1
|
Zeng X, Zhao W, Deng A, Xiang L, Tang X, Li H, Yin H, Huang R, Xiao Y, Liu Y, Yao Z, Liu Y, Du Z, Huang K. Characterization and phylogenetic analysis of the chloroplast genome of Diospyros aff. oleifera. Mitochondrial DNA B Resour 2024; 9:1467-1472. [PMID: 39479478 PMCID: PMC11520100 DOI: 10.1080/23802359.2024.2419451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Accepted: 10/16/2024] [Indexed: 11/02/2024] Open
Abstract
The Diospyros genus (Ebenaceae) has significant economic value. During field surveys, we discovered a Diospyros specimen showing morphological overlap with both D. oleifera and D. kaki var. silvestris, provisionally named Diospyros aff. oleifera. To resolve its taxonomy, we sequenced and analyzed its chloroplast genome. The complete chloroplast genome is 157,732 bp with a quadripartite structure. mVISTA analysis revealed unique sequence variations compared to related species. Phylogenetic analysis using 75 protein-coding genes grouped it with D. oleifera, indicating their close relationship. Our findings suggest this specimen likely represents a novel, undescribed species. This study provides insights into Diospyros diversity and a foundation for future research.
Collapse
Affiliation(s)
- Xingyu Zeng
- College of Life and Environmental Sciences, Hunan Provincial Key Laboratory for Molecular Immunity Technology of Aquatic Animal Diseases, Hunan University of Arts and Science, Changde, China
| | - Wenyan Zhao
- College of Life and Environmental Sciences, Hunan Provincial Key Laboratory for Molecular Immunity Technology of Aquatic Animal Diseases, Hunan University of Arts and Science, Changde, China
| | - Aihua Deng
- College of Life and Environmental Sciences, Hunan Provincial Key Laboratory for Molecular Immunity Technology of Aquatic Animal Diseases, Hunan University of Arts and Science, Changde, China
| | - Lixuan Xiang
- College of Life and Environmental Sciences, Hunan Provincial Key Laboratory for Molecular Immunity Technology of Aquatic Animal Diseases, Hunan University of Arts and Science, Changde, China
| | - Xuan Tang
- College of Life and Environmental Sciences, Hunan Provincial Key Laboratory for Molecular Immunity Technology of Aquatic Animal Diseases, Hunan University of Arts and Science, Changde, China
| | - Huan Li
- College of Life and Environmental Sciences, Hunan Provincial Key Laboratory for Molecular Immunity Technology of Aquatic Animal Diseases, Hunan University of Arts and Science, Changde, China
| | - Hanbin Yin
- College of Life and Environmental Sciences, Hunan Provincial Key Laboratory for Molecular Immunity Technology of Aquatic Animal Diseases, Hunan University of Arts and Science, Changde, China
| | - Rongjie Huang
- College of Life and Environmental Sciences, Hunan Provincial Key Laboratory for Molecular Immunity Technology of Aquatic Animal Diseases, Hunan University of Arts and Science, Changde, China
| | - Yulong Xiao
- College of Life and Environmental Sciences, Hunan Provincial Key Laboratory for Molecular Immunity Technology of Aquatic Animal Diseases, Hunan University of Arts and Science, Changde, China
| | - Yi Liu
- College of Life and Environmental Sciences, Hunan Provincial Key Laboratory for Molecular Immunity Technology of Aquatic Animal Diseases, Hunan University of Arts and Science, Changde, China
| | - Zui Yao
- College of Life and Environmental Sciences, Hunan Provincial Key Laboratory for Molecular Immunity Technology of Aquatic Animal Diseases, Hunan University of Arts and Science, Changde, China
| | - Yongle Liu
- College of Life and Environmental Sciences, Hunan Provincial Key Laboratory for Molecular Immunity Technology of Aquatic Animal Diseases, Hunan University of Arts and Science, Changde, China
| | - Zhitian Du
- College of Life and Environmental Sciences, Hunan Provincial Key Laboratory for Molecular Immunity Technology of Aquatic Animal Diseases, Hunan University of Arts and Science, Changde, China
| | - Kerui Huang
- College of Life and Environmental Sciences, Hunan Provincial Key Laboratory for Molecular Immunity Technology of Aquatic Animal Diseases, Hunan University of Arts and Science, Changde, China
| |
Collapse
|
2
|
Wang W, Chen B, Ma R, Qiao M, Fu Y. The DNA barcode identification of Dalbergia odorifera T. Chen and Dalbergia tonkinensis Prain. BMC PLANT BIOLOGY 2023; 23:546. [PMID: 37936056 PMCID: PMC10629101 DOI: 10.1186/s12870-023-04513-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Accepted: 10/04/2023] [Indexed: 11/09/2023]
Abstract
BACKGROUND Dalbergia odorifera is a precious tree species with unique economic and medicinal values, which is difficult to distinguish from Dalbergia tonkinensis by traditional identification methods such as morphological characteristics and wood structure characteristics. It has been demonstrated that the identification of tree species can be effectively achieved using DNA barcoding, but there is a lack of study of the combined sequences used as DNA barcodes in the two tree species. In this study, 10 single sequences and 4 combined sequences were selected for analysis, and the identification effect of each sequence was evaluated by the distance-based method, BLAST-based search, character-based method, and tree-based method. RESULTS Among the single sequences and the combined sequences, the interspecies distance of trnH-psbA and ITS2 + trnH-psbA was greater than the intraspecies distance, and there was no overlap in their frequency distribution plots. The results of the Wilcoxon signed-rank test for the interspecies distance of each sequence showed that the interspecies differences of the single sequences except trnL-trnF, trnH-psbA, and ycf3 were significantly smaller than those of the combined sequences. The results of BLAST analysis showed that trnH-psbA could accurately identify D. odorifera and D. tonkinensis at the species level. In the character-based method, single sequences of trnL-trnF, trnH-psbA with all the combined sequences can be used for the identification of D. odorifera and D. tonkinensis. In addition, the neighbor-joining (NJ) trees constructed based on trnH-psbA and ITS2 + trnH-psbA were able to cluster D. odorifera and D. tonkinensis on two clades. CONCLUSIONS The results showed that the character-based method with the BLOG algorithm was the most effective among all the evaluation methods, and the combined sequences can improve the ability to identify tree species compared with single sequences. Finally, the trnH-psbA and ITS2 + trnH-psbA were proposed as DNA barcodes to identify D. odorifera and D. tonkinensis.
Collapse
Affiliation(s)
- Weijie Wang
- Guangxi Key Laboratory of Forest Ecology and Conservation, Key Laboratory of National Forestry and Grassland Administration on Cultivation of Fast-Growing Timber in Central South China, College of Forestry, Guangxi University, Nanning, 530004, China
| | - Baixu Chen
- Guangxi Key Laboratory of Forest Ecology and Conservation, Key Laboratory of National Forestry and Grassland Administration on Cultivation of Fast-Growing Timber in Central South China, College of Forestry, Guangxi University, Nanning, 530004, China
| | - Ruoke Ma
- Guangxi Key Laboratory of Forest Ecology and Conservation, Key Laboratory of National Forestry and Grassland Administration on Cultivation of Fast-Growing Timber in Central South China, College of Forestry, Guangxi University, Nanning, 530004, China
| | - Mengji Qiao
- Guangxi Key Laboratory of Forest Ecology and Conservation, Key Laboratory of National Forestry and Grassland Administration on Cultivation of Fast-Growing Timber in Central South China, College of Forestry, Guangxi University, Nanning, 530004, China.
| | - Yunlin Fu
- Guangxi Key Laboratory of Forest Ecology and Conservation, Key Laboratory of National Forestry and Grassland Administration on Cultivation of Fast-Growing Timber in Central South China, College of Forestry, Guangxi University, Nanning, 530004, China.
| |
Collapse
|
3
|
Huang P, Li C, Lin F, Liu Y, Zong Y, Li B, Zheng Y. Chromosome-level genome assembly and population genetic analysis of a near-threatened rosewood species ( Dalbergia cultrata Pierre Graham ex Benth) provide insights into its evolutionary and cold stress responses. FRONTIERS IN PLANT SCIENCE 2023; 14:1212967. [PMID: 37810393 PMCID: PMC10552272 DOI: 10.3389/fpls.2023.1212967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Accepted: 08/28/2023] [Indexed: 10/10/2023]
Abstract
Dalbergia cultrata Pierre Graham ex Benth (D. cultrata) is a precious rosewood tree species that grows in the tropical and subtropical regions of Asia. In this study, we used PacBio long-reading sequencing technology and Hi-C assistance to sequence and assemble the reference genome of D. cultrata. We generated 171.47 Gb PacBio long reads and 72.43 Gb Hi-C data and yielded an assembly of 10 pseudochromosomes with a total size of 690.99 Mb and Scaffold N50 of 65.76 Mb. The analysis of specific genes revealed that the triterpenoids represented by lupeol may play an important role in D. cultrata's potential medicinal value. Using the new reference genome, we analyzed the resequencing of 19 Dalbergia accessions and found that D. cultrata and D. cochinchinensis have the latest genetic relationship. Transcriptome sequencing of D. cultrata leaves grown under cold stress revealed that MYB transcription factor and E3 ubiquitin ligase may be playing an important role in the cold response of D. cultrata. Genome resources and identified genetic variation, especially those genes related to the biosynthesis of phytochemicals and cold stress response, will be helpful for the introduction, domestication, utilization, and further breeding of Dalbergia species.
