial pyruvate metabolism as a potential target for the treatment of MM and an unappreciated strategy to increase the efficacy of proteasome inhibitors in the clinic.
Collapse
Affiliation(s)
- Steven Findlay
- Lady Davis Institute for Medical Research, Segal Cancer Centre, Jewish General Hospital, Montreal, Canada
- Division of Experimental Medicine, McGill University, Montreal, Canada
| | - Remya Nair
- Department of Hematology and Medical Oncology, Winship Cancer Institute, Emory University, Atlanta, GA
| | - Ronald A. Merrill
- Department of Molecular Physiology and Biophysics, University of Iowa, Iowa City, IA
| | - Zafir Kaiser
- Lady Davis Institute for Medical Research, Segal Cancer Centre, Jewish General Hospital, Montreal, Canada
- Department of Biochemistry, McGill University, Montreal, Canada
| | - Alexandre Cajelot
- Lady Davis Institute for Medical Research, Segal Cancer Centre, Jewish General Hospital, Montreal, Canada
- Polytech Nice-Sophia, Université Côte d’Azur, Sophia Antipolis, Nice, France
| | - Zahra Aryanpour
- Lady Davis Institute for Medical Research, Segal Cancer Centre, Jewish General Hospital, Montreal, Canada
| | - John Heath
- Lady Davis Institute for Medical Research, Segal Cancer Centre, Jewish General Hospital, Montreal, Canada
- Division of Experimental Medicine, McGill University, Montreal, Canada
| | - Catherine St-Louis
- Department of Biochemistry, Microbiology, and Immunology, University of Ottawa, Ottawa, Canada
- Ottawa Institute of Systems Biology, Ottawa, Canada
| | - David Papadopoli
- Lady Davis Institute for Medical Research, Segal Cancer Centre, Jewish General Hospital, Montreal, Canada
- Gerald Bronfman Department of Oncology, McGill University, Montreal, Canada
| | - Ivan Topisirovic
- Lady Davis Institute for Medical Research, Segal Cancer Centre, Jewish General Hospital, Montreal, Canada
- Division of Experimental Medicine, McGill University, Montreal, Canada
- Gerald Bronfman Department of Oncology, McGill University, Montreal, Canada
- Department of Biochemistry, McGill University, Montreal, Canada
| | - Julie St-Pierre
- Department of Biochemistry, Microbiology, and Immunology, University of Ottawa, Ottawa, Canada
- Ottawa Institute of Systems Biology, Ottawa, Canada
| | - Michael Sebag
- The Research Institute of the McGill University Health Center, Montreal, Canada
| | - Aparna H. Kesarwala
- Department of Radiation Oncology, Winship Cancer Institute, Emory University, Atlanta, GA
| | - Laura Hulea
- Maisonneuve-Rosemont Hospital Research Center, Montreal, Canada
- Département de Biochimie et médecine moléculaire, Université de Montréal, Montreal, Canada
- Département de Médecine, Université de Montréal, Montreal, Canada
| | - Eric B. Taylor
- Department of Molecular Physiology and Biophysics, University of Iowa, Iowa City, IA
| | - Mala Shanmugam
- Department of Hematology and Medical Oncology, Winship Cancer Institute, Emory University, Atlanta, GA
| | - Alexandre Orthwein
- Lady Davis Institute for Medical Research, Segal Cancer Centre, Jewish General Hospital, Montreal, Canada
- Division of Experimental Medicine, McGill University, Montreal, Canada
- Gerald Bronfman Department of Oncology, McGill University, Montreal, Canada
- Department of Radiation Oncology, Winship Cancer Institute, Emory University, Atlanta, GA
| |
Collapse
|
4
|
Kidney tumors associated with germline mutations of FH and SDHB show a CpG island methylator phenotype (CIMP). PLoS One 2022; 17:e0278108. [PMID: 36455002 PMCID: PMC9714951 DOI: 10.1371/journal.pone.0278108] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Accepted: 11/10/2022] [Indexed: 12/03/2022] Open
