1
|
Li W, Han Z, Yin X, Zhou R, Liu H. CDX2 alleviates hypoxia-induced apoptosis and oxidative stress in spermatogenic cells through suppression of reactive oxygen species-mediated Wnt/β-catenin pathway. J Appl Toxicol 2024; 44:853-862. [PMID: 38295844 DOI: 10.1002/jat.4580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 12/08/2023] [Accepted: 12/28/2023] [Indexed: 05/21/2024]
Abstract
Hypoxia-induced apoptosis and oxidative stress in spermatogenic cells are considered to be important factors leading to male infertility. It was reported that CDX2 expression was downregulated in hypoxia-stimulated spermatogenic cells. However, the effects of CDX2 on hypoxia-induced apoptosis and oxidative stress in spermatogenic cells are still unknown. This study aimed to explore the roles of CDX2 in hypoxia-induced injury of spermatogenic cells, as well as its mechanism of action. Spermatogenic cells were cultured under 1% oxygen for 48 h to established hypoxia damage model. Reactive oxygen species (ROS) generation was determined using 2',7'-dichlorofluorescein diacetate assay. Apoptosis was assessed using flow cytometry. Enzyme-linked immunosorbent assay was used to evaluate oxidative stress markers, including malondialdehyde (MDA) content and the activities of superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidases (GSH-Px). Protein levels were detected using western blotting. Hypoxia exposure induced increase in ROS generation, apoptosis rate, and oxidative stress in spermatogenic cells. ROS scavenger inhibited hypoxia-induced apoptosis, oxidative stress, and Wnt/β-catenin pathway activation. Hypoxia exposure induced CDX2 downregulation. CDX2 overexpression suppressed hypoxia-induced ROS generation, apoptosis rate, oxidative stress, and Wnt/β-catenin pathway activation. Moreover, CDX2 knockdown restores the inhibitory effects of si-β-catenin or NAC on hypoxia-induced activation of the Wnt/β-catenin pathway, apoptosis, and oxidative stress. In conclusion, our study suggests that CDX2 overexpression alleviates hypoxia-induced apoptosis and oxidative stress by suppression of ROS-mediated Wnt/β-catenin pathway in spermatogenic cells.
Collapse
Affiliation(s)
- Weiwei Li
- Department of Reproductive Medicine, Qinhuangdao Maternal and Child Health Hospital, Qinhuangdao, China
| | - Zhonghou Han
- Qinhuangdao Maternal and Child Health Hospital, Qinhuangdao, China
| | - Xiurong Yin
- Department of Reproductive Medicine, Qinhuangdao Maternal and Child Health Hospital, Qinhuangdao, China
| | - Rongjuan Zhou
- Department of Audit Section, Qinhuangdao Maternal and Child Health Hospital, Qinhuangdao, China
| | - Hongfeng Liu
- Department of Women's Health, Qinhuangdao Maternal and Child Health Hospital, Qinhuangdao, China
| |
Collapse
|
2
|
Yuan X, Sun X, Zhou B, Zhao S, Li Y, Ming H. HSPA4 regulated glioma progression via activation of AKT signaling pathway. Biochem Cell Biol 2024; 102:159-168. [PMID: 37339521 DOI: 10.1139/bcb-2022-0321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/22/2023] Open
Abstract
Glioma is still an incurable disease with high invasiveness. Heat shock 70 kDa protein 4 (HSPA4) is a member of the HSP110 family, and is associated with the development and progression of various cancers. In the current study, we assessed the expression of HSPA4 in clinical samples, and found that HSPA4 was up-regulated in glioma tissues and correlated with tumor recurrence and grade. Survival analyses demonstrated that glioma patients with high HSPA4 expression had lower overall survival and disease-free survival times. In vitro knockdown of HSPA4 inhibited glioma cell proliferation, mediated cell cycle arrest at G2 phase and apoptosis, and reduced the migration ability. In vivo, the growth of HSPA4-knockdown xenografts was markedly suppressed compared to the tumors formed by HSPA4-positive control cells. Additionally, Gene set enrichment analyses disclosed that HSPA4 was associated with the PI3K/Akt signaling pathway. The regulatory effect of the AKT activator SC79 on cell proliferation and apoptosis was suppressed by HSPA4 knockdown, indicating that HSPA4 is capable of promoting glioma development. In summary, these data showed that HSPA4 is likely to play a pivotal role in the progression of glioma, and consequently may be a promising therapeutic target for glioma therapy.
Collapse
Affiliation(s)
- Xi Yuan
- Department of Radiation Oncology, Jinling Hospital of Nanjing University, No.305, Zhongshan East Road, Nanjing, Jiangsu Province 210002, China
| | - Xiangdong Sun
- Department of Radiation Oncology, Jinling Hospital of Nanjing University, No.305, Zhongshan East Road, Nanjing, Jiangsu Province 210002, China
| | - Bin Zhou
- Department of Radiation Oncology, Jinling Hospital of Nanjing University, No.305, Zhongshan East Road, Nanjing, Jiangsu Province 210002, China
| | - Shuang Zhao
- Department of Radiation Oncology, Jinling Hospital of Nanjing University, No.305, Zhongshan East Road, Nanjing, Jiangsu Province 210002, China
| | - Yikun Li
- Department of Radiation Oncology, Jinling Hospital of Nanjing University, No.305, Zhongshan East Road, Nanjing, Jiangsu Province 210002, China
| | - Haolang Ming
- Department of Neurosurgery, Tianjin Medical University General Hospital, No.154 Anshan Road, Heping District, Tianjin 300052, China
| |
Collapse
|
3
|
Li X, Yi L, Liu X, Chen X, Chen S, Cai S. Isoquercitrin Played a Neuroprotective Role in Rats After Cerebral Ischemia/Reperfusion Through Up-Regulating Neuroglobin and Anti-Oxidative Stress. Transplant Proc 2023; 55:1751-1761. [PMID: 37391332 DOI: 10.1016/j.transproceed.2023.04.046] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 04/02/2023] [Accepted: 04/14/2023] [Indexed: 07/02/2023]
Abstract
BACKGROUND This study aims to investigate whether isoquercitrin (Iso) exerts a neuroprotective role effect after cerebral ischemia-reperfusion (CIR) via up-regulating neuroglobin (Ngb) or reducing oxidative stress. METHODS The middle cerebral artery occlusion/reperfusion (MCAO/R) model was constructed using Sprague Dawley rats. First, we divided 40 mice into 5 groups (n = 8): sham, MCAO/R, Low-dosed Iso (5 mg/kg Iso), Mid-dosed Iso (10 mg/kg Iso), and High-dosed Iso (20 mg/kg Iso). Then, 48 rats were separated into 6 groups (n = 8): sham, MCAO/R, Iso, artificial cerebrospinal fluid, Ngb antisense oligodeoxynucleotides (AS-ODNs), and AS-ODNs ± Iso. The effects of Iso on brain tissue injury and oxidative stress were evaluated using hematoxylin-eosin staining, terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling assay, immunofluorescence, western blotting, and real-time quantitative polymerase chain reaction, enzyme-linked immunosorbent assay, and reactive oxygen species (ROS) detection. RESULTS The neurologic score, infarct volume, histopathology, apoptosis rate, and ROS production were reduced in Iso dose-dependent. The Ngb expression enhanced in Iso dose-dependent. The oxidative stress-related factors SOD, GSH, CAT, Nrf2, HO-1, and HIF-1α levels also increased in Iso dose-dependent, whereas the MDA levels decreased. However, related regulation of Iso on brain tissue damage and oxidative stress were reversed after low expression of Ngb. CONCLUSION Isoquercitrin played a neuroprotective role after CIR through up-regulating of Ngb and anti-oxidative stress.
Collapse
Affiliation(s)
- Xiuping Li
- School of Public Health and Laboratory Medicine, Hunan University of Medicine, Huaihua, China
| | - Liming Yi
- Department of Human Anatomy, School of Basic Medical Sciences, Hunan University of Medicine, Huaihua, China
| | - Xing Liu
- Department of Human Anatomy, School of Basic Medical Sciences, Hunan University of Medicine, Huaihua, China
| | - Xia Chen
- Department of Human Anatomy, School of Basic Medical Sciences, Hunan University of Medicine, Huaihua, China
| | - Sanchun Chen
- Hunan Bestcome Traditional Medicine Co, Ltd, Huaihua, China
| | - Shichang Cai
- Department of Human Anatomy, School of Basic Medical Sciences, Hunan University of Medicine, Huaihua, China.
| |
Collapse
|
4
|
Ward GA, Dalton RP, Meyer BS, McLemore AF, Aldrich AL, Lam NB, Onimus AH, Vincelette ND, Trinh TL, Chen X, Calescibetta AR, Christiansen SM, Hou HA, Johnson JO, Wright KL, Padron E, Eksioglu EA, List AF. Oxidized Mitochondrial DNA Engages TLR9 to Activate the NLRP3 Inflammasome in Myelodysplastic Syndromes. Int J Mol Sci 2023; 24:ijms24043896. [PMID: 36835307 PMCID: PMC9966808 DOI: 10.3390/ijms24043896] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 02/09/2023] [Accepted: 02/14/2023] [Indexed: 02/17/2023] Open
Abstract
Myelodysplastic Syndromes (MDSs) are bone marrow (BM) failure malignancies characterized by constitutive innate immune activation, including NLRP3 inflammasome driven pyroptotic cell death. We recently reported that the danger-associated molecular pattern (DAMP) oxidized mitochondrial DNA (ox-mtDNA) is diagnostically increased in MDS plasma although the functional consequences remain poorly defined. We hypothesized that ox-mtDNA is released into the cytosol, upon NLRP3 inflammasome pyroptotic lysis, where it propagates and further enhances the inflammatory cell death feed-forward loop onto healthy tissues. This activation can be mediated via ox-mtDNA engagement of Toll-like receptor 9 (TLR9), an endosomal DNA sensing pattern recognition receptor known to prime and activate the inflammasome propagating the IFN-induced inflammatory response in neighboring healthy hematopoietic stem and progenitor cells (HSPCs), which presents a potentially targetable axis for the reduction in inflammasome activation in MDS. We found that extracellular ox-mtDNA activates the TLR9-MyD88-inflammasome pathway, demonstrated by increased lysosome formation, IRF7 translocation, and interferon-stimulated gene (ISG) production. Extracellular ox-mtDNA also induces TLR9 redistribution in MDS HSPCs to the cell surface. The effects on NLRP3 inflammasome activation were validated by blocking TLR9 activation via chemical inhibition and CRISPR knockout, demonstrating that TLR9 was necessary for ox-mtDNA-mediated inflammasome activation. Conversely, lentiviral overexpression of TLR9 sensitized cells to ox-mtDNA. Lastly, inhibiting TLR9 restored hematopoietic colony formation in MDS BM. We conclude that MDS HSPCs are primed for inflammasome activation via ox-mtDNA released by pyroptotic cells. Blocking the TLR9/ox-mtDNA axis may prove to be a novel therapeutic strategy for MDS.
Collapse
Affiliation(s)
- Grace A. Ward
- Cancer Biology PhD Program, University of South Florida and H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL 33612, USA
- Department of Malignant Hematology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL 33612, USA
- Department of Immunology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL 33612, USA
| | - Robert P. Dalton
- Department of Immunology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL 33612, USA
| | - Benjamin S. Meyer
- Department of Malignant Hematology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL 33612, USA
| | - Amy F. McLemore
- Department of Malignant Hematology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL 33612, USA
| | - Amy L. Aldrich
- Department of Malignant Hematology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL 33612, USA
| | - Nghi B. Lam
- Department of Malignant Hematology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL 33612, USA
| | - Alexis H. Onimus
- Department of Malignant Hematology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL 33612, USA
| | - Nicole D. Vincelette
- Department of Malignant Hematology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL 33612, USA
| | - Thu Le Trinh
- Department of Immunology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL 33612, USA
| | - Xianghong Chen
- Department of Immunology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL 33612, USA
| | | | - Sean M. Christiansen
- Department of Immunology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL 33612, USA
| | - Hsin-An Hou
- Division of Hematology, Department of Internal Medicine, National Taiwan University Hospital Taipei, Taipei 100229, Taiwan
| | - Joseph O. Johnson
- Analytic Microscopy Core Facility, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL 33612, USA
| | - Kenneth L. Wright
- Department of Immunology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL 33612, USA
| | - Eric Padron
- Department of Malignant Hematology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL 33612, USA
| | - Erika A. Eksioglu
- Department of Immunology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL 33612, USA
- Correspondence: ; Tel.: +1-813-745-8560
| | - Alan F. List
- Precision BioSciences, Inc., Durham, NC 27701, USA
| |
Collapse
|
5
|
Huang W, Zhang Z, Qiu Y, Gao Y, Fan Y, Wang Q, Zhou Q. NLRP3 inflammasome activation in response to metals. Front Immunol 2023; 14:1055788. [PMID: 36845085 PMCID: PMC9950627 DOI: 10.3389/fimmu.2023.1055788] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Accepted: 01/16/2023] [Indexed: 02/12/2023] Open
Abstract
Implant surgery is followed by a series of inflammatory reactions that directly affect its postoperative results. The inflammasome plays a vital role in the inflammatory response by inducing pyroptosis and producing interleukin-1β, which plays a critical role in inflammation and tissue damage. Therefore, it is essential to study the activation of the inflammasome in the bone healing process after implant surgery. As metals are the primary implant materials, metal-induced local inflammatory reactions have received significant attention, and there has been more and more research on the activation of the NLRP3 (NOD-like receptor protein-3) inflammasome caused by these metals. In this review, we consolidate the basic knowledge on the NLRP3 inflammasome structures, the present knowledge on the mechanisms of NLRP3 inflammasome activation, and the studies of metal-induced NLRP3 inflammasome activation.
Collapse
Affiliation(s)
- Wanyi Huang
- School and Hospital of Stomatology, China Medical University, Shenyang, China
- Liaoning Provincial Key Laboratory of Oral Diseases, China Medical University, Shenyang, China
| | - Ziqi Zhang
- School and Hospital of Stomatology, China Medical University, Shenyang, China
- Liaoning Provincial Key Laboratory of Oral Diseases, China Medical University, Shenyang, China
| | - Yueyang Qiu
- School and Hospital of Stomatology, China Medical University, Shenyang, China
- Liaoning Provincial Key Laboratory of Oral Diseases, China Medical University, Shenyang, China
| | - Yuan Gao
- School and Hospital of Stomatology, China Medical University, Shenyang, China
- Liaoning Provincial Key Laboratory of Oral Diseases, China Medical University, Shenyang, China
- Department of Orthodontics, Shenyang Stomatological Hospital, Shenyang, China
| | - Yongqiang Fan
- College of Life and Health Sciences, Northeastern University, Shenyang, China
- Shenyang National Laboratory for Materials Science, Northeastern University, Shenyang, China
| | - Qiang Wang
- School and Hospital of Stomatology, China Medical University, Shenyang, China
- Liaoning Provincial Key Laboratory of Oral Diseases, China Medical University, Shenyang, China
| | - Qing Zhou
- School and Hospital of Stomatology, China Medical University, Shenyang, China
- Liaoning Provincial Key Laboratory of Oral Diseases, China Medical University, Shenyang, China
| |
Collapse
|
6
|
Blanco S, Martínez-Lara E, Siles E, Peinado MÁ. New Strategies for Stroke Therapy: Nanoencapsulated Neuroglobin. Pharmaceutics 2022; 14:pharmaceutics14081737. [PMID: 36015363 PMCID: PMC9412405 DOI: 10.3390/pharmaceutics14081737] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 08/15/2022] [Accepted: 08/17/2022] [Indexed: 01/12/2023] Open
Abstract
Stroke is a global health and socio-economic problem. However, no efficient preventive and/or palliative treatments have yet been found. Neuroglobin (Ngb) is an endogen neuroprotective protein, but it only exerts its beneficial action against stroke after increasing its basal levels. Therefore, its systemic administration appears to be an efficient therapy applicable to stroke and other neurodegenerative pathologies. Unfortunately, Ngb cannot cross the blood-brain barrier (BBB), making its direct pharmacological use unfeasible. Thus, the association of Ngb with a drug delivery system (DDS), such as nanoparticles (NPs), appears to be a good strategy for overcoming this handicap. NPs are a type of DDS which efficiently transport Ngb and increase its bioavailability in the infarcted area. Hence, we previously built hyaluronate NPS linked to Ngb (Ngb-NPs) as a therapeutic tool against stroke. This nanoformulation induced an improvement of the cerebral infarct prognosis. However, this innovative therapy is still in development, and a more in-depth study focusing on its long-lasting neuroprotectant and neuroregenerative capabilities is needed. In short, this review aims to update the state-of-the-art of stroke therapies based on Ngb, paying special attention to the use of nanotechnological drug-delivering tools.
Collapse
|
7
|
Huang Q, Zhang C, Dong S, Han J, Qu S, Xie T, Zhao H, Shi Y. Asafoetida exerts neuroprotective effect on oxidative stress induced apoptosis through PI3K/Akt/GSK3β/Nrf2/HO-1 pathway. Chin Med 2022; 17:83. [PMID: 35794585 PMCID: PMC9258148 DOI: 10.1186/s13020-022-00630-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Accepted: 06/02/2022] [Indexed: 11/23/2022] Open
Abstract
Background Alzheimer's Disease (AD) is a serious neurodegenerative disease and there is currently no effective treatment for AD progression. The use of TCM as a potential treatment strategy for AD is an evolving field of investigation. Asafoetida (ASF), an oleo-gum-resin isolated from Ferula assa-foetida root, has been proven to possess antioxidative potential and neuroprotective effects, which is closely associated with the neurological disorders. However, the efficacy and further mechanisms of ASF in AD experimental models are still unclear. Methods A cognitive impairment of mouse model induced by scopolamine was established to determine the neuroprotective effects of ASF in vivo, as shown by behavioral tests, biochemical assays, Nissl staining, TUNEL staining, Immunohistochemistry, western blot and qPCR. Furthermore, the PC12 cells stimulated by H2O2 were applied to explore the underlying mechanisms of ASF-mediated efficacy. Then, the UPLCM analysis and integrated network pharmacology approach was utilized to identified the main constitutes of ASF and the potential target of ASF against AD, respectively. And the main identified targets were validated in vitro by western blot, qPCR and immunofluorescence staining. Results In vivo, ASF treatment significantly ameliorated cognitive impairment induced by scopolamine, as evidenced by improving learning and memory abilities, and reducing neuronal injury, cholinergic system impairment, oxidative stress and apoptosis in the hippocampus of mice. In vitro, our results validated that ASF can dose-dependently attenuated H2O2-induced pathological oxidative stress in PC12 cells by inhibiting ROS and MDA production, as well as promoting the activities of SOD, CAT, GSH. We also found that ASF can significantly suppressed the apoptosis rate of PC12 cells increased by H2O2 exposure, which was confirmed by flow cytometry analysis. Moreover, treatment with ASF obviously attenuated H2O2-induced increase in caspase-3 and Bax expression levels, as well as decrease in Bcl-2 protein expression. KEGG enrichment analysis indicated that the PI3K/Akt/GSK3β/Nrf2 /HO-1pathway may be involved in the regulation of cognitive impairment by ASF. The results of western blot, qPCR and immunofluorescence staining of vitro assay proved it. Conclusions Collectively, our work first uncovered the significant neuroprotective effect of ASF in treating AD in vivo. Then, we processed a series of vitro experiments to clarify the biological mechanism action. These data demonstrate that ASF can inhibit oxidative stress induced neuronal apoptosis to foster the prevention of AD both in vivo and in vitro, and it may exert the function of inhibiting AD through PI3K/Akt/GSK3β/Nrf2/HO-1pathway. Supplementary Information The online version contains supplementary material available at 10.1186/s13020-022-00630-7.
Collapse
|
8
|
Wang WT, Fan ML, Hu JN, Sha JY, Zhang H, Wang Z, Zhang JJ, Wang SH, Zheng SW, Li W. Maltol, a naturally occurring flavor enhancer, ameliorates cisplatin-induced apoptosis by inhibiting NLRP3 inflammasome activation by modulating ROS-mediated oxidative stress. J Funct Foods 2022. [DOI: 10.1016/j.jff.2022.105127] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
|
9
|
Fragrant rapeseed oil consumption prevents blood cholesterol accumulation via promoting fecal bile excretion and reducing oxidative stress in high cholesterol diet fed rats. J Funct Foods 2022. [DOI: 10.1016/j.jff.2021.104893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
10
|
Role of Neuroglobin in the Neuroprotective Actions of Estradiol and Estrogenic Compounds. Cells 2021; 10:cells10081907. [PMID: 34440676 PMCID: PMC8391807 DOI: 10.3390/cells10081907] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 07/24/2021] [Accepted: 07/26/2021] [Indexed: 12/17/2022] Open
Abstract
Estradiol exerts neuroprotective actions that are mediated by the regulation of a variety of signaling pathways and homeostatic molecules. Among these is neuroglobin, which is upregulated by estradiol and translocated to the mitochondria to sustain neuronal and glial cell adaptation to injury. In this paper, we will discuss the role of neuroglobin in the neuroprotective mechanisms elicited by estradiol acting on neurons, astrocytes and microglia. We will also consider the role of neuroglobin in the neuroprotective actions of clinically relevant synthetic steroids, such as tibolone. Finally, the possible contribution of the estrogenic regulation of neuroglobin to the generation of sex differences in brain pathology and the potential application of neuroglobin as therapy against neurological diseases will be examined.
Collapse
|
11
|
Carbonell T, Gomes AV. MicroRNAs in the regulation of cellular redox status and its implications in myocardial ischemia-reperfusion injury. Redox Biol 2020; 36:101607. [PMID: 32593128 PMCID: PMC7322687 DOI: 10.1016/j.redox.2020.101607] [Citation(s) in RCA: 74] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 05/31/2020] [Accepted: 06/12/2020] [Indexed: 12/24/2022] Open
Abstract
MicroRNAs (miRNAs) are small RNAs that do not encode for proteins and play key roles in the regulation of gene expression. miRNAs are involved in a comprehensive range of biological processes such as cell cycle control, apoptosis, and several developmental and physiological processes. Oxidative stress can affect the expression levels of multiple miRNAs and, conversely, miRNAs may regulate the expression of redox sensors, alter critical components of the cellular antioxidants, interact with the proteasome, and affect DNA repair systems. The number of publications identifying redox-sensitive miRNAs has increased significantly over the last few years, and some miRNA targets such as Nrf2, SIRT1 and NF-κB have been identified. The complex interplay between miRNAs and ROS is discussed together with their role in myocardial ischemia-reperfusion injury and the potential use of circulating miRNAs as biomarkers of myocardial infarction. Detailed knowledge of redox-sensitive miRNAs is needed to be able to effectively use individual compounds or sets of miRNA-modulating compounds to improve the health-related outcomes associated with different diseases.
Collapse
Affiliation(s)
- Teresa Carbonell
- Department of Cell Biology, Physiology and Immunology, University of Barcelona, Avda Diagonal 643, 08028, Barcelona, Spain.
| | - Aldrin V Gomes
- Department of Physiology and Membrane Biology, University of California, Davis, 176 Briggs Hall, One Shields Avenue, Davis, CA, 95616, USA; Department of Physiology, Neurobiology and Behavior, University of California, Davis, 176 Briggs Hall, One Shields Avenue, Davis, CA, 95616, USA
| |
Collapse
|
12
|
Zhang C, Yang R, Hao X, Geng Z, Wang Z. Mn-TAT PTD-Ngb ameliorates inflammation through the elimination of damaged mitochondria and the activation of Nrf2-antioxidant signaling pathway. Biochem Pharmacol 2020; 178:114055. [PMID: 32470548 DOI: 10.1016/j.bcp.2020.114055] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2020] [Accepted: 05/22/2020] [Indexed: 01/02/2023]
Abstract
Inflammation, mitochondrial dysfunction and oxidative stress are closely associated with neurological diseases. In this study, Mn-TAT PTD-Ngb, a novel artificial recombinant protein, exerted inhibitory effects on the inflammatory response and inflammasome activation. During the lipopolysaccharide (LPS)-induced inflammatory response, Mn-TAT PTD-Ngb suppressed the nuclear translocation of nuclear factor kappa B (NF-κB) and the release of proinflammatory cytokines and attenuated the phosphorylation of mitogen-activated protein kinase (MAPK). Furthermore, the recombinant protein blocked reactive oxygen species (ROS) production, abated mitochondrial dysfunction and significantly suppressed the assembly of the inflammasome, which led to the overproduction of proinflammatory cytokines IL-1β and IL-18. Mn-TAT PTD-Ngb increased the level of nuclear factor-erythroid 2 -related factor 2 (Nrf2), which protected against oxidative stress and improved pyroptosis. Mn-TAT PTD-Ngb might be a promising drug for curing neurological diseases.
Collapse
Affiliation(s)
- Cui Zhang
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210023, PR China
| | - Ruirui Yang
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210023, PR China
| | - Xuehui Hao
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210023, PR China
| | - Zhirong Geng
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210023, PR China.
| | - Zhilin Wang
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210023, PR China.
| |
Collapse
|