1
|
Harshbarger CL. Harnessing the power of Microscale AcoustoFluidics: A perspective based on BAW cancer diagnostics. BIOMICROFLUIDICS 2024; 18:011304. [PMID: 38434238 PMCID: PMC10907075 DOI: 10.1063/5.0180158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Accepted: 02/05/2024] [Indexed: 03/05/2024]
Abstract
Cancer directly affects one in every three people, and mortality rates strongly correlate with the stage at which diagnosis occurs. Each of the multitude of methods used in cancer diagnostics has its own set of advantages and disadvantages. Two common drawbacks are a limited information value of image based diagnostic methods and high invasiveness when opting for methods that provide greater insight. Microfluidics offers a promising avenue for isolating circulating tumor cells from blood samples, offering high informational value at predetermined time intervals while being minimally invasive. Microscale AcoustoFluidics, an active method capable of manipulating objects within a fluid, has shown its potential use for the isolation and measurement of circulating tumor cells, but its full potential has yet to be harnessed. Extensive research has focused on isolating single cells, although the significance of clusters should not be overlooked and requires attention within the field. Moreover, there is room for improvement by designing smaller and automated devices to enhance user-friendliness and efficiency as illustrated by the use of bulk acoustic wave devices in cancer diagnostics. This next generation of setups and devices could minimize streaming forces and thereby enable the manipulation of smaller objects, thus aiding in the implementation of personalized oncology for the next generation of cancer treatments.
Collapse
Affiliation(s)
- C. L. Harshbarger
- Department of Orthopedics, Balgrist University Hospital, University of Zurich, Zurich, Switzerland; Institute for Biomechanics, Swiss Federal Institute of Technology Zurich, Zurich, Switzerland; and Institute for Mechanical Systems, Swiss Federal Institute of Technology Zurich, Zurich, Switzerland
| |
Collapse
|
2
|
Bazyar H, Kandemir MH, Peper J, Andrade MAB, Bernassau AL, Schroën K, Lammertink RGH. Acoustophoresis of monodisperse oil droplets in water: Effect of symmetry breaking and non-resonance operation on oil trapping behavior. BIOMICROFLUIDICS 2023; 17:064107. [PMID: 38162227 PMCID: PMC10757468 DOI: 10.1063/5.0175400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 11/28/2023] [Indexed: 01/03/2024]
Abstract
Acoustic manipulation of particles in microchannels has recently gained much attention. Ultrasonic standing wave (USW) separation of oil droplets or particles is an established technology for microscale applications. Acoustofluidic devices are normally operated at optimized conditions, namely, resonant frequency, to minimize power consumption. It has been recently shown that symmetry breaking is needed to obtain efficient conditions for acoustic particle trapping. In this work, we study the acoustophoretic behavior of monodisperse oil droplets (silicone oil and hexadecane) in water in the microfluidic chip operating at a non-resonant frequency and an off-center placement of the transducer. Finite element-based computer simulations are further performed to investigate the influence of these conditions on the acoustic pressure distribution and oil trapping behavior. Via investigating the Gor'kov potential, we obtained an overlap between the trapping patterns obtained in experiments and simulations. We demonstrate that an off-center placement of the transducer and driving the transducer at a non-resonant frequency can still lead to predictable behavior of particles in acoustofluidics. This is relevant to applications in which the theoretical resonant frequency cannot be achieved, e.g., manipulation of biological matter within living tissues.