Abstract
Germline mutations within the Krebs cycle enzyme genes fumarate hydratase (FH) or succinate dehydrogenase (SDHB, SDHC, SDHD) are associated with an increased risk of aggressive and early metastasizing variants of renal cell carcinoma (RCC). These RCCs express significantly increased levels of intracellular fumarate or succinate that inhibit 2-oxoglutarate-dependent dioxygenases, such as the TET enzymes that regulate DNA methylation. This study evaluated the genome-wide methylation profiles of 34 RCCs from patients with RCC susceptibility syndromes and 11 associated normal samples using the Illumina HumanMethylation450 BeadChip. All the HLRCC (FH mutated) and SDHB-RCC (SDHB mutated) tumors demonstrated a distinct CpG island methylator phenotype (CIMP). HLRCC tumors demonstrated an extensive and relatively uniform level of hypermethylation that showed some correlation with tumor size. SDHB-RCC demonstrated a lesser and more varied pattern of hypermethylation that overlapped in part with the HLRCC hypermethylation. Combined methylation and mRNA expression analysis of the HLRCC tumors demonstrated hypermethylation and transcription downregulation of genes associated with the HIF pathway, HIF3A and CITED4, the WNT pathway, SFRP1, and epithelial-to-mesenchymal transition and MYC expression, OVOL1. These observations were confirmed in the TCGA CIMP-RCC tumors. A selected panel of probes could identify the CIMP tumors and differentiate between HLRCC and SDHB-RCC tumors. This panel accurately detected all CIMP-RCC tumors within the TCGA RCC cohort, identifying them as HLRCC -like, and could potentially be used to create a liquid biopsy-based screening tool. The CIMP signature in these aggressive tumors could provide both a useful biomarker for diagnosis and a target for novel therapies.
Collapse
|
5
|
Valcarcel-Jimenez L, Rogerson C, Yong C, Schmidt C, Yang M, Cremades-Rodelgo M, Harle V, Offord V, Wong K, Mora A, Speed A, Caraffini V, Tran MGB, Maher ER, Stewart GD, Vanharanta S, Adams DJ, Frezza C. HIRA loss transforms FH-deficient cells. SCIENCE ADVANCES 2022; 8:eabq8297. [PMID: 36269833 PMCID: PMC9586478 DOI: 10.1126/sciadv.abq8297] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 08/31/2022] [Indexed: 05/03/2023]
Abstract
Fumarate hydratase (FH) is a mitochondrial enzyme that catalyzes the reversible hydration of fumarate to malate in the tricarboxylic acid (TCA) cycle. Germline mutations of FH lead to hereditary leiomyomatosis and renal cell carcinoma (HLRCC), a cancer syndrome characterized by a highly aggressive form of renal cancer. Although HLRCC tumors metastasize rapidly, FH-deficient mice develop premalignant cysts in the kidneys, rather than carcinomas. How Fh1-deficient cells overcome these tumor-suppressive events during transformation is unknown. Here, we perform a genome-wide CRISPR-Cas9 screen to identify genes that, when ablated, enhance the proliferation of Fh1-deficient cells. We found that the depletion of the histone cell cycle regulator (HIRA) enhances proliferation and invasion of Fh1-deficient cells in vitro and in vivo. Mechanistically, Hira loss activates MYC and its target genes, increasing nucleotide metabolism specifically in Fh1-deficient cells, independent of its histone chaperone activity. These results are instrumental for understanding mechanisms of tumorigenesis in HLRCC and the development of targeted treatments for patients.