Collapse
Affiliation(s)
- Ping Huang
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Beijing, China
- Laboratory of Forest Silviculture and Tree Cultivation, National Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, China
| | - Changhong Li
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Beijing, China
- Laboratory of Forest Silviculture and Tree Cultivation, National Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, China
| | - Furong Lin
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Beijing, China
- Laboratory of Forest Silviculture and Tree Cultivation, National Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, China
| | - Yu Liu
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Beijing, China
- Laboratory of Forest Silviculture and Tree Cultivation, National Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, China
- Wenzhou Key Laboratory of Resource Plant Innovation and Utilization, Zhejiang Institute of Subtropical Crops, Zhejiang Academy of Agricultural Sciences, Wenzhou, Zhejiang, China
| | - Yichen Zong
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Beijing, China
- Laboratory of Forest Silviculture and Tree Cultivation, National Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, China
| | - Bin Li
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Beijing, China
- Laboratory of Forest Silviculture and Tree Cultivation, National Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, China
| | - Yongqi Zheng
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Beijing, China
- Laboratory of Forest Silviculture and Tree Cultivation, National Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, China
| |
Collapse
|
4
|
Xu XM, Wei Z, Sun JZ, Zhao QF, Lu Y, Wang ZL, Zhu SX. Phylogeny of Leontopodium (Asteraceae) in China-with a reference to plastid genome and nuclear ribosomal DNA. FRONTIERS IN PLANT SCIENCE 2023; 14:1163065. [PMID: 37583593 PMCID: PMC10425225 DOI: 10.3389/fpls.2023.1163065] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Accepted: 07/10/2023] [Indexed: 08/17/2023]
Abstract
The infrageneric taxonomy system, species delimitation, and interspecies systematic relationships of Leontopodium remain controversial and complex. However, only a few studies have focused on the molecular phylogeny of this genus. In this study, the characteristics of 43 chloroplast genomes of Leontopodium and its closely related genera were analyzed. Phylogenetic relationships were inferred based on chloroplast genomes and nuclear ribosomal DNA (nrDNA). Finally, together with the morphological characteristics, the relationships within Leontopodium were identified and discussed. The results showed that the chloroplast genomes of Filago, Gamochaeta, and Leontopodium were well-conserved in terms of gene number, gene order, and GC content. The most remarkable differences among the three genera were the length of the complete chloroplast genome, large single-copy region, small single-copy region, and inverted repeat region. In addition, the chloroplast genome structure of Leontopodium exhibited high consistency and was obviously different from that of Filago and Gamochaeta in some regions, such as matk, trnK (UUU)-rps16, petN-psbM, and trnE (UUC)-rpoB. All the phylogenetic trees indicated that Leontopodium was monophyletic. Except for the subgeneric level, our molecular phylogenetic results were inconsistent with the previous taxonomic system, which was based on morphological characteristics. Nevertheless, we found that the characteristics of the leaf base, stem types, and carpopodium base were phylogenetically correlated and may have potential value in the taxonomic study of Leontopodium. In the phylogenetic trees inferred using complete chloroplast genomes, the subgen. Leontopodium was divided into two clades (Clades 1 and 2), with most species in Clade 1 having herbaceous stems, amplexicaul, or sheathed leaves, and constricted carpopodium; most species in Clade 2 had woody stems, not amplexicaul and sheathed leaves, and not constricted carpopodium.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Shi-Xin Zhu
- School of Life Sciences, Zhengzhou University, Zhengzhou, China
| |
Collapse
|
5
|
Xu XM, Liu DH, Zhu SX, Wang ZL, Wei Z, Liu QR. Phylogeny of Trigonotis in China-with a special reference to its nutlet morphology and plastid genome. PLANT DIVERSITY 2023; 45:409-421. [PMID: 37601540 PMCID: PMC10435912 DOI: 10.1016/j.pld.2023.03.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 03/01/2023] [Accepted: 03/09/2023] [Indexed: 08/22/2023]
Abstract
The genus Trigonotis comprises nearly 60 species mainly distributed in East and Southeast Asia. China has the largest number of Trigonotis species in the world, with a total of 44 species, of which 38 are endemic. Nutlet morphology is useful for the taxonomic delimitation of Trigonotis. However, there are still controversial circumscriptions of nutlet shape in some species. In previous studies, interspecies phylogenetic relationships were inferred using few DNA markers and very few taxa, which possibly led to erroneous or incomplete conclusions. In this study, the nutlet morphology of 39 Trigonotis taxa and the characteristics of 34 complete chloroplast genomes (29 taxa) were investigated and analyzed. Then, the phylogenetic relationships were discussed within this genus based on complete chloroplast genomes. To the best of our knowledge, this study is the first comprehensive analysis of nutlet morphology and complete chloroplast genome of Trigonotis. Based on nutlet morphology, Trigonotis can be divided into two groups: Group 1, hemispherical or oblique tetrahedron with carpopodiums, and Group 2, inverted tetrahedron without carpopodiums. The chloroplast genome of Trigonotis exhibited a typical quadripartite structure, including 84-86 protein-coding, 37 transfer RNA, and 8 ribosomal RNA genes, with a total length of 147,247-148,986 bp. Genes in the junctions were well conserved in Trigonotis, similar to those in other Boraginaceae s.str. species. Furthermore, Trigonotis chloroplast genomes showed relatively high diversity, with more conserved genic regions than intergenic regions; in addition, we detected 14 hot spots (Pi > 0.005) in non-coding regions. Phylogenetic analyses based on chloroplast genome data identified highly resolved relationships between Trigonotis species. Specifically, Trigonotis was divided into two clades with strong support: one clade included species with hemispherical or oblique tetrahedron nutlets with carpopodiums and bracts, whereas the other clade included species with inverted tetrahedron nutlets without carpopodiums or bracts. Our results may inform future taxonomic, phylogenetic, and evolutionary studies on Boraginaceae.
Collapse
Affiliation(s)
- Xue-Min Xu
- School of Life Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - Dan-Hui Liu
- College of Life Sciences, Beijing Normal University, Beijing, 100875, China
| | - Shi-Xin Zhu
- School of Life Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - Zhen-Long Wang
- School of Life Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - Zhen Wei
- School of Life Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - Quan-Ru Liu
- College of Life Sciences, Beijing Normal University, Beijing, 100875, China
| |
Collapse
|
6
|
Zhou SM, Wang F, Yan SY, Zhu ZM, Gao XF, Zhao XL. Phylogenomics and plastome evolution of Indigofera (Fabaceae). FRONTIERS IN PLANT SCIENCE 2023; 14:1186598. [PMID: 37346129 PMCID: PMC10280451 DOI: 10.3389/fpls.2023.1186598] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 05/10/2023] [Indexed: 06/23/2023]
Abstract
Introduction Indigofera L. is the third largest genus in Fabaceae and includes economically important species that are used for indigo dye-producing, medicinal, ornamental, and soil and water conservation. The genus is taxonomically difficult due to the high level of overlap in morphological characters of interspecies, fewer reliability states for classification, and extensive adaptive evolution. Previous characteristic-based taxonomy and nuclear ITS-based phylogenies have contributed to our understanding of Indigofera taxonomy and evolution. However, the lack of chloroplast genomic resources limits our comprehensive understanding of the phylogenetic relationships and evolutionary processes of Indigofera. Methods Here, we newly assembled 18 chloroplast genomes of Indigofera. We performed a series of analyses of genome structure, nucleotide diversity, phylogenetic analysis, species pairwise Ka/Ks ratios, and positive selection analysis by combining with allied species in Papilionoideae. Results and discussion The chloroplast genomes of Indigofera exhibited highly conserved structures and ranged in size from 157,918 to 160,040 bp, containing 83 protein-coding genes, 37 tRNA genes, and eight rRNA genes. Thirteen highly variable regions were identified, of which trnK-rbcL, ndhF-trnL, and ycf1 were considered as candidate DNA barcodes for species identification of Indigofera. Phylogenetic analysis using maximum likelihood (ML) and Bayesian inference (BI) methods based on complete chloroplast genome and protein-coding genes (PCGs) generated a well-resolved phylogeny of Indigofera and allied species. Indigofera monophyly was strongly supported, and four monophyletic lineages (i.e., the Pantropical, East Asian, Tethyan, and Palaeotropical clades) were resolved within the genus. The species pairwise Ka/Ks ratios showed values lower than 1, and 13 genes with significant posterior probabilities for codon sites were identified in the positive selection analysis using the branch-site model, eight of which were associated with photosynthesis. Positive selection of accD suggested that Indigofera species have experienced adaptive evolution to selection pressures imposed by their herbivores and pathogens. Our study provided insight into the structural variation of chloroplast genomes, phylogenetic relationships, and adaptive evolution in Indigofera. These results will facilitate future studies on species identification, interspecific and intraspecific delimitation, adaptive evolution, and the phylogenetic relationships of the genus Indigofera.