Collapse
Affiliation(s)
- H. Bazyar
- Engineering Thermodynamics, Process & Energy Department, Faculty of Mechanical, Maritime and Materials Engineering, Delft University of Technology, Leeghwaterstraat 39, 2628CB Delft, The Netherlands
| | - M. H. Kandemir
- Department of Electrical Engineering and Automation, Aalto University, 02150 Espoo, Finland
| | - J. Peper
- Soft Matter Fluidics and Interfaces, MESA+ Institute for Nanotechnology, University of Twente, P. O. Box 217, 7500 AE Enschede, The Netherlands
| | - M. A. B. Andrade
- Institute of Physics, University of São Paulo, São Paulo 05508-090, Brazil
| | - A. L. Bernassau
- School of Engineering and Physical Sciences, Heriot-Watt University, Edinburgh, United Kingdom
| | - K. Schroën
- Membrane Processes for Food, University of Twente, P. O. Box 217, 7500 AE Enschede, The Netherlands
| | - R. G. H. Lammertink
- Soft Matter Fluidics and Interfaces, MESA+ Institute for Nanotechnology, University of Twente, P. O. Box 217, 7500 AE Enschede, The Netherlands
| |
Collapse
|
3
|
Harshbarger CL, Gerlt MS, Ghadamian JA, Bernardoni DC, Snedeker JG, Dual J. Optical feedback control loop for the precise and robust acoustic focusing of cells, micro- and nanoparticles. LAB ON A CHIP 2022; 22:2810-2819. [PMID: 35843222 DOI: 10.1039/d2lc00376g] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Despite a long history and the vast number of applications demonstrated, very few market products incorporate acoustophoresis. Because a human operator must run and control a device during an experiment, most devices are limited to proof of concepts. On top of a possible detuning due to temperature changes, the human operator introduces a bias which reduces the reproducibility, performance and reliability of devices. To mitigate some of these problems, we propose an optical feedback control loop that optimizes the excitation frequency. We investigate the improvements that can be expected when a human operator is replaced for acoustic micro- and nanometer particle focusing experiments. Three experiments previously conducted in our group were taken as a benchmark. In addition to being automatic, this resulted in the feedback control loop displaying a superior performance compared to an experienced scientist in 1) improving the particle focusing by at least a factor of two for 5 μm diameter PS particles, 2) increasing the range of flow rates in which 1 μm diameter PS particles could be focused and 3) was even capable of focusing 600 nm diameter PS particles at a frequency of 1.72075 MHz. Furthermore, the feedback control loop is capable of focusing biological cells in one and two pressure nodes. The requirements for the feedback control loop are: an optical setup, a run-of-the-mill computer and a computer controllable function generator. Thus resulting in a cost-effective, high-throughput and automated method to rapidly increase the efficiency of established systems. The code for the feedback control loop is openly accessible and the authors explicitly wish that the community uses and modifies the feedback control loop to their own needs.
Collapse
Affiliation(s)
- Cooper L Harshbarger
- Department of Orthopedics, Balgrist University Hospital, University of Zurich, Zurich, Switzerland.
- Institute for Biomechanics, Swiss Federal Institute of Technology Zurich, Zurich, Switzerland
- Institute for Mechanical Systems, Swiss Federal Institute of Technology Zurich, Zurich, Switzerland
| | - Michael S Gerlt
- Institute for Mechanical Systems, Swiss Federal Institute of Technology Zurich, Zurich, Switzerland
- Institute for Chemical and Bioengineering, Swiss Federal Institute of Technology Zurich, Zurich, Switzerland
| | - Jan A Ghadamian
- Institute for Mechanical Systems, Swiss Federal Institute of Technology Zurich, Zurich, Switzerland
| | - Davide C Bernardoni
- Department of Orthopedics, Balgrist University Hospital, University of Zurich, Zurich, Switzerland.
- Institute for Biomechanics, Swiss Federal Institute of Technology Zurich, Zurich, Switzerland
| | - Jess G Snedeker
- Department of Orthopedics, Balgrist University Hospital, University of Zurich, Zurich, Switzerland.
- Institute for Biomechanics, Swiss Federal Institute of Technology Zurich, Zurich, Switzerland
| | - Jürg Dual
- Institute for Mechanical Systems, Swiss Federal Institute of Technology Zurich, Zurich, Switzerland
| |
Collapse
|
4
|
Jeger-Madiot N, Mousset X, Dupuis C, Rabiet L, Hoyos M, Peyrin JM, Aider JL. Controlling the force and the position of acoustic traps with a tunable acoustofluidic chip: Application to spheroid manipulations. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2022; 151:4165. [PMID: 35778170 DOI: 10.1121/10.0011464] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Accepted: 05/07/2022] [Indexed: 06/15/2023]
Abstract
A multi-node acoustofluidic chip working on a broadband spectrum and beyond the resonance is designed for cell manipulations. A simple one-dimensional (1D) multi-layer model is used to describe the stationary standing waves generated inside a cavity. The transmissions and reflections of the acoustic wave through the different layers and interfaces lead to the creation of pressure nodes away from the resonance condition. A transparent cavity and a broadband ultrasonic transducer allow the measurement of the acoustic energy over a wide frequency range using particle image velocimetry measurements and the relation between acoustic energy and the particles velocity. The automation of the setup allows the acquisition over a large spectrum with a high frequency definition. The results show a wide continuous operating range for the acoustofluidic chip, which compares well with the 1D model. The variation of the acoustic radiation force when varying the frequency can be compensated to ensure a constant amplitude for the ARF. This approach is finally applied to mesenchymal stem cell (MCS) spheroids cultured in acoustic levitation. The MSC spheroids can be moved and merged just by varying the acoustic frequency. This approach opens the path to various acoustic manipulations and to complex 3D tissue engineering in acoustic levitation.
Collapse
Affiliation(s)
- Nathan Jeger-Madiot
- Laboratoire de Physique et Mécanique des Milieux Hétérogènes, Unité Mixte de Recherche 7636 Centre National de la Recherche Scientifique, École Supérieure de Physique et de Chimie Industrielles de la Ville de Paris, Paris Sciences et Lettres University, Sorbonne Université, Université de Paris 1, Paris, 75005, France
| | - Xavier Mousset
- Laboratoire de Physique et Mécanique des Milieux Hétérogènes, Unité Mixte de Recherche 7636 Centre National de la Recherche Scientifique, École Supérieure de Physique et de Chimie Industrielles de la Ville de Paris, Paris Sciences et Lettres University, Sorbonne Université, Université de Paris 1, Paris, 75005, France
| | - Chloé Dupuis
- Laboratoire de Physique et Mécanique des Milieux Hétérogènes, Unité Mixte de Recherche 7636 Centre National de la Recherche Scientifique, École Supérieure de Physique et de Chimie Industrielles de la Ville de Paris, Paris Sciences et Lettres University, Sorbonne Université, Université de Paris 1, Paris, 75005, France
| | - Lucile Rabiet
- Laboratoire de Physique et Mécanique des Milieux Hétérogènes, Unité Mixte de Recherche 7636 Centre National de la Recherche Scientifique, École Supérieure de Physique et de Chimie Industrielles de la Ville de Paris, Paris Sciences et Lettres University, Sorbonne Université, Université de Paris 1, Paris, 75005, France
| | - Mauricio Hoyos
- Laboratoire de Physique et Mécanique des Milieux Hétérogènes, Unité Mixte de Recherche 7636 Centre National de la Recherche Scientifique, École Supérieure de Physique et de Chimie Industrielles de la Ville de Paris, Paris Sciences et Lettres University, Sorbonne Université, Université de Paris 1, Paris, 75005, France
| | - Jean-Michel Peyrin
- Sorbonne Universités, Faculté des Sciences et Ingénierie, CNRS UMR 8246, INSERM U1130, Neurosciences Paris Seine, Institut de Biologie Paris Seine, Paris, 75005, France
| | - Jean-Luc Aider
- Laboratoire de Physique et Mécanique des Milieux Hétérogènes, Unité Mixte de Recherche 7636 Centre National de la Recherche Scientifique, École Supérieure de Physique et de Chimie Industrielles de la Ville de Paris, Paris Sciences et Lettres University, Sorbonne Université, Université de Paris 1, Paris, 75005, France
| |
Collapse
|
5
|
Farmehini V, Kiendzior S, Landers JP, Swami NS. Real-Time Detection and Control of Microchannel Resonance Frequency in Acoustic Trapping Systems by Monitoring Amplifier Supply Currents. ACS Sens 2021; 6:3765-3772. [PMID: 34586786 DOI: 10.1021/acssensors.1c01580] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The utilization of bulk acoustic waves from a piezoelectric transducer for selective particle trapping under flow in a microchannel is limited by the high sensitivity of the resonance frequency to tolerances in device geometry, drift during trapping, and variations in the local flow or sample conditions in each channel. This is addressed by detecting the resonance condition based on the impedance minimum obtained by monitoring the amplitude of the stimulation voltage across the piezo transducer and utilizing real-time feedback to control the stimulation frequency. However, this requires an overlap in the frequency bandwidth of the detection and the stimulation system and is also limited by the decline in the acoustic trapping power when the stimulation and resonance frequency measurement are conducted simultaneously. Instead, we present a novel circuit implementation for on-chip real-time resonance frequency measurement and feedback control based on monitoring the current drawn from the amplifier used to stimulate the piezo transducer, since the need for high measurement sensitivity in this mode does not lower the power available for stimulation of the transducer. The enhanced level of control of acoustic trapping utilizing this current mode is validated for various localized channel perturbations, including drift, wash steps, and buffer swaps, as well as for selective sperm cell trapping from a heterogeneous sample that includes lysed epithelial cells.