Collapse
Affiliation(s)
- Lorea Valcarcel-Jimenez
- MRC Cancer Unit, Hutchison/MRC Research Centre, University of Cambridge, Cambridge CB2 0XZ, UK
- CECAD Research Centre, University of Cologne, Joseph-Stelzmann-Str. 26, 50931 Cologne, Germany
| | - Connor Rogerson
- MRC Cancer Unit, Hutchison/MRC Research Centre, University of Cambridge, Cambridge CB2 0XZ, UK
| | - Cissy Yong
- MRC Cancer Unit, Hutchison/MRC Research Centre, University of Cambridge, Cambridge CB2 0XZ, UK
- Department of Surgery, University of Cambridge, Cambridge Biomedical Campus, Cambridge, UK
- Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
| | - Christina Schmidt
- MRC Cancer Unit, Hutchison/MRC Research Centre, University of Cambridge, Cambridge CB2 0XZ, UK
- CECAD Research Centre, University of Cologne, Joseph-Stelzmann-Str. 26, 50931 Cologne, Germany
| | - Ming Yang
- MRC Cancer Unit, Hutchison/MRC Research Centre, University of Cambridge, Cambridge CB2 0XZ, UK
- CECAD Research Centre, University of Cologne, Joseph-Stelzmann-Str. 26, 50931 Cologne, Germany
| | - Monica Cremades-Rodelgo
- CECAD Research Centre, University of Cologne, Joseph-Stelzmann-Str. 26, 50931 Cologne, Germany
| | - Victoria Harle
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, UK
| | - Victoria Offord
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, UK
| | - Kim Wong
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, UK
| | - Ariane Mora
- School of Chemistry and Molecular Biosciences, University of Queensland, Molecular Biosciences Building 76, St. Lucia, QLD 4072, Australia
| | - Alyson Speed
- MRC Cancer Unit, Hutchison/MRC Research Centre, University of Cambridge, Cambridge CB2 0XZ, UK
| | - Veronica Caraffini
- MRC Cancer Unit, Hutchison/MRC Research Centre, University of Cambridge, Cambridge CB2 0XZ, UK
| | - Maxine Gia Binh Tran
- UCL Division of Surgery and Interventional Science, Specialist Centre for Kidney Cancer, Royal Free Hospital, Pond Street, London NW3 2QG, UK
| | - Eamonn R. Maher
- Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
- Department of Medical Genetics, University of Cambridge, Cambridge, UK
| | - Grant D. Stewart
- Department of Surgery, University of Cambridge, Cambridge Biomedical Campus, Cambridge, UK
- Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
| | - Sakari Vanharanta
- MRC Cancer Unit, Hutchison/MRC Research Centre, University of Cambridge, Cambridge CB2 0XZ, UK
- Translational Cancer Medicine Program, Faculty of Medicine, Biomedicum Helsinki, University of Helsinki, Helsinki, Finland
- Department of Physiology, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - David J. Adams
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, UK
| | - Christian Frezza
- MRC Cancer Unit, Hutchison/MRC Research Centre, University of Cambridge, Cambridge CB2 0XZ, UK
- CECAD Research Centre, University of Cologne, Joseph-Stelzmann-Str. 26, 50931 Cologne, Germany
| |
Collapse
|
6
|
Zhang R, Chen D, Fan H, Wu R, Tu J, Zhang FQ, Wang M, Zheng H, Qu CK, Elf SE, Faubert B, He YY, Bissonnette MB, Gao X, DeBerardinis RJ, Chen J. Cellular signals converge at the NOX2-SHP-2 axis to induce reductive carboxylation in cancer cells. Cell Chem Biol 2022; 29:1200-1208.e6. [PMID: 35429459 PMCID: PMC9308720 DOI: 10.1016/j.chembiol.2022.03.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 02/08/2022] [Accepted: 03/20/2022] [Indexed: 12/11/2022]
Abstract
Environmental stresses, including hypoxia or detachment for anchorage independence, or attenuation of mitochondrial respiration through inhibition of electron transport chain induce reductive carboxylation in cells with an enhanced fraction of citrate arising through reductive metabolism of glutamine. This metabolic process contributes to redox homeostasis and sustains biosynthesis of lipids. Reductive carboxylation is often dependent on cytosolic isocitrate dehydrogenase 1 (IDH1). However, whether diverse cellular signals induce reductive carboxylation differentially or through a common signaling converging node remains unclear. We found that induction of reductive carboxylation commonly requires enhanced tyrosine phosphorylation and activation of IDH1, which, surprisingly, is achieved by attenuation of a cytosolic protein tyrosine phosphatase, Src homology region 2 domain-containing phosphatase-2 (SHP-2). Mechanistically, diverse signals induce reductive carboxylation by converging at upregulation of NADPH oxidase 2, leading to elevated cytosolic reactive oxygen species that consequently inhibit SHP-2. Together, our work elucidates the signaling basis underlying reductive carboxylation in cancer cells.