Collapse
Affiliation(s)
- Sheng-Mao Zhou
- Key Laboratory for Forest Resources Conservation and Utilization in the Southwest Mountains of China, Ministry of Education, College of Forestry, Southwest Forestry University, Kunming, China
| | - Fang Wang
- Key Laboratory for Forest Resources Conservation and Utilization in the Southwest Mountains of China, Ministry of Education, College of Forestry, Southwest Forestry University, Kunming, China
| | - Si-Yuan Yan
- Key Laboratory for Forest Resources Conservation and Utilization in the Southwest Mountains of China, Ministry of Education, College of Forestry, Southwest Forestry University, Kunming, China
| | - Zhang-Ming Zhu
- School of Ecology and Environmental Science and Yunnan Key Laboratory for Plateau Mountain Ecology and Restoration of Degraded Environments, Yunnan University, Kunming, China
| | - Xin-Fen Gao
- Chinese Academy of Sciences (CAS) Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization and Ecological Restoration and Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China
| | - Xue-Li Zhao
- Key Laboratory for Forest Resources Conservation and Utilization in the Southwest Mountains of China, Ministry of Education, College of Forestry, Southwest Forestry University, Kunming, China
| |
Collapse
|
7
|
Samji A, Eashwarlal K, Shanmugavel S, Kumar S, Warrier RR. Chloroplast genome skimming of a potential agroforestry species Melia dubia. Cav and its comparative phylogenetic analysis with major Meliaceae members. 3 Biotech 2023; 13:30. [PMID: 36597460 PMCID: PMC9805483 DOI: 10.1007/s13205-022-03447-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Accepted: 12/20/2022] [Indexed: 01/02/2023] Open
Abstract
Melia dubia Cav. is a fast-growing plywood species gaining popularity due to high economic returns. This study aimed to assemble and annotate the chloroplast (cp) genome of M. dubia and compare it with previously published cp genomes within the Meliaceae family. The chloroplast genome was constructed by the de novo and reference-based assembly of paired-end reads generated by long-read sequencing of genomic DNA. The cp genome, sized 171,956 bp, comprised a typical angiosperm quadripartite structure. The large single-copy (LSC) region of 76,055 bp and a small single-copy (SSC) region of 18,693 bp cover 55% of the genome. The pair of inverted repeats (IRA and IRB) were 38,604 bp each (covering 45% of the genome). We identified unique genes (112), including protein-coding genes (79), tRNA (29) and 4 rRNA genes. Phylogenetic analysis using complete cp genomes of 11 species from Meliaceae revealed that M. dubia and M. azedarach shared a sister clade. Comparative analysis using cp genome of M. dubia, M. azedarach and Azadirachta indica revealed a high sequence similarity (> 70%). Five intergenic regions were highly conserved among the three cp genomes. The gene trnG-UCC at LSC region was found to be more divergent in M. dubia and M. azedarach, while it shows complete conservation within M. dubia and A. indica. This is the first report of the chloroplast genome in M. dubia. The available levels of taxonomic expertise and clarity in species delineation within the Melia genus are low. The information generated provides scope for identifying new barcodes which increases the discriminatory power of the species within the genus beyond morphological identification. Supplementary Information The online version contains supplementary material available at 10.1007/s13205-022-03447-1.
Collapse
Affiliation(s)
- Aghila Samji
- Division of Plant Biotechnology and Cytogenetics, Institute of Forest Genetics and Tree Breeding, PB No. 1061, Forest Campus, Coimbatore, 641 002 India
| | - Komal Eashwarlal
- Division of Plant Biotechnology and Cytogenetics, Institute of Forest Genetics and Tree Breeding, PB No. 1061, Forest Campus, Coimbatore, 641 002 India
| | - Senthil Shanmugavel
- Division of Plant Biotechnology and Cytogenetics, Institute of Forest Genetics and Tree Breeding, PB No. 1061, Forest Campus, Coimbatore, 641 002 India
| | - Santhosh Kumar
- Division of Plant Biotechnology and Cytogenetics, Institute of Forest Genetics and Tree Breeding, PB No. 1061, Forest Campus, Coimbatore, 641 002 India
| | - Rekha Ravindranath Warrier
- Division of Plant Biotechnology and Cytogenetics, Institute of Forest Genetics and Tree Breeding, PB No. 1061, Forest Campus, Coimbatore, 641 002 India
| |
Collapse
|
8
|
Comprehensive Comparative Analysis and Development of Molecular Markers for Dianthus Species Based on Complete Chloroplast Genome Sequences. Int J Mol Sci 2022; 23:ijms232012567. [PMID: 36293423 PMCID: PMC9604191 DOI: 10.3390/ijms232012567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 10/14/2022] [Accepted: 10/17/2022] [Indexed: 11/16/2022] Open
Abstract
Dianthus spp. is a genus with high economic and ornamental value in the Caryophyllaceae, which include the famous fresh-cut carnation and the traditional Chinese herbal medicine, D. superbus. Despite the Dianthus species being seen everywhere in our daily lives, its genome information and phylogenetic relationships remain elusive. Thus, we performed the assembly and annotation of chloroplast genomes for 12 individuals from seven Dianthus species. On this basis, we carried out the first comprehensive and systematic analysis of the chloroplast genome sequence characteristics and the phylogenetic evolution of Dianthus. The chloroplast genome of 12 Dianthus individuals ranged from 149,192 bp to 149,800 bp, containing 124 to 126 functional genes. Sequence repetition analysis showed the number of simple sequence repeats (SSRs) ranged from 75 to 80, tandem repeats ranged from 23 to 41, and pair-dispersed repeats ranged from 28 to 43. Next, we calculated the synonymous nucleotide substitution rates (Ks) of all 76 protein coding genes to obtain the evolution rate of these coding genes in Dianthus species; rpl22 showed the highest Ks (0.0471), which suggested that it evolved the swiftest. By reconstructing the phylogenetic relationships within Dianthus and other species of Caryophyllales, 16 Dianthus individuals (12 individuals reported in this study and four individuals downloaded from NCBI) were divided into two strongly supported sister clades (Clade A and Clade B). The Clade A contained five species, namely D. caryophyllus, D. barbatus, D. gratianopolitanus, and two cultivars (‘HY’ and ‘WC’). The Clade B included four species, in which D. superbus was a sister branch with D. chinensis, D. longicalyx, and F1 ‘87M’ (the hybrid offspring F1 from D. chinensis and ‘HY’). Further, based on sequence divergence analysis and hypervariable region analysis, we selected several regions that had more divergent sequences, to develop DNA markers. Additionally, we found that one DNA marker can be used to differentiate Clade A and Clade B in Dianthus. Taken together, our results provide useful information for our understanding of Dianthus classification and chloroplast genome evolution.
Collapse
|
9
|
Khairnar RC, Parihar N, Prabhavalkar KS, Bhatt LK. Emerging targets signaling for inflammation in Parkinson's disease drug discovery. Metab Brain Dis 2022; 37:2143-2161. [PMID: 35536461 DOI: 10.1007/s11011-022-00999-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Accepted: 04/29/2022] [Indexed: 10/18/2022]
Abstract
Parkinson's disease (PD) patients not only show motor features such as bradykinesia, tremor, and rigidity but also non-motor features such as anxiety, depression, psychosis, memory loss, attention deficits, fatigue, sexual dysfunction, gastrointestinal issues, and pain. Many pharmacological treatments are available for PD patients; however, these treatments are partially or transiently effective since they only decrease the symptoms. As these therapies are unable to restore dopaminergic neurons and stop the development of Parkinson's disease, therefore, the need for an effective therapeutic approach is required. The current review summarizes novel targets for PD, that can be utilized to identify disease-modifying treatments.
Collapse
Affiliation(s)
- Rhema Chandan Khairnar
- Department of Pharmacology, SVKM's Dr. Bhanuben Nanavati College of Pharmacy, Vile Parle (West), Mumbai, 400056, India
| | - Niraj Parihar
- Department of Pharmacology, SVKM's Dr. Bhanuben Nanavati College of Pharmacy, Vile Parle (West), Mumbai, 400056, India
| | - Kedar S Prabhavalkar
- Department of Pharmacology, SVKM's Dr. Bhanuben Nanavati College of Pharmacy, Vile Parle (West), Mumbai, 400056, India
| | - Lokesh Kumar Bhatt
- Department of Pharmacology, SVKM's Dr. Bhanuben Nanavati College of Pharmacy, Vile Parle (West), Mumbai, 400056, India.
| |
Collapse
|
10
|
Analyzing integrated network of methylation and gene expression profiles in lung squamous cell carcinoma. Sci Rep 2022; 12:15799. [PMID: 36138066 PMCID: PMC9500023 DOI: 10.1038/s41598-022-20232-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Accepted: 09/09/2022] [Indexed: 11/24/2022] Open
Abstract
Gene expression, DNA methylation, and their organizational relationships are commonly altered in lung squamous cell carcinoma (LUSC). To elucidate these complex interactions, we reconstructed a differentially expressed gene network and a differentially methylated cytosine (DMC) network by partial information decomposition and an inverse correlation algorithm, respectively. Then, we performed graph union to integrate the networks. Community detection and enrichment analysis of the integrated network revealed close interactions between the cell cycle, keratinization, immune system, and xenobiotic metabolism gene sets in LUSC. DMC analysis showed that hypomethylation targeted the gene sets responsible for cell cycle, keratinization, and NRF2 pathways. On the other hand, hypermethylated genes affected circulatory system development, the immune system, extracellular matrix organization, and cilium organization. By centrality measurement, we identified NCAPG2, PSMG3, and FADD as hub genes that were highly connected to other nodes and might play important roles in LUSC gene dysregulation. We also found that the genes with high betweenness centrality are more likely to affect patients’ survival than those with low betweenness centrality. These results showed that the integrated network analysis enabled us to obtain a global view of the interactions and regulations in LUSC.
Collapse
|
11
|
Comparative Analyses of Complete Chloroplast Genomes and Karyotypes of Allotetraploid Iris koreana and Its Putative Diploid Parental Species ( Iris Series Chinenses, Iridaceae). Int J Mol Sci 2022; 23:ijms231810929. [PMID: 36142840 PMCID: PMC9504294 DOI: 10.3390/ijms231810929] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 09/08/2022] [Accepted: 09/15/2022] [Indexed: 12/16/2022] Open
Abstract
The Iris series Chinenses in Korea comprises four species (I. minutoaurea, I. odaesanensis, I. koreana, and I. rossii), and the group includes some endangered species, owing to their high ornamental, economic, and conservation values. Among them, the putative allotetraploid, Iris koreana (2n = 4x = 50), is hypothesized to have originated from the hybridization of the diploids I. minutoaurea (2n = 2x = 22) and I. odaesanensis (2n = 2x = 28) based on morphological characters, chromosome numbers, and genome size additivity. Despite extensive morphological and molecular phylogenetical studies on the genus Iris, little is known about Korean irises in terms of their complete chloroplast (cp) genomes and molecular cytogenetics that involve rDNA loci evolution based on fluorescence in situ hybridization (FISH). This study reports comparative analyses of the karyotypes of the three Iris species (I. koreana, I. odaesanensis, and I. minutoaurea), with an emphasis on the 5S and 35S rDNA loci number and localization using FISH together with the genome size and chromosome number. Moreover, the cp genomes of the same individuals were sequenced and assembled for comparative analysis. The rDNA loci numbers, which were localized consistently at the same position in all species, and the chromosome numbers and genome size values of tetraploid Iris koreana (four 5S and 35S loci; 2n = 50; 1C = 7.35 pg) were additively compared to its putative diploid progenitors, I. minutoaurea (two 5S and 35S loci; 2n = 22; 1C = 3.71 pg) and I. odaesanensis (two 5S and 35S loci; 2n = 28; 1C = 3.68 pg). The chloroplast genomes were 152,259–155,145 bp in length, and exhibited a conserved quadripartite structure. The Iris cp genomes were highly conserved and similar to other Iridaceae cp genomes. Nucleotide diversity analysis indicated that all three species had similar levels of genetic variation, but the cp genomes of I. koreana and I. minutoaurea were more similar to each other than to I. odaesanensis. Positive selection was inferred for psbK and ycf2 genes of the three Iris species. Phylogenetic analyses consistently recovered I. odaesanensis as a sister to a clade containing I. koreana and I. minutoaurea. Although the phylogenetic relationship, rDNA loci number, and localization, together with the genome size and chromosome number of the three species, allowed for the inference of I. minutoaurea as a putative maternal taxon and I. odaesanensis as a paternal taxon, further analyses involving species-specific molecular cytogenetic markers and genomic in situ hybridization are required to interpret the mechanisms involved in the origin of the chromosomal variation in Iris series Chinenses. This study contributes towards the genomic and chromosomal evolution of the genus Iris.
Collapse
|
12
|
Contreras-Díaz R, Carevic FS, Huanca-Mamani W, Oses R, Arias-Aburto M, Navarrete-Fuentes M. Chloroplast genome structure and phylogeny of Geoffroea decorticans, a native tree from Atacama Desert. ELECTRON J BIOTECHN 2022. [DOI: 10.1016/j.ejbt.2022.09.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
|
13
|
Oh J, Ceong HT, Na D, Park C. A machine learning model for classifying G-protein-coupled receptors as agonists or antagonists. BMC Bioinformatics 2022; 23:346. [PMID: 35982407 PMCID: PMC9389651 DOI: 10.1186/s12859-022-04877-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 08/03/2022] [Indexed: 11/13/2022] Open
Abstract
Background G-protein coupled receptors (GPCRs) sense and transmit extracellular signals into the intracellular machinery by regulating G proteins. GPCR malfunctions are associated with a variety of signaling-related diseases, including cancer and diabetes; at least a third of the marketed drugs target GPCRs. Thus, characterization of their signaling and regulatory mechanisms is crucial for the development of effective drugs. Results In this study, we developed a machine learning model to identify GPCR agonists and antagonists. We designed two-step prediction models: the first model identified the ligands binding to GPCRs and the second model classified the ligands as agonists or antagonists. Using 990 selected subset features from 5270 molecular descriptors calculated from 4590 ligands deposited in two drug databases, our model classified non-ligands, agonists, and antagonists of GPCRs, and achieved an area under the ROC curve (AUC) of 0.795, sensitivity of 0.716, specificity of 0.744, and accuracy of 0.733. In addition, we verified that 70% (44 out of 63) of FDA-approved GPCR-targeting drugs were correctly classified into their respective groups. Conclusions Studies of ligand–GPCR interaction recognition are important for the characterization of drug action mechanisms. Our GPCR–ligand interaction prediction model can be employed in the pharmaceutical sciences for the efficient virtual screening of putative GPCR-binding agonists and antagonists. Supplementary Information The online version contains supplementary material available at 10.1186/s12859-022-04877-7.
Collapse
Affiliation(s)
- Jooseong Oh
- School of Biological Sciences and Technology, Chonnam National University, Gwangju, 61186, Republic of Korea
| | - Hyi-Thaek Ceong
- Department of Multimedia, Chonnam National University, Yeosu, 59626, Republic of Korea.
| | - Dokyun Na
- Department of Biomedical Engineering, Chung-Ang University, Seoul, 06974, Republic of Korea.
| | - Chungoo Park
- School of Biological Sciences and Technology, Chonnam National University, Gwangju, 61186, Republic of Korea.
| |
Collapse
|
14
|
Li C, Liu Y, Lin F, Zheng Y, Huang P. Characterization of the complete chloroplast genome sequences of six Dalbergia species and its comparative analysis in the subfamily of Papilionoideae (Fabaceae). PeerJ 2022; 10:e13570. [PMID: 35795179 PMCID: PMC9252178 DOI: 10.7717/peerj.13570] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 05/20/2022] [Indexed: 01/17/2023] Open
Abstract
Dalbergia spp. are numerous and widely distributed in pantropical areas in Asia, Africa and America, and most of the species have important economic and ecological value as precious timber. In this study, we determined and characterized six complete chloroplast genomes of Dalbergia species (Dalbergia obtusifolia, D. hupeana, D. mimosoides, D. sissoo, D. hancei, D. balansae), which displayed the typical quadripartite structure of angiosperms. The sizes of the genomes ranged from 155,698 bp (D. hancei) to 156,419 bp (D. obtusifolia). The complete chloroplast genomes of Dalbergia include 37 tRNA genes, eight rRNA genes and 84 protein-coding genes. We analysed the sequence diversity of Dalberigia chloroplast genomes coupled with previous reports. The results showed 12 noncoding regions (rps16-accD, trnR-UCU-trnG-UCC, ndhE-ndhG, trnG-UCC-psbZ, rps8-rpl14, trnP-UGG-psaJ, ndhH-rps15, trnQ-UUG-rps16, trnS-GCU-psbI, rps12-clpP, psbA-trnK-UUU, trnK-UUU-intron), and four coding regions (rps16, ycf1, rps15 and ndhF) showed many nucleotide variations that could be used as potential molecular markers. Based on a site-specific model, we analysed the selective pressure of chloroplast genes in Dalbergia species. Twenty-two genes with positively selected sites were detected, involving the photosynthetic system (ndhC, adhD, ndhF, petB, psaA, psaB, psbB, psbC, psbK and rbcL), self-replication category of genes (rpoA, rpoC2, rps3, rps12 and rps18) and others (accD, ccsA, cemA, clpP, matK, ycf1 and ycf2). Additionally, we identified potential RNA editing sites that were relatively conserved in the genus Dalbergia. Furthermore, the comparative analysis of cp genomes of Dalbergieae species indicated that the boundary of IRs/SSC was highly variable, which resulted in the size variation of cp genomes. Finally, phylogenetic analysis showed an inferred phylogenetic tree of Papilionoideae species with high bootstrap support and suggested that Amorpheae was the sister of the clade Dalbergieae. Moreover, three genera of the Pterocarpus clade showed a nested evolutionary relationship. These complete cp genomes provided valuable information for understanding the genetic variation and phylogenetic relationship of Dalbergia species with their relatives.
Collapse
Affiliation(s)
- Changhong Li
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, China
| | - Yu Liu
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, China
- Key Laboratory of Resource Plant Innovation and Utilization, Institute of Subtropical Crops of Zhejiang Province, Zhejiang Academy of Agricultural Sciences, Wenzhou, Zhejiang, China
| | - Furong Lin
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, China
| | - Yongqi Zheng
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, China
| | - Ping Huang
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, China
| |
Collapse
|
15
|
Comparative analysis of two Korean irises (Iris ruthenica and I. uniflora, Iridaceae) based on plastome sequencing and micromorphology. Sci Rep 2022; 12:9424. [PMID: 35676304 PMCID: PMC9177672 DOI: 10.1038/s41598-022-13528-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Accepted: 05/06/2022] [Indexed: 11/12/2022] Open
Abstract
Iris ruthenica Ker Gawl. and I. uniflora Pall. ex Link, which are rare and endangered species in Korea, possess considerable horticultural and medicinal value among Korean irises. However, discrimination of the species is hindered by extensive morphological similarity. Thus, the aim of the present study was to identify discriminating features by comparing the species’ complete plastid genome (i.e., plastome) sequences and micromorphological features, including leaf margins, stomatal complex distribution (hypostomatic vs. amphistomatic leaves), anther stomata density, and tepal epidermal cell patterns. Plastome comparison revealed slightly divergent regions within intergenic spacer regions, and the most variable sequences, which were distributed in non-coding regions, could be used as molecular markers for the discrimination of I. ruthenica and I. uniflora. Phylogenetic analysis of the Iris species revealed that I. ruthenica and I. uniflora formed a well-supported clade. The comparison of plastomes and micromorphological features performed in this study provides useful information for elucidating taxonomic, phylogenetic, and evolutionary relationships in Iridaceae. Further studies, including those based on molecular cytogenetic approaches using species specific markers, will offer insights into species delimitation of the two closely related Iris species.
Collapse
|
16
|
Chloroplast Genome of Lithocarpus dealbatus (Hook.f. & Thomson ex Miq.) Rehder Establishes Monophyletic Origin of the Species and Reveals Mutational Hotspots with Taxon Delimitation Potential. Life (Basel) 2022; 12:life12060828. [PMID: 35743859 PMCID: PMC9225305 DOI: 10.3390/life12060828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 05/22/2022] [Accepted: 05/23/2022] [Indexed: 11/21/2022] Open
Abstract
There is phylogenetic ambiguity in the genus Lithocarpus and subfamily Quercoideae (Family: Fagaceae). Lithocarpus dealbatus, an ecologically important tree, is the dominant species among the Quercoideae in India. Although several studies have been conducted on the species' regeneration and ecological and economic significance, limited information is available on its phylo-genomics. To resolve the phylogeny in Quercoideae, we sequenced and assembled the 161,476 bp chloroplast genome of L. dealbatus, which has a large single-copy section of 90,732 bp and a small single-copy region of 18,987 bp, separated by a pair of inverted repeat regions of 25,879 bp. The chloroplast genome contained 133 genes, of which 86 were protein-coding genes, 39 were transfer RNAs, and eight were ribosomal RNAs. Analysis of repeat elements and RNA editing sites revealed interspecific similarities within the Lithocarpus genus. DNA diversity analysis identified five highly diverged coding and noncoding hotspot regions in the four genera, which can be used as polymorphic markers for species/taxon delimitation across the four genera of Quercoideae viz., Lithocarpus, Quercus, Castanea, and Castanopsis. The chloroplast-based phylogenetic analysis among the Quercoideae established a monophyletic origin of Lithocarpus, and a closer evolutionary lineage with a few Quercus species. Besides providing insights into the chloroplast genome architecture of L. dealbatus, the study identified five mutational hotspots having high taxon-delimitation potential across four genera of Quercoideae.
Collapse
|
17
|
Wu HY, Wong KH, Kong BLH, Siu TY, But GWC, Tsang SSK, Lau DTW, Shaw PC. Comparative Analysis of Chloroplast Genomes of Dalbergia Species for Identification and Phylogenetic Analysis. PLANTS 2022; 11:plants11091109. [PMID: 35567110 PMCID: PMC9104903 DOI: 10.3390/plants11091109] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 04/12/2022] [Accepted: 04/12/2022] [Indexed: 11/16/2022]
Abstract
Dalbergia L.f. is a pantropical genus consisting of 269 species of trees, shrubs, and woody lianas. This genus is listed in CITES Appendices because of illegal logging and trafficking driven by the high economic value of its heartwood. Some species are also used medicinally. Species identification of Dalbergia timber and herbs is challenging but essential for CITES implementation. Molecular methods had been developed for some timber species, mostly from Madagascar and Southeast Asia, but medicinal species in south China were usually not included in those studies. Here, we sequenced and assembled the chloroplast genomes of five Dalbergia species native to Hong Kong, four of which are medicinal plants. Our aim is to find potential genetic markers for the identification of medicinal Dalbergia species based on divergence hotspots detected in chloroplast genomes after comparative and phylogenetic analysis. Dalbergia chloroplast genomes displayed the typical quadripartite structure, with the 50 kb inversion found in most Papilionoideae lineages. Their sizes and gene content are well conserved. Phylogenetic tree of Dalbergia chloroplast genomes showed an overall topology similar to that of ITS sequences. Four divergence hotspots (trnL(UAA)-trnT(UGU), ndhG-ndhI, ycf1a and ycf1b) were identified and candidate markers for identification of several Dalbergia species were suggested.
Collapse
Affiliation(s)
- Hoi-Yan Wu
- Li Dak Sum Yip Yio Chin R & D Centre for Chinese Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong, China; (H.-Y.W.); (B.L.-H.K.)
| | - Kwan-Ho Wong
- Shiu-Ying Hu Herbarium, School of Life Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong, China; (K.-H.W.); (T.-Y.S.); (D.T.-W.L.)
- School of Life Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong, China; (G.W.-C.B.); (S.S.-K.T.)
| | - Bobby Lim-Ho Kong
- Li Dak Sum Yip Yio Chin R & D Centre for Chinese Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong, China; (H.-Y.W.); (B.L.-H.K.)
- School of Life Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong, China; (G.W.-C.B.); (S.S.-K.T.)
| | - Tin-Yan Siu
- Shiu-Ying Hu Herbarium, School of Life Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong, China; (K.-H.W.); (T.-Y.S.); (D.T.-W.L.)
- School of Biological Sciences, The University of Hong Kong, Hong Kong, China
| | - Grace Wing-Chiu But
- School of Life Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong, China; (G.W.-C.B.); (S.S.-K.T.)
| | - Stacey Shun-Kei Tsang
- School of Life Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong, China; (G.W.-C.B.); (S.S.-K.T.)
| | - David Tai-Wai Lau
- Shiu-Ying Hu Herbarium, School of Life Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong, China; (K.-H.W.); (T.-Y.S.); (D.T.-W.L.)
| | - Pang-Chui Shaw
- Li Dak Sum Yip Yio Chin R & D Centre for Chinese Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong, China; (H.-Y.W.); (B.L.-H.K.)
- School of Life Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong, China; (G.W.-C.B.); (S.S.-K.T.)
- State Key Laboratory of Research on Bioactivities and Clinical Applications of Medicinal Plants (The Chinese University of Hong Kong) and Institute of Chinese Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong, China
- Correspondence:
| |
Collapse
|
18
|
Comparative Analyses of 35 Complete Chloroplast Genomes from the Genus Dalbergia (Fabaceae) and the Identification of DNA Barcodes for Tracking Illegal Logging and Counterfeit Rosewood. FORESTS 2022. [DOI: 10.3390/f13040626] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The genus Dalbergia contains more than 200 species, several of which are trees that produce traditional medicines and extremely high-value timber commonly referred to as rosewood. Due to the rarity of these species in the wild, the high value of the timber, and a growing international illicit trade, CITES (Convention on International Trade in Endangered Species of Wild Fauna and Flora) has listed the entire genus in appendix II and the species Dalbergia nigra in appendix I because species in this genus are considered at risk of extinction. Given this, and the fact that species or even genus level determination is nearly impossible from cut timber morphology, alternative molecular methods are needed to identify and track intercepted rosewood. To better identify rosewood using molecular methods, we sequenced and assembled eight chloroplast genomes including D. nigra as well as conducted comparative analyses with all other available chloroplast genomes in Dalbergia and closely related lineages. From these analyses, numerous repeats including simple sequence repeats (SSR) and conserved nucleotide polymorphisms unique to subclades within the genus were detected. From phylogenetic analysis based on the CDS from 77 chloroplast genes, the groups Siam rosewood and scented rosewood resolved as monophyletic, supporting the morphological traits used to delimit these species. In addition, several instances of paraphyly and polyphyly resulting from mismatches between taxonomic determinations and phylogenetic tree topology were identified. Ultimately, the highly variable regions in the chloroplast genomes will provide useful plastid markers for further studies regarding the identification, phylogeny, and population genetics of Dalbergia species, including those frequently intercepted in illegal trade.
Collapse
|
19
|
Fu N, Ji M, Rouard M, Yan HF, Ge XJ. Comparative plastome analysis of Musaceae and new insights into phylogenetic relationships. BMC Genomics 2022; 23:223. [PMID: 35313810 PMCID: PMC8939231 DOI: 10.1186/s12864-022-08454-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Accepted: 03/08/2022] [Indexed: 01/16/2023] Open
Abstract
Background Musaceae is an economically important family consisting of 70-80 species. Elucidation of the interspecific relationships of this family is essential for a more efficient conservation and utilization of genetic resources for banana improvement. However, the scarcity of herbarium specimens and quality molecular markers have limited our understanding of the phylogenetic relationships in wild species of Musaceae. Aiming at improving the phylogenetic resolution of Musaceae, we analyzed a comprehensive set of 49 plastomes for 48 species/subspecies representing all three genera of this family. Results Musaceae plastomes have a relatively well-conserved genomic size and gene content, with a full length ranging from 166,782 bp to 172,514 bp. Variations in the IR borders were found to show phylogenetic signals to a certain extent in Musa. Codon usage bias analysis showed different preferences for the same codon between species and three genera and a common preference for A/T-ending codons. Among the two genes detected under positive selection (dN/dS > 1), ycf2 was indicated under an intensive positive selection. The divergent hotspot analysis allowed the identification of four regions (ndhF-trnL, ndhF, matK-rps16, and accD) as specific DNA barcodes for Musaceae species. Bayesian and maximum likelihood phylogenetic analyses using full plastome resulted in nearly identical tree topologies with highly supported relationships between species. The monospecies genus Musella is sister to Ensete, and the genus Musa was divided into two large clades, which corresponded well to the basic number of n = x = 11 and n = x =10/9/7, respectively. Four subclades were divided within the genus Musa. A dating analysis covering the whole Zingiberales indicated that the divergence of Musaceae family originated in the Palaeocene (59.19 Ma), and the genus Musa diverged into two clades in the Eocene (50.70 Ma) and then started to diversify from the late Oligocene (29.92 Ma) to the late Miocene. Two lineages (Rhodochlamys and Australimusa) radiated recently in the Pliocene /Pleistocene periods. Conclusions The plastome sequences performed well in resolving the phylogenetic relationships of Musaceae and generated new insights into its evolution. Plastome sequences provided valuable resources for population genetics and phylogenetics at lower taxon. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-022-08454-3.
Collapse
Affiliation(s)
- Ning Fu
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Meiyuan Ji
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
| | - Mathieu Rouard
- Bioversity International, Parc Scientifique Agropolis II, 34397, Montpellier Cedex 5, France
| | - Hai-Fei Yan
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
| | - Xue-Jun Ge
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China. .,Center of Conservation Biology, Core Botanical Gardens, Chinese Academy of Sciences, Guangzhou, China.
| |
Collapse
|
20
|
Comparative Chloroplast Genome Analysis of Wax Gourd (Benincasa hispida) with Three Benincaseae Species, Revealing Evolutionary Dynamic Patterns and Phylogenetic Implications. Genes (Basel) 2022; 13:genes13030461. [PMID: 35328015 PMCID: PMC8954987 DOI: 10.3390/genes13030461] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Accepted: 03/01/2022] [Indexed: 12/13/2022] Open
Abstract
Benincasa hispida (wax gourd) is an important Cucurbitaceae crop, with enormous economic and medicinal importance. Here, we report the de novo assembly and annotation of the complete chloroplast genome of wax gourd with 156,758 bp in total. The quadripartite structure of the chloroplast genome comprises a large single-copy (LSC) region with 86,538 bp and a small single-copy (SSC) region with 18,060 bp, separated by a pair of inverted repeats (IRa and IRb) with 26,080 bp each. Comparison analyses among B. hispida and three other species from Benincaseae presented a significant conversion regarding nucleotide content, genome structure, codon usage, synonymous and non-synonymous substitutions, putative RNA editing sites, microsatellites, and oligonucleotide repeats. The LSC and SSC regions were found to be much more varied than the IR regions through a divergent analysis of the species within Benincaseae. Notable IR contractions and expansions were observed, suggesting a difference in genome size, gene duplication and deletion, and the presence of pseudogenes. Intronic gene sequences, such as trnR-UCU–atpA and atpH–atpI, were observed as highly divergent regions. Two types of phylogenetic analysis based on the complete cp genome and 72 genes suggested sister relationships between B. hispida with the Citrullus, Lagenaria, and Cucumis. Variations and consistency with previous studies regarding phylogenetic relationships are discussed. The cp genome of B. hispida provides valuable genetic information for the detection of molecular markers, research on taxonomic discrepancies, and the inference of the phylogenetic relationships of Cucurbitaceae.
Collapse
|
21
|
Chloroplast Genome Evolution and Species Identification of Styrax (Styracaceae). BIOMED RESEARCH INTERNATIONAL 2022; 2022:5364094. [PMID: 35252450 PMCID: PMC8893999 DOI: 10.1155/2022/5364094] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Accepted: 02/11/2022] [Indexed: 01/21/2023]
Abstract
The genus Styrax L. consists of approximately 130 species distributed in the Americas, eastern Asia, and the Mediterranean region. The phylogeny and evolutionary history of this genus are not clear. Knowledge of the phylogenetic relationships and the method for species identification will be critical for the evolution of this genus. In this study, we sequenced the chloroplast genome of 17 Styrax samples and added 17 additional chloroplast genome sequences from GenBank. The data were used to investigate chloroplast genome evolution, infer phylogenetic relationships, and access the species identification rate within Styrax. The Styrax chloroplast genome contains typical quadripartite structures, ranging from 157,641 bp to 159,333 bp. The chloroplast genome contains 114 unique genes. The P distance among the Styrax species ranged from 0.0003 to 0.00611. Seventeen small inversions and SSR sites were discovered in the Styrax chloroplast genome. By comparing with the chloroplast genome sequences, six mutation hotspots were identified, and the markers ycf1b and trnT-trnL were identified as the best Styrax-specific DNA barcodes. The specific barcodes and superbarcode exhibited higher discriminatory power than universal barcodes. Chloroplast phylogenomic results improved the resolution of the phylogenetic relationships of Styrax compared to previous analyses.
Collapse
|
22
|
Park I, Song JH, Yang S, Chae S, Moon BC. Plastid Phylogenomic Data Offers Novel Insights Into the Taxonomic Status of the Trichosanthes kirilowii Complex (Cucurbitaceae) in South Korea. FRONTIERS IN PLANT SCIENCE 2021; 12:559511. [PMID: 34386020 PMCID: PMC8353159 DOI: 10.3389/fpls.2021.559511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Accepted: 07/08/2021] [Indexed: 06/13/2023]
Abstract
Trichosanthes is a genus in Cucurbitaceae comprising 90-100 species. Trichosanthes species are valuable as herbaceous medicinal ingredients. The fruits, seeds, and roots of species such as T. kirilowii and T. rosthornii are used in Korean traditional herbal medicines. T. rosthornii is only found in China, whereas in South Korea two varieties, T. kirilowii var. kirilowii and T. kirilowii var. japonica, are distributed. T. kirilowii var. kirilowii and T. kirilowii var. japonica have different fruit and leaf shapes but are recognized as belonging to the same species. Furthermore, although its members have herbal medicine applications, genomic information of the genus is still limited. The broad goals of this study were (i) to evaluate the taxonomy of Trichosanthes using plastid phylogenomic data and (ii) provide molecular markers specific for T. kirilowii var. kirilowii and T. kirilowii var. japonica, as these have differences in their pharmacological effectiveness and thus should not be confused and adulterated. Comparison of five Trichosanthes plastid genomes revealed locally divergent regions, mainly within intergenic spacer regions (trnT-UGU-trnL-UAA: marker name Tri, rrn4.5-rrn5: TRr, trnE-UUC-trnT-GGU: TRtt). Using these three markers as DNA-barcodes for important herbal medicine species in Trichosanthes, the identity of Trichosanthes material in commercial medicinal products in South Korea could be successfully determined. Phylogenetic analysis of the five Trichosanthes species revealed that the species are clustered within tribe Sicyoeae. T. kirilowii var. kirilowii and T. rosthornii formed a clade with T. kirilowii var. japonica as their sister group. As T. kirilowii in its current circumscription is paraphyletic and as the two varieties can be readily distinguished morphologically (e.g., in leaf shape), T. kirilowii var. japonica should be treated (again) as an independent species, T. japonica.
Collapse
Affiliation(s)
- Inkyu Park
- Herbal Medicine Resources Research Center, Korea Institute of Oriental Medicine, Naju, South Korea
| | - Jun-Ho Song
- Herbal Medicine Resources Research Center, Korea Institute of Oriental Medicine, Naju, South Korea
| | - Sungyu Yang
- Herbal Medicine Resources Research Center, Korea Institute of Oriental Medicine, Naju, South Korea
| | - Sungwook Chae
- Herbal Medicine Research Division, Korea Institute of Oriental Medicine, Daejeon, South Korea
| | - Byeong Cheol Moon
- Herbal Medicine Resources Research Center, Korea Institute of Oriental Medicine, Naju, South Korea
| |
Collapse
|
23
|
Coker-Gurkan A, Can E, Sahin S, Obakan-Yerlikaya P, Arisan ED. Atiprimod triggered apoptotic cell death via acting on PERK/eIF2α/ATF4/CHOP and STAT3/NF-ΚB axis in MDA-MB-231 and MDA-MB-468 breast cancer cells. Mol Biol Rep 2021; 48:5233-5247. [PMID: 34244887 DOI: 10.1007/s11033-021-06528-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 06/27/2021] [Indexed: 12/23/2022]
Abstract
PURPOSE The constitutive activation of STAT3 through receptor tyrosine kinases triggered breast cancer cell growth and invasion-metastasis. Atiprimod impacts anti-proliferative, anti-carcinogenic effects in hepatocellular carcinoma, lymphoma, multiple myeloma via hindering the biological activity of STAT3. Dose-dependent atiprimod evokes first autophagy as a survival mechanism and then apoptosis due to prolonged ER stress in pituitary adenoma cells. The therapeutic efficiency and mechanistic action of atiprimod in breast cancer cells have not been investigated yet. Thus, we aimed to modulate the pivotal role of ER stress in atiprimod-triggered apoptosis in MDA-MB-231 and MDA-MB-468 breast cancer cells. RESULTS Dose- and time-dependent atiprimod treatment inhibits cell viability and colony formation in MDA-MB-468 and MDA-MB-231 breast cancer cells. A moderate dose of atiprimod (2 μM) inhibited STAT3 phosphorylation at Tyr705 residue and also suppressed the total expression level of p65. In addition, nuclear localization of STAT1, 3, and NF-κB was prevented by atiprimod exposure in MDA-MB-231 and MDA-MB-468 cells. Atiprimod evokes PERK, BiP, ATF-4, CHOP upregulation, and PERK (Thr980), eIF2α (Ser51) phosphorylation's. However, atiprimod suppressed IRE1α-mediated Atg-3, 5, 7, 12 protein expressions and no alteration was observed on Beclin-1, p62 expression levels. PERK/eIF2α/ATF4/CHOP axis pivotal role in atiprimod-mediated G1/S arrest and apoptosis via Bak, Bax, Bim, and PUMA upregulation in MDA-MB-468 cells. Moreover, atiprimod renders MDA-MB-231 more vulnerable to type I programmed cell death by plasmid-mediated increased STAT3 expression. CONCLUSION Atiprimod induced prolonged ER stress-mediated apoptosis via both activating PERK/eIF2α/ATF4/CHOP axis and suppressing STAT3/NF-κB transcription factors nuclear migration in TBNC cells.
Collapse
Affiliation(s)
- Ajda Coker-Gurkan
- Department of Molecular Biology and Genetics, Faculty of Engineering and Natural Sciences, Biruni University, Topkapı Campus, 34010, Istanbul, Turkey.
| | - Esin Can
- Department of Molecular Biology and Genetics, Science and Letters Faculty, Istanbul Kultur University, Atakoy Campus, 34156, Istanbul, Turkey
| | - Semanur Sahin
- Department of Molecular Biology and Genetics, Science and Letters Faculty, Istanbul Kultur University, Atakoy Campus, 34156, Istanbul, Turkey
| | - Pınar Obakan-Yerlikaya
- Department of Biomedical Engineering, Faculty of Engineering and Natural Sciences, Biruni University, Topkapı Campus, 34010, Istanbul, Turkey
| | - Elif-Damla Arisan
- Institute of Biotechnology, Gebze Technical University, Gebze, Turkey
| |
Collapse
|
24
|
Aecyo P, Marques A, Huettel B, Silva A, Esposito T, Ribeiro E, Leal IR, Gagnon E, Souza G, Pedrosa-Harand A. Plastome evolution in the Caesalpinia group (Leguminosae) and its application in phylogenomics and populations genetics. PLANTA 2021; 254:27. [PMID: 34236509 DOI: 10.1007/s00425-021-03655-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Accepted: 06/03/2021] [Indexed: 06/13/2023]
Abstract
The chloroplast genomes of Caesalpinia group species are structurally conserved, but sequence level variation is useful for both phylogenomic and population genetic analyses. Variation in chloroplast genomes (plastomes) has been an important source of information in plant biology. The Caesalpinia group has been used as a model in studies correlating ecological and genomic variables, yet its intergeneric and infrageneric relationships are not fully solved, despite densely sampled phylogenies including nuclear and plastid loci by Sanger sequencing. Here, we present the de novo assembly and characterization of plastomes from 13 species from the Caesalpinia group belonging to eight genera. A comparative analysis was carried out with 13 other plastomes previously available, totalizing 26 plastomes and representing 15 of the 26 known Caesalpinia group genera. All plastomes showed a conserved quadripartite structure and gene repertoire, except for the loss of four ndh genes in Erythrostemon gilliesii. Thirty polymorphic regions were identified for inter- or intrageneric analyses. The 26 aligned plastomes were used for phylogenetic reconstruction, revealing a well-resolved topology, and dividing the Caesalpinia group into two fully supported clades. Sixteen microsatellite (cpSSR) loci were selected from Cenostigma microphyllum for primer development and at least two were cross-amplified in different Leguminosae subfamilies by in vitro or in silico approaches. Four loci were used to assess the genetic diversity of C. microphyllum in the Brazilian Caatinga. Our results demonstrate the structural conservation of plastomes in the Caesalpinia group, offering insights into its systematics and evolution, and provides new genomic tools for future phylogenetic, population genetics, and phylogeographic studies.
Collapse
Affiliation(s)
- Paulo Aecyo
- Laboratory of Plant Cytogenetics and Evolution, Department of Botany, Federal University of Pernambuco, Recife, Brazil
| | - André Marques
- Max Planck Institute for Plant Breeding Research, Cologne, Germany
| | - Bruno Huettel
- Max Planck Institute for Plant Breeding Research, Cologne, Germany
| | - Ana Silva
- Laboratory of Plant Cytogenetics and Evolution, Department of Botany, Federal University of Pernambuco, Recife, Brazil
| | - Tiago Esposito
- Laboratory of Plant Cytogenetics and Evolution, Department of Botany, Federal University of Pernambuco, Recife, Brazil
| | - Elâine Ribeiro
- Laboratory of Plant-Animal Interaction, Department of Botany, Federal University of Pernambuco, Recife, Brazil
- Laboratory of Biodiversity and Evolutionary Genetics, University of Pernambuco - Campus Petrolina, Petrolina, Brazil
| | - Inara R Leal
- Laboratory of Plant-Animal Interaction, Department of Botany, Federal University of Pernambuco, Recife, Brazil
| | - Edeline Gagnon
- Royal Botanic Garden of Edinburgh, University of Edinburgh, Edinburgh, UK
| | - Gustavo Souza
- Laboratory of Plant Cytogenetics and Evolution, Department of Botany, Federal University of Pernambuco, Recife, Brazil
| | - Andrea Pedrosa-Harand
- Laboratory of Plant Cytogenetics and Evolution, Department of Botany, Federal University of Pernambuco, Recife, Brazil.
| |
Collapse
|
25
|
Mascarello M, Amalfi M, Asselman P, Smets E, Hardy OJ, Beeckman H, Janssens SB. Genome skimming reveals novel plastid markers for the molecular identification of illegally logged African timber species. PLoS One 2021; 16:e0251655. [PMID: 34115787 PMCID: PMC8195358 DOI: 10.1371/journal.pone.0251655] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Accepted: 04/30/2021] [Indexed: 11/30/2022] Open
Abstract
Tropical forests represent vast carbon stocks and continue to be key carbon sinks and buffer climate changes. The international policy constructed several mechanisms aiming at conservation and sustainable use of these forests. Illegal logging is an important threat of forests, especially in the tropics. Several laws and regulations have been set up to combat illegal timber trade. Despite significant enforcement efforts of these regulations, illegal logging continues to be a serious problem and impacts for the functioning of the forest ecosystem and global biodiversity in the tropics. Microscopic analysis of wood samples and the use of conventional plant DNA barcodes often do not allow to distinguish closely-related species. The use of novel molecular technologies could make an important contribution for the identification of tree species. In this study, we used high-throughput sequencing technologies and bioinformatics tools to obtain the complete de-novo chloroplast genome of 62 commercial African timber species using the genome skimming method. Then, we performed a comparative genomic analysis that revealed new candidate genetic regions for the discrimination of closely-related species. We concluded that genome skimming is a promising method for the development of plant genetic markers to combat illegal logging activities supporting CITES, FLEGT and the EU Timber Regulation.
Collapse
Affiliation(s)
- Maurizio Mascarello
- Meise Botanic Garden, Meise, Belgium
- Department of Biology, KU Leuven, Leuven, Belgium
| | - Mario Amalfi
- Meise Botanic Garden, Meise, Belgium
- Fédération Wallonie–Bruxelles, Service général de l’Enseignement universitaire et de la Recherche scientifique, Brussels, Belgium
| | - Pieter Asselman
- Mycology & Systematic and Evolutionary Botany, Department of Biology, Ghent University, Ghent, Belgium
| | - Erik Smets
- Naturalis Biodiversity Center, Leiden, The Netherlands
| | - Olivier J. Hardy
- Evolutionary Biology and Ecology, Université Libre de Bruxelles, Brussels, Belgium
| | - Hans Beeckman
- Wood Biology, Department of Biology, Royal Museum for Central Africa, Tervuren, Belgium
| | - Steven B. Janssens
- Meise Botanic Garden, Meise, Belgium
- Department of Biology, KU Leuven, Leuven, Belgium
| |
Collapse
|
26
|
Niu Y, Gao C, Liu J. Comparative analysis of the complete plastid genomes of Mangifera species and gene transfer between plastid and mitochondrial genomes. PeerJ 2021; 9:e10774. [PMID: 33614280 PMCID: PMC7881718 DOI: 10.7717/peerj.10774] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Accepted: 12/22/2020] [Indexed: 01/30/2023] Open
Abstract
Mango is an important commercial fruit crop belonging to the genus Mangifera. In this study, we reported and compared four newly sequenced plastid genomes of the genus Mangifera, which showed high similarities in overall size (157,780–157,853 bp), genome structure, gene order, and gene content. Three mutation hotspots (trnG-psbZ, psbD-trnT, and ycf4-cemA) were identified as candidate DNA barcodes for Mangifera. These three DNA barcode candidate sequences have high species identification ability. We also identified 12 large fragments that were transferred from the plastid genome to the mitochondrial genome, and found that the similarity was more than 99%. The total size of the transferred fragment was 35,652 bp, accounting for 22.6% of the plastid genome. Fifteen intact chloroplast genes, four tRNAs and numerous partial genes and intergenic spacer regions were identified. There are many of these genes transferred from mitochondria to the chloroplast in other species genomes. Phylogenetic analysis based on whole plastid genome data provided a high support value, and the interspecies relationships within Mangifera were resolved well.
Collapse
Affiliation(s)
- Yingfeng Niu
- Yunnan Institute of Tropical Crops, Xishuangbanna, China
| | - Chengwen Gao
- The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Jin Liu
- Yunnan Institute of Tropical Crops, Xishuangbanna, China
| |
Collapse
|
27
|
Kondo N, Oishi A, Hirata M, Temma T. Indirectly radioiodinated exendin-4 as an analytical tool for in vivo detection of glucagon-like peptide-1 receptor in a disease setting. Ann Nucl Med 2021; 35:83-91. [PMID: 33067731 DOI: 10.1007/s12149-020-01540-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Accepted: 10/07/2020] [Indexed: 10/23/2022]
Abstract
OBJECTIVE Glucagon-like peptide-1 receptor agonist (GLP-1RA) has been reported to have therapeutic effects on diabetes and various diseases. Precise detection of GLP-1 receptor (GLP-1R) can be useful to diagnose and elucidate the mechanism of such diseases. Here we aimed to develop an imaging probe based on GLP-1RA that has high molar activity and sensitivity for detection of low-level GLP-1R expression in non-pancreatic diseases. METHODS We selected the agonist exenatide (Ex4) as the parent peptide of a GLP-1R targeting probe and prepared Cys-Ex4 by addition of an N-terminal Cys residue and labeling with the prosthetic agent N-(3-[125I]iodophenyl)maleimide ([125I]IPM) to generate [125I]Ex4ipm. We evaluated the affinity of [125I]Ex4ipm for GLP-1R, as well as cellular binding profiles in insulinoma and prostate cancer cell lines, and in vivo biodistributions in normal and tumor-bearing mice to assess GLP-1R-dependent accumulation of radioactivity in tissues. RESULTS [125I]Ex4ipm was easily synthesized with high radiochemical yield (73%), radiochemical purity (> 99%), and molar activity (81 GBq/µmol) via a thiol/maleimide reaction. Following administration to mice, [125I]Ex4ipm accumulated to high levels in the pancreas (23.3% ID/g), with radioactivity co-localizing in areas having insulin-positive β cells. High amounts of radioactivity also accumulated in insulinomas that overexpressed GLP-1R (27.5% ID/g). In contrast, low amounts of [125I]Ex4ipm accumulation, corresponding to low expression levels of GLP-1R, were observed in prostate cancer cells and xenografts used as a model of non-pancreatic applications. CONCLUSION Our results suggested that [123I]Ex4ipm could be valuable for GLP-1R imaging in diabetes, insulinomas, and various diseases related to GLP-1R.
Collapse
Affiliation(s)
- Naoya Kondo
- Department of Biofunctional Analysis, Osaka University of Pharmaceutical Sciences, 4-20-1 Nasahara, Takatsuki, Osaka, 569-1094, Japan
| | - Ayaka Oishi
- Department of Biofunctional Analysis, Osaka University of Pharmaceutical Sciences, 4-20-1 Nasahara, Takatsuki, Osaka, 569-1094, Japan
| | - Masahiko Hirata
- Department of Biofunctional Analysis, Osaka University of Pharmaceutical Sciences, 4-20-1 Nasahara, Takatsuki, Osaka, 569-1094, Japan
| | - Takashi Temma
- Department of Biofunctional Analysis, Osaka University of Pharmaceutical Sciences, 4-20-1 Nasahara, Takatsuki, Osaka, 569-1094, Japan.
| |
Collapse
|
28
|
Park I, Yang S, Song JH, Moon BC. Dissection for Floral Micromorphology and Plastid Genome of Valuable Medicinal Borages Arnebia and Lithospermum (Boraginaceae). FRONTIERS IN PLANT SCIENCE 2020; 11:606463. [PMID: 33343605 PMCID: PMC7746654 DOI: 10.3389/fpls.2020.606463] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Accepted: 11/16/2020] [Indexed: 05/03/2023]
Abstract
The genera Arnebia and Lithospermum (Lithospermeae-Boraginaceae) comprise 25-30 and 50-60 species, respectively. Some of them are economically valuable, as their roots frequently contain a purple-red dye used in the cosmetic industry. Furthermore, dried roots of Arnebia euchroma, A. guttata, and Lithospermum erythrorhizon, which have been designated Lithospermi Radix, are used as traditional Korean herbal medicine. This study is the first report on the floral micromorphology and complete chloroplast (cp) genome sequences of A. guttata (including A. tibetana), A. euchroma, and L. erythrorhizon. We reveal great diversity in floral epidermal cell patterns, gynoecium, and structure of trichomes. The cp genomes were 149,361-150,465 bp in length, with conserved quadripartite structures. In total, 112 genes were identified, including 78 protein-coding regions, 30 tRNA genes, and four rRNA genes. Gene order, content, and orientation were highly conserved and were consistent with the general structure of angiosperm cp genomes. Comparison of the four cp genomes revealed locally divergent regions, mainly within intergenic spacer regions (atpH-atpI, petN-psbM, rbcL-psaI, ycf4-cemA, ndhF-rpl32, and ndhC-trnV-UAC). To facilitate species identification, we developed molecular markers psaA- ycf3 (PSY), trnI-CAU- ycf2 (TCY), and ndhC-trnV-UAC (NCTV) based on divergence hotspots. High-resolution phylogenetic analysis revealed clear clustering and a close relationship of Arnebia to its Lithospermum sister group, which was supported by strong bootstrap values and posterior probabilities. Overall, gynoecium characteristics and genetic distance of cp genomes suggest that A. tibetana, might be recognized as an independent species rather than a synonym of A. guttata. The present morphological and cp genomic results provide useful information for future studies, such as taxonomic, phylogenetic, and evolutionary analysis of Boraginaceae.
Collapse
Affiliation(s)
| | | | - Jun-Ho Song
- Herbal Medicine Resources Research Center, Korea Institute of Oriental Medicine, Naju, South Korea
| | - Byeong Cheol Moon
- Herbal Medicine Resources Research Center, Korea Institute of Oriental Medicine, Naju, South Korea
| |
Collapse
|
29
|
Gao C, Wu C, Zhang Q, Zhao X, Wu M, Chen R, Zhao Y, Li Z. Characterization of Chloroplast Genomes From Two Salvia Medicinal Plants and Gene Transfer Among Their Mitochondrial and Chloroplast Genomes. Front Genet 2020; 11:574962. [PMID: 33193683 PMCID: PMC7642825 DOI: 10.3389/fgene.2020.574962] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Accepted: 09/23/2020] [Indexed: 11/13/2022] Open
Abstract
Salvia species have been widely used as medicinal plants and have played an important role in the treatment and recovery of individuals with COVID-19. In this study, we reported two newly identified whole chloroplast genome sequences of Salvia medicinal plants (Salvia yangii and Salvia miltiorrhiza f. alba) and compared them with those of seven other reported Salvia chloroplast genomes. These were proven to be highly similar in terms of overall size, genome structure, gene content, and gene order. We identified 10 mutation hot spots (trnK-rps16, atpH-atpI, psaA-ycf3, ndhC-trnV, ndhF, rpl32-trnL, ndhG-ndhI, rps15-ycf1, ycf1a, and ycf1b) as candidate DNA barcodes for Salvia. Additionally, we observed the transfer of nine large-sized chloroplast genome fragments, with a total size of 49,895 bp (accounting for 32.97% of the chloroplast genome), into the mitochondrial genome as they shared >97% sequence similarity. Phylogenetic analyses of the whole chloroplast genome provided a high resolution of Salvia. This study will pave the way for the identification and breeding of Salvia medicinal plants and further phylogenetic evolutionary research on them as well.
Collapse
Affiliation(s)
- Chengwen Gao
- