1
|
Gahm K, Nguyen R, Acácio M, Anglister N, Vaadia G, Spiegel O, Pinter-Wollman N. A wrap-around movement path randomization method to distinguish social and spatial drivers of animal interactions. Philos Trans R Soc Lond B Biol Sci 2024; 379:20220531. [PMID: 39230446 PMCID: PMC11449205 DOI: 10.1098/rstb.2022.0531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 01/08/2024] [Accepted: 02/02/2024] [Indexed: 09/05/2024] Open
Abstract
Studying the spatial-social interface requires tools that distinguish between social and spatial drivers of interactions. Testing hypotheses about the factors determining animal interactions often involves comparing observed interactions with reference or 'null' models. One approach to accounting for spatial drivers of social interactions in reference models is randomizing animal movement paths to decouple spatial and social phenotypes while maintaining environmental effects on movements. Here, we update a reference model that detects social attraction above the effect of spatial constraints. We explore the use of our 'wrap-around' method and compare its performance to the previous approach using agent-based simulations. The wrap-around method provides reference models that are more similar to the original tracking data, while still distinguishing between social and spatial drivers. Furthermore, the wrap-around approach results in fewer false-positives than its predecessor, especially when animals do not return to one place each night but change movement foci, either locally or directionally. Finally, we show that interactions among GPS-tracked griffon vultures (Gyps fulvus) emerge from social attraction rather than from spatial constraints on their movements. We conclude by highlighting the biological situations in which the updated method might be most suitable for testing hypotheses about the underlying causes of social interactions. This article is part of the theme issue 'The spatial-social interface: a theoretical and empirical integration'.
Collapse
Affiliation(s)
- Kaija Gahm
- Department of Ecology and Evolutionary Biology, University of California, Los Angeles, CA, USA
| | - Ryan Nguyen
- Department of Ecology and Evolutionary Biology, University of California, Los Angeles, CA, USA
| | - Marta Acácio
- School of Zoology, Tel-Aviv University, Tel Aviv, Israel
| | - Nili Anglister
- School of Zoology, Tel-Aviv University, Tel Aviv, Israel
| | - Gideon Vaadia
- School of Zoology, Tel-Aviv University, Tel Aviv, Israel
| | - Orr Spiegel
- School of Zoology, Tel-Aviv University, Tel Aviv, Israel
| | - Noa Pinter-Wollman
- Department of Ecology and Evolutionary Biology, University of California, Los Angeles, CA, USA
| |
Collapse
|
2
|
Preckler-Quisquater S, Quinn CB, Sacks BN. Maintenance of a narrow hybrid zone between native and introduced red foxes (Vulpes vulpes) despite conspecificity and high dispersal capabilities. Mol Ecol 2024; 33:e17418. [PMID: 38847182 DOI: 10.1111/mec.17418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 05/04/2024] [Accepted: 05/13/2024] [Indexed: 06/27/2024]
Abstract
Human-facilitated introductions of nonnative populations can lead to secondary contact between allopatric lineages, resulting in lineage homogenisation or the formation of stable hybrid zones maintained by reproductive barriers. We investigated patterns of gene flow between the native Sacramento Valley red fox (Vulpes vulpes patwin) and introduced conspecifics of captive-bred origin in California's Central Valley. Considering their recent divergence (20-70 kya), we hypothesised that any observed barriers to gene flow were primarily driven by pre-zygotic (e.g. behavioural differences) rather than post-zygotic (e.g. reduced hybrid fitness) barriers. We also explored whether nonnative genes could confer higher fitness in the human-dominated landscape resulting in selective introgression into the native population. Genetic analysis of red foxes (n = 682) at both mitochondrial (cytochrome b + D-loop) and nuclear (19,051 SNPs) loci revealed narrower cline widths than expected under a simulated model of unrestricted gene flow, consistent with the existence of reproductive barriers. We identified several loci with reduced introgression that were previously linked to behavioural divergence in captive-bred and domestic canids, supporting pre-zygotic, yet possibly hereditary, barriers as a mechanism driving the narrowness and stability of the hybrid zone. Several loci with elevated gene flow from the nonnative into the native population were linked to genes associated with domestication and adaptation to human-dominated landscapes. This study contributes to our understanding of hybridisation dynamics in vertebrates, particularly in the context of species introductions and landscape changes, underscoring the importance of considering how multiple mechanisms may be maintaining lineages at the species and subspecies level.
Collapse
Affiliation(s)
- Sophie Preckler-Quisquater
- Mammalian Ecology and Conservation Unit, Veterinary Genetics Laboratory, School of Veterinary Medicine, University of California, Davis, California, USA
| | - Cate B Quinn
- Mammalian Ecology and Conservation Unit, Veterinary Genetics Laboratory, School of Veterinary Medicine, University of California, Davis, California, USA
- USDA Forest Service, Rocky Mountain Research Station, National Genomics Center for Wildlife and Fish Conservation, Missoula, Montana, USA
| | - Benjamin N Sacks
- Mammalian Ecology and Conservation Unit, Veterinary Genetics Laboratory, School of Veterinary Medicine, University of California, Davis, California, USA
- Department of Population Health and Reproduction, School of Veterinary Medicine, University of California, Davis, California, USA
| |
Collapse
|
3
|
English HM, Börger L, Kane A, Ciuti S. Advances in biologging can identify nuanced energetic costs and gains in predators. MOVEMENT ECOLOGY 2024; 12:7. [PMID: 38254232 PMCID: PMC10802026 DOI: 10.1186/s40462-024-00448-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 01/08/2024] [Indexed: 01/24/2024]
Abstract
Foraging is a key driver of animal movement patterns, with specific challenges for predators which must search for mobile prey. These patterns are increasingly impacted by global changes, principally in land use and climate. Understanding the degree of flexibility in predator foraging and social strategies is pertinent to wildlife conservation under global change, including potential top-down effects on wider ecosystems. Here we propose key future research directions to better understand foraging strategies and social flexibility in predators. In particular, rapid continued advances in biologging technology are helping to record and understand dynamic behavioural and movement responses of animals to environmental changes, and their energetic consequences. Data collection can be optimised by calibrating behavioural interpretation methods in captive settings and strategic tagging decisions within and between social groups. Importantly, many species' social systems are increasingly being found to be more flexible than originally described in the literature, which may be more readily detectable through biologging approaches than behavioural observation. Integrating the effects of the physical landscape and biotic interactions will be key to explaining and predicting animal movements and energetic balance in a changing world.
Collapse
Affiliation(s)
- Holly M English
- School of Biology and Environmental Science, University College Dublin, Belfield, Dublin, Ireland.
| | - Luca Börger
- Department of Biosciences, Swansea University, Swansea, UK
| | - Adam Kane
- School of Biology and Environmental Science, University College Dublin, Belfield, Dublin, Ireland
| | - Simone Ciuti
- School of Biology and Environmental Science, University College Dublin, Belfield, Dublin, Ireland
| |
Collapse
|
4
|
Zilkha N, Chuartzman SG, Sofer Y, Pen Y, Cum M, Mayo A, Alon U, Kimchi T. Sex-dependent control of pheromones on social organization within groups of wild house mice. Curr Biol 2023; 33:1407-1420.e4. [PMID: 36917976 PMCID: PMC10132349 DOI: 10.1016/j.cub.2023.02.039] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 01/23/2023] [Accepted: 02/13/2023] [Indexed: 03/16/2023]
Abstract
Dominance hierarchy is a fundamental social phenomenon in a wide range of mammalian species, critically affecting fitness and health. Here, we investigate the role of pheromone signals in the control of social hierarchies and individual personalities within groups of wild mice. For this purpose, we combine high-throughput behavioral phenotyping with computational tools in freely interacting groups of wild house mice, males and females, in an automated, semi-natural system. We show that wild mice form dominance hierarchies in both sexes but use sex-specific strategies, displaying distinct male-typical and female-typical behavioral personalities that were also associated with social ranking. Genetic disabling of VNO-mediated pheromone detection generated opposite behavioral effects within groups, enhancing social interactions in males and reducing them in females. Behavioral personalities in the mutated mice displayed mixtures of male-typical and female-typical behaviors, thus blurring sex differences. In addition, rank-associated personalities were abolished despite the fact that both sexes of mutant mice formed stable hierarchies. These findings suggest that group organization is governed by pheromone-mediated sex-specific neural circuits and pave the way to investigate the mechanisms underlying sexual dimorphism in dominance hierarchies under naturalistic settings.
Collapse
Affiliation(s)
- Noga Zilkha
- Department of Brain Sciences, Weizmann Institute of Science, 7610001 Rehovot, Israel
| | | | - Yizhak Sofer
- Department of Brain Sciences, Weizmann Institute of Science, 7610001 Rehovot, Israel
| | - Yefim Pen
- Department of Brain Sciences, Weizmann Institute of Science, 7610001 Rehovot, Israel
| | - Meghan Cum
- Department of Brain Sciences, Weizmann Institute of Science, 7610001 Rehovot, Israel
| | - Avi Mayo
- Department of Molecular Cell Biology, Weizmann Institute of Science, 7610001 Rehovot, Israel
| | - Uri Alon
- Department of Molecular Cell Biology, Weizmann Institute of Science, 7610001 Rehovot, Israel
| | - Tali Kimchi
- Department of Brain Sciences, Weizmann Institute of Science, 7610001 Rehovot, Israel.
| |
Collapse
|
5
|
Panaccio M, Ferrari C, Bassano B, Stanley CR, von Hardenberg A. Social network analysis of small social groups: Application of a hurdle GLMM approach in the Alpine marmot (
Marmota marmota
). Ethology 2021. [DOI: 10.1111/eth.13151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Matteo Panaccio
- Dipartimento di Biologia e Biotecnologie University of Pavia Pavia Italy
| | - Caterina Ferrari
- Dipartimento di Scienze della Vita e Biologia dei Sistemi University of Turin Torino Italy
- Alpine Wildlife Research Centre Gran Paradiso National Park Valsavarenche (AO) Italy
| | - Bruno Bassano
- Alpine Wildlife Research Centre Gran Paradiso National Park Valsavarenche (AO) Italy
| | - Christina R. Stanley
- Department of Biological Sciences Conservation Biology Research Group University of Chester Chester UK
| | - Achaz von Hardenberg
- Department of Biological Sciences Conservation Biology Research Group University of Chester Chester UK
| |
Collapse
|
6
|
McLean S, Nichols DS, Davies NW. Volatile scent chemicals in the urine of the red fox, Vulpes vulpes. PLoS One 2021; 16:e0248961. [PMID: 33784329 PMCID: PMC8009367 DOI: 10.1371/journal.pone.0248961] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Accepted: 03/08/2021] [Indexed: 11/20/2022] Open
Abstract
The red fox is a highly adaptable mammal that has established itself world-wide in many different environments. Contributing to its success is a social structure based on chemical signalling between individuals. Urine scent marking behaviour has long been known in foxes, but there has not been a recent study of the chemical composition of fox urine. We have used solid-phase microextraction and gas chromatography-mass spectrometry to analyze the urinary volatiles in 15 free-ranging wild foxes (2 female) living in farmlands and bush in Victoria, Australia. Foxes here are routinely culled as feral pests, and the urine was collected by bladder puncture soon after death. Compounds were identified from their mass spectra and Kovats retention indices. There were 53 possible endogenous scent compounds, 10 plant-derived compounds and 5 anthropogenic xenobiotics. Among the plant chemicals were several aromatic apocarotenoids previously found in greater abundance in the fox tail gland. They reflect the dietary consumption of carotenoids, essential for optimal health. One third of all the endogenous volatiles were sulfur compounds, a highly odiferous group which included thiols, methylsulfides and polysulfides. Five of the sulfur compounds (3-isopentenyl thiol, 1- and 2-phenylethyl methyl sulfide, octanethiol and benzyl methyl sulfide) have only been found in foxes, and four others (isopentyl methyl sulfide, 3-isopentenyl methyl sulfide, and 1- and 2-phenylethane thiol) only in some canid, mink and skunk species. This indicates that they are not normal mammalian metabolites and have evolved to serve a specific role. This role is for defence in musteloids and most likely for chemical communication in canids. The total production of sulfur compounds varied greatly between foxes (median 1.2, range 0.4–32.3 μg ‘acetophenone equivalents’/mg creatinine) as did the relative abundance of different chemical types. The urinary scent chemistry may represent a highly evolved system of semiochemicals for communication between foxes.
Collapse
Affiliation(s)
- Stuart McLean
- School of Pharmacy and Pharmacology, University of Tasmania, Hobart, Tasmania, Australia
- * E-mail:
| | - David S. Nichols
- Central Science Laboratory, University of Tasmania, Hobart, Tasmania, Australia
| | - Noel W. Davies
- Central Science Laboratory, University of Tasmania, Hobart, Tasmania, Australia
| |
Collapse
|
7
|
Padovani R, Shi Z, Harris S. Are British urban foxes ( Vulpes vulpes) "bold"? The importance of understanding human-wildlife interactions in urban areas. Ecol Evol 2021; 11:835-851. [PMID: 33520170 PMCID: PMC7820170 DOI: 10.1002/ece3.7087] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 10/26/2020] [Accepted: 11/02/2020] [Indexed: 11/26/2022] Open
Abstract
Human-wildlife interactions are believed to be increasing in urban areas. In Britain, numerous media reports have stated that urban foxes (Vulpes vulpes) are becoming "bolder," thereby posing a risk to public safety. However, such claims overlook how an individual's personality might influence urban fox behavior. Personality determines multiple aspects of an animal's interactions with both conspecifics and its environment, and can have a significant impact on how people perceive wildlife. Furthermore, describing urban foxes as "bold" confounds two different but inter-related behaviors, both of which influence an animal's propensity to take risks. Neophobia affects an animal's reaction to novelty, wariness its reaction to potential threats. Since urban wildlife frequently encounters both novel and threatening stimuli, a highly adaptable species such as the red fox might be predicted to exhibit reduced neophobia and wariness. We investigated how social status influenced both behaviors in Bristol's fox population. Dominant foxes were significantly more neophobic and warier than subordinates, which adopt a more exploratory and risk-taking lifestyle to meet their energetic and other needs. We found no seasonal effect on neophobia and wariness, although this may be due to sample size. The presence of conspecifics decreased neophobia for dominants, and wariness for both dominants and subordinates. We highlight the importance of considering animal social status and personality when planning management protocols, since interventions that destabilize fox social groups are likely to increase the number of subordinate foxes in the population, thereby increasing rather than decreasing the number of interactions between humans and urban foxes.
Collapse
Affiliation(s)
| | - Zhuoyu Shi
- School of Biological SciencesUniversity of BristolBristolUK
| | - Stephen Harris
- School of Biological SciencesUniversity of BristolBristolUK
| |
Collapse
|
8
|
Campbell SJ, Ashley W, Gil-Fernandez M, Newsome TM, Di Giallonardo F, Ortiz-Baez AS, Mahar JE, Towerton AL, Gillings M, Holmes EC, Carthey AJR, Geoghegan JL. Red fox viromes in urban and rural landscapes. Virus Evol 2020; 6:veaa065. [PMID: 33365150 PMCID: PMC7744383 DOI: 10.1093/ve/veaa065] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The Red fox (Vulpes vulpes) has established large populations in Australia’s urban and rural areas since its introduction following European settlement. The cryptic and highly adaptable nature of foxes allows them to invade cities and live among humans whilst remaining largely unnoticed. Urban living and access to anthropogenic food resources also influence fox ecology. Urban foxes grow larger, live at higher densities, and are more social than their rural counterparts. These ecological changes in urban red foxes are likely to impact the pathogens that they harbour, and foxes could pose a disease risk to humans and other species that share these urban spaces. To investigate this possibility, we used a meta-transcriptomic approach to characterise the virome of urban and rural foxes across the Greater Sydney region in Australia. Urban and rural foxes differed significantly in virome composition, with rural foxes harbouring a greater abundance of viruses compared to their urban counterparts. We identified ten potentially novel vertebrate-associated viruses in both urban and rural foxes, some of which are related to viruses associated with disease in domestic species and humans. These included members of the Astroviridae, Picobirnaviridae, Hepeviridae, and Picornaviridae as well as rabbit haemorrhagic disease virus-2. This study sheds light on the viruses carried by urban and rural foxes and emphasises the need for greater genomic surveillance of foxes and other invasive species at the human–wildlife interface.
Collapse
Affiliation(s)
- Sarah J Campbell
- Department of Biological Sciences, Macquarie University, Sydney, New South Wales 2109, Australia
| | - Wilbur Ashley
- Department of Biological Sciences, Macquarie University, Sydney, New South Wales 2109, Australia
| | - Margarita Gil-Fernandez
- Department of Biological Sciences, Macquarie University, Sydney, New South Wales 2109, Australia
| | - Thomas M Newsome
- School of Life and Environmental Sciences, The University of Sydney, Sydney, New South Wales 2006, Australia
| | | | - Ayda Susana Ortiz-Baez
- Marie Bashir Institute for Infectious Diseases and Biosecurity, School of Life and Environmental Sciences and School of Medical Sciences, The University of Sydney, Sydney, New South Wales 2006, Australia
| | - Jackie E Mahar
- Marie Bashir Institute for Infectious Diseases and Biosecurity, School of Life and Environmental Sciences and School of Medical Sciences, The University of Sydney, Sydney, New South Wales 2006, Australia
| | - Alison L Towerton
- Greater Sydney Local Land Services, Sydney, New South Wales 2750, Australia
| | - Michael Gillings
- Department of Biological Sciences, Macquarie University, Sydney, New South Wales 2109, Australia
| | - Edward C Holmes
- Marie Bashir Institute for Infectious Diseases and Biosecurity, School of Life and Environmental Sciences and School of Medical Sciences, The University of Sydney, Sydney, New South Wales 2006, Australia
| | - Alexandra J R Carthey
- Department of Biological Sciences, Macquarie University, Sydney, New South Wales 2109, Australia
| | - Jemma L Geoghegan
- Department of Biological Sciences, Macquarie University, Sydney, New South Wales 2109, Australia.,Department of Microbiology and Immunology, University of Otago, Dunedin 9016, New Zealand.,Institute of Environmental Science and Research, Wellington 5018, New Zealand
| |
Collapse
|
9
|
Franks VR, Ewen JG, McCready M, Rowcliffe JM, Smith D, Thorogood R. Analysing age structure, residency and relatedness uncovers social network structure in aggregations of young birds. Anim Behav 2020. [DOI: 10.1016/j.anbehav.2020.06.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
10
|
Tolhurst BA, Baker RJ, Cagnacci F, Scott DM. Spatial Aspects of Gardens Drive Ranging in Urban Foxes ( Vulpes vulpes): The Resource Dispersion Hypothesis Revisited. Animals (Basel) 2020; 10:ani10071167. [PMID: 32660022 PMCID: PMC7401560 DOI: 10.3390/ani10071167] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Revised: 07/06/2020] [Accepted: 07/07/2020] [Indexed: 11/16/2022] Open
Abstract
Red foxes are a well-established species of urban ecosystems in the UK and worldwide. Understanding the spatial ecology of foxes in urban landscapes is important for enhancement of urban biodiversity and effective disease management. The Resource Dispersion Hypothesis (RDH) holds that territory (home range) size is linked to distribution and richness of habitat patches such that aggregation of rich resources should be negatively associated with range size. Here, we tested the RDH on a sample of 20 red foxes (Vulpes vulpes) in the city of Brighton and Hove. We focused on residential garden areas, as foxes were associated with these in previous studies. We equipped 12 male and 8 female foxes with GPS collars recording at 15 min intervals during discrete seasons over four years. We regressed fox core area size against garden size, number of garden patches, and edge density within and between patches as extracted from GIS in a series of bivariate linear mixed models. We found that foxes used smaller core areas where gardens were large and well-connected and larger core areas where numerous, smaller gardens were fragmented by internal barriers (e.g., fences, walls) or bisected by other habitats such as managed grassland or built-up areas. Our findings confirm the RDH and help to inform future urban planning for wildlife.
Collapse
Affiliation(s)
- Bryony A. Tolhurst
- Ecology, Conservation and Zoonosis (ECZ) Research and Enterprise Group, Huxley Building, University of Brighton, Brighton BN2 4GJ, UK;
- Correspondence:
| | - Rowenna J. Baker
- Ecology, Conservation and Zoonosis (ECZ) Research and Enterprise Group, Huxley Building, University of Brighton, Brighton BN2 4GJ, UK;
| | - Francesca Cagnacci
- Research and Innovation Centre, Fondazione Edmund Mach, Via Mach 1, San Michele all’Adige, 38010 Trentino, Italy;
| | - Dawn M. Scott
- School of Life Sciences, Huxley Building, Keele University, Keele ST5 5BG, UK;
| |
Collapse
|