Collapse
|
7
|
Proteogenomic landscape of uterine leiomyomas from hereditary leiomyomatosis and renal cell cancer patients. Sci Rep 2021; 11:9371. [PMID: 33931688 PMCID: PMC8087684 DOI: 10.1038/s41598-021-88585-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Accepted: 04/14/2021] [Indexed: 11/08/2022] Open
Abstract
Pathogenic mutations in fumarate hydratase (FH) drive hereditary leiomyomatosis and renal cell cancer (HLRCC) and increase the risk of developing uterine leiomyomas (ULMs). An integrated proteogenomic analysis of ULMs from HLRCC (n = 16; FH-mutation confirmed) and non-syndromic (NS) patients (n = 12) identified a significantly higher protein:transcript correlation in HLRCC (R = 0.35) vs. NS ULMs (R = 0.242, MWU p = 0.0015). Co-altered proteins and transcripts (228) included antioxidant response element (ARE) target genes, such as thioredoxin reductase 1 (TXNRD1), and correlated with activation of NRF2-mediated oxidative stress response signaling in HLRCC ULMs. We confirm 185 transcripts previously described as altered between HLRCC and NS ULMs, 51 co-altered at the protein level and several elevated in HLRCC ULMs are involved in regulating cellular metabolism and glycolysis signaling. Furthermore, 367 S-(2-succino)cysteine peptides were identified in HLRCC ULMs, of which sixty were significantly elevated in HLRCC vs. NS ULMs (LogFC = 1.86, MWU p < 0.0001). These results confirm and define novel proteogenomic alterations in uterine leiomyoma tissues collected from HLRCC patients and underscore conserved molecular alterations correlating with inactivation of the FH tumor suppressor gene.
Collapse
|
8
|
Kancherla P, Daneshvar M, Sager RA, Mollapour M, Bratslavsky G. Fumarate hydratase as a therapeutic target in renal cancer. Expert Opin Ther Targets 2020; 24:923-936. [PMID: 32744123 DOI: 10.1080/14728222.2020.1804862] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
INTRODUCTION Renal cell carcinoma (RCC) is a heterogeneous group of cancers that can occur sporadically or as a manifestation of various inherited syndromes. Hereditary leiomyomatosis and renal cell carcinoma (HLRCC) is one such inherited syndrome that predisposes patients to HLRCC-associated RCC. These tumors are notoriously aggressive and often exhibit early metastases. HLRCC results from germline mutations in the FH gene, which encodes the citric acid cycle enzyme fumarate hydratase (FH). FH loss leads to alterations in oxidative carbon metabolism, necessitating a switch to aerobic glycolysis, as well as a pseudohypoxic response and consequent upregulation of various pro-survival pathways. Mutations in FH also alter tumor cell migratory potential, response to oxidative stress, and response to DNA damage. AREAS COVERED We review the mechanisms by which FH loss leads to HLRCC-associated RCC and how these mechanisms are being rationally targeted. EXPERT OPINION FH loss results in the activation of numerous salvage pathways for tumor cell survival in HLRCC-associated RCC. Tumor heterogeneity requires individualized characterization via next-generation sequencing, ultimately resulting in HLRCC-specific treatment regimens. As HLRCC-associated RCC represents a classic Warburg tumor, targeting aerobic glycolysis is particularly promising as a future therapeutic avenue.
Collapse
Affiliation(s)
- Priyanka Kancherla
- Department of Urology, SUNY Upstate Medical University , Syracuse, NY, USA.,Cancer Center, SUNY Upstate Medical University , Syracuse, NY, USA
| | - Michael Daneshvar
- Department of Urology, SUNY Upstate Medical University , Syracuse, NY, USA.,Cancer Center, SUNY Upstate Medical University , Syracuse, NY, USA
| | - Rebecca A Sager
- Department of Urology, SUNY Upstate Medical University , Syracuse, NY, USA.,Cancer Center, SUNY Upstate Medical University , Syracuse, NY, USA.,Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University , Syracuse, NY, USA
| | - Mehdi Mollapour
- Department of Urology, SUNY Upstate Medical University , Syracuse, NY, USA.,Cancer Center, SUNY Upstate Medical University , Syracuse, NY, USA.,Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University , Syracuse, NY, USA
| | - Gennady Bratslavsky
- Department of Urology, SUNY Upstate Medical University , Syracuse, NY, USA.,Cancer Center, SUNY Upstate Medical University , Syracuse, NY, USA.,Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University , Syracuse, NY, USA
| |
Collapse
|
9
|
Testa U, Pelosi E, Castelli G. Genetic Alterations in Renal Cancers: Identification of The Mechanisms Underlying Cancer Initiation and Progression and of Therapeutic Targets. MEDICINES (BASEL, SWITZERLAND) 2020; 7:E44. [PMID: 32751108 PMCID: PMC7459851 DOI: 10.3390/medicines7080044] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 07/19/2020] [Accepted: 07/24/2020] [Indexed: 12/26/2022]
Abstract
Renal cell cancer (RCC) involves three most recurrent sporadic types: clear-cell RCC (70-75%, CCRCC), papillary RCCC (10-15%, PRCC), and chromophobe RCC (5%, CHRCC). Hereditary cases account for about 5% of all cases of RCC and are caused by germline pathogenic variants. Herein, we review how a better understanding of the molecular biology of RCCs has driven the inception of new diagnostic and therapeutic approaches. Genomic research has identified relevant genetic alterations associated with each RCC subtype. Molecular studies have clearly shown that CCRCC is universally initiated by Von Hippel Lindau (VHL) gene dysregulation, followed by different types of additional genetic events involving epigenetic regulatory genes, dictating disease progression, aggressiveness, and differential response to treatments. The understanding of the molecular mechanisms that underlie the development and progression of RCC has considerably expanded treatment options; genomic data might guide treatment options by enabling patients to be matched with therapeutics that specifically target the genetic alterations present in their tumors. These new targeted treatments have led to a moderate improvement of the survival of metastatic RCC patients. Ongoing studies based on the combination of immunotherapeutic agents (immune check inhibitors) with VEGF inhibitors are expected to further improve the survival of these patients.