Collapse
Affiliation(s)
- Vahid Farmehini
- Electrical and Computer Engineering, University of Virginia, Charlottesville, Virginia 22904, United States
| | - Sadie Kiendzior
- Chemistry, University of Virginia, Charlottesville, Virginia 22904, United States
| | - James P. Landers
- Chemistry, University of Virginia, Charlottesville, Virginia 22904, United States
| | - Nathan S. Swami
- Electrical and Computer Engineering, University of Virginia, Charlottesville, Virginia 22904, United States
- Chemistry, University of Virginia, Charlottesville, Virginia 22904, United States
| |
Collapse
|
6
|
3D numerical simulation of acoustophoretic motion induced by boundary-driven acoustic streaming in standing surface acoustic wave microfluidics. Sci Rep 2021; 11:13326. [PMID: 34172758 PMCID: PMC8233446 DOI: 10.1038/s41598-021-90825-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Accepted: 05/18/2021] [Indexed: 02/07/2023] Open
Abstract
Standing surface acoustic waves (SSAWs) have been widely utilized in microfluidic devices to manipulate various cells and micro/nano-objects. Despite widespread application, a time-/cost-efficient versatile 3D model that predicts particle behavior in such platforms is still lacking. Herein, a fully-coupled 3D numerical simulation of boundary-driven acoustic streaming in the acoustofluidic devices utilizing SSAWs has been conducted based on the limiting velocity finite element method. Through this efficient computational method, the underlying physical interplay from the electromechanical fields of the piezoelectric substrate to different acoustofluidic effects (acoustic radiation force and streaming-induced drag force), fluid–solid interactions, the 3D influence of novel on-chip configuration like tilted-angle SSAW (taSSAW) based devices, required boundary conditions, meshing technique, and demanding computational cost, are discussed. As an experimental validation, a taSSAW platform fabricated on YX 128 \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$^\circ $$\end{document}∘ LiNbO3 substrate for separating polystyrene beads is simulated, which demonstrates acceptable agreement with reported experimental observations. Subsequently, as an application of the presented 3D model, a novel sheathless taSSAW cell/particle separator is conceptualized and designed. The presented 3D fully-coupled model could be considered a powerful tool in further designing and optimizing SSAW microfluidics due to the more time-/cost-efficient performance than precedented 3D models, the capability to model complex on-chip configurations, and overcome shortcomings and limitations of 2D simulations.
Collapse
|
7
|
Freitag S, Baumgartner B, Radel S, Schwaighofer A, Varriale A, Pennacchio A, D'Auria S, Lendl B. A thermoelectrically stabilized aluminium acoustic trap combined with attenuated total reflection infrared spectroscopy for detection of Escherichia coli in water. LAB ON A CHIP 2021; 21:1811-1819. [PMID: 33949396 DOI: 10.1039/d0lc01264e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Acoustic trapping is a non-contact particle manipulation method that holds great potential for performing automated assays. We demonstrate an aluminium acoustic trap in combination with attenuated total reflection Fourier-transform infrared spectroscopy (ATR-FTIR) for detection of E. coli in water. The thermal conductivity of aluminium was exploited to thermo-electrically heat and hold the acoustic trap at the desired assay temperature of 37 °C. Systematic characterisation and optimisation of the acoustic trap allowed high flow rates while maintaining high acoustic trapping performance. The ATR element serves not only as a reflector for ultrasound standing wave generation but also as a sensing interface. The enzyme conversion induced by alkaline phosphatase-labelled bacteria was directly monitored in the acoustic trap using ATR-FTIR spectroscopy. Sequential injection analysis allowed automated liquid handling, including non-contact bacteria retention, washing and enzyme-substrate exchange within the acoustic trap. The presented method was able to detect E. coli concentrations as low as 1.95 × 106 bacteria per mL in 197 min. The demonstrated ultrasound assisted assay paves the way to fully automated bacteria detection devices based on acoustic trapping combined with ATR-FTIR spectroscopy.
Collapse
Affiliation(s)
- Stephan Freitag
- Research Division of Environmental Analytics, Process Analytics and Sensors, Institute of Chemical Technologies and Analytics, Technische Universität Wien, Getreidemarkt 9/164-UPA, 1060 Vienna, Austria.
| | - Bettina Baumgartner
- Research Division of Environmental Analytics, Process Analytics and Sensors, Institute of Chemical Technologies and Analytics, Technische Universität Wien, Getreidemarkt 9/164-UPA, 1060 Vienna, Austria.
| | - Stefan Radel
- Research Division of Environmental Analytics, Process Analytics and Sensors, Institute of Chemical Technologies and Analytics, Technische Universität Wien, Getreidemarkt 9/164-UPA, 1060 Vienna, Austria.
| | - Andreas Schwaighofer
- Research Division of Environmental Analytics, Process Analytics and Sensors, Institute of Chemical Technologies and Analytics, Technische Universität Wien, Getreidemarkt 9/164-UPA, 1060 Vienna, Austria.
| | - Antonio Varriale
- Institute of Food Science, CNR, Via Roma 64, 83100 Avellino, Italy
| | | | - Sabato D'Auria
- Institute of Food Science, CNR, Via Roma 64, 83100 Avellino, Italy
| | - Bernhard Lendl
- Research Division of Environmental Analytics, Process Analytics and Sensors, Institute of Chemical Technologies and Analytics, Technische Universität Wien, Getreidemarkt 9/164-UPA, 1060 Vienna, Austria.
| |
Collapse
|
8
|
Kim M, Bayly PV, Meacham JM. Motile cells as probes for characterizing acoustofluidic devices. LAB ON A CHIP 2021; 21:521-533. [PMID: 33507201 DOI: 10.1039/d0lc01025a] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Acoustic microfluidics has emerged as a versatile solution for particle manipulation in medicine and biology. However, current technologies are largely confined to specialized research laboratories. The translation of acoustofluidics from research to clinical and industrial settings requires improved consistency and repeatability across different platforms. Performance comparisons will require straightforward experimental assessment tools that are not yet available. We introduce a method for characterizing acoustofluidic devices in real-time by exploiting the capacity of swimming microorganisms to respond to changes in their environment. The unicellular alga, Chlamydomonas reinhardtii, is used as an active probe to visualize the evolving acoustic pressure field within microfluidic channels and chambers. In contrast to more familiar mammalian cells, C. reinhardtii are simple to prepare and maintain, and exhibit a relatively uniform size distribution that more closely resembles calibration particles; however, unlike passive particles, these motile cells naturally fill complex chamber geometries and redistribute when the acoustic field changes or is turned off. In this way, C. reinhardtii cells offer greater flexibility than conventional polymer or glass calibration beads for in situ determination of device operating characteristics. To illustrate the technique, the varying spatial density and distribution of swimming cells are correlated to the acoustic potential to automatically locate device resonances within a specified frequency range. Peaks in the correlation coefficient of successive images not only identify the resonant frequencies for various geometries, but the peak shape can be related to the relative strength of the resonances. Qualitative mapping of the acoustic field strength with increasing voltage amplitude is also shown. Thus, we demonstrate that dynamically responsive C. reinhardtii enable real-time measurement and continuous monitoring of acoustofluidic device performance.
Collapse
Affiliation(s)
- Minji Kim
- Department of Mechanical Engineering and Materials Science, Washington University in St. Louis, St. Louis, Missouri 63130, USA.
| | - Philip V Bayly
- Department of Mechanical Engineering and Materials Science, Washington University in St. Louis, St. Louis, Missouri 63130, USA.
| | - J Mark Meacham
- Department of Mechanical Engineering and Materials Science, Washington University in St. Louis, St. Louis, Missouri 63130, USA.
| |
Collapse
|