Collapse
Affiliation(s)
- Ugo Testa
- Department of Oncology, Istituto Superiore di Sanità, Vaile Regina Elena 299, 00161 Rome, Italy; (E.P.); (G.C.)
| | | | | |
Collapse
|
10
|
Matés JM, Campos-Sandoval JA, de Los Santos-Jiménez J, Márquez J. Glutaminases regulate glutathione and oxidative stress in cancer. Arch Toxicol 2020; 94:2603-2623. [PMID: 32681190 DOI: 10.1007/s00204-020-02838-8] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Accepted: 07/08/2020] [Indexed: 12/15/2022]
Abstract
Targeted therapies against cancer have improved both survival and quality of life of patients. However, metabolic rewiring evokes cellular mechanisms that reduce therapeutic mightiness. Resistant cells generate more glutathione, elicit nuclear factor erythroid 2-related factor 2 (NRF2) activation, and overexpress many anti-oxidative genes such as superoxide dismutase, catalase, glutathione peroxidase, and thioredoxin reductase, providing stronger antioxidant capacity to survive in a more oxidative environment due to the sharp rise in oxidative metabolism and reactive oxygen species generation. These changes dramatically alter tumour microenvironment and cellular metabolism itself. A rational design of therapeutic combination strategies is needed to flatten cellular homeostasis and accomplish a drop in cancer development. Context-dependent glutaminase isoenzymes show oncogenic and tumour suppressor properties, being mainly associated to MYC and p53, respectively. Glutaminases catalyze glutaminolysis in mitochondria, regulating oxidative phosphorylation, redox status and cell metabolism for tumour growth. In addition, the substrate and product of glutaminase reaction, glutamine and glutamate, respectively, can work as signalling molecules moderating redox and bioenergetic pathways in cancer. Novel synergistic approaches combining glutaminase inhibition and redox-dependent modulation are described in this review. Pharmacological or genetic glutaminase regulation along with oxidative chemotherapy can help to improve the design of combination strategies that escalate the rate of therapeutic success in cancer patients.
Collapse
Affiliation(s)
- José M Matés
- Department of Molecular Biology and Biochemistry, Canceromics Lab, Faculty of Sciences, University of Málaga, Campus de Teatinos, 29071, Málaga, Spain.
- Instituto de Investigación Biomédica de Málaga (IBIMA), Málaga, Spain.
| | - José A Campos-Sandoval
- Department of Molecular Biology and Biochemistry, Canceromics Lab, Faculty of Sciences, University of Málaga, Campus de Teatinos, 29071, Málaga, Spain
- Instituto de Investigación Biomédica de Málaga (IBIMA), Málaga, Spain
| | - Juan de Los Santos-Jiménez
- Department of Molecular Biology and Biochemistry, Canceromics Lab, Faculty of Sciences, University of Málaga, Campus de Teatinos, 29071, Málaga, Spain
- Instituto de Investigación Biomédica de Málaga (IBIMA), Málaga, Spain
| | - Javier Márquez
- Department of Molecular Biology and Biochemistry, Canceromics Lab, Faculty of Sciences, University of Málaga, Campus de Teatinos, 29071, Málaga, Spain
- Instituto de Investigación Biomédica de Málaga (IBIMA), Málaga, Spain
| |
Collapse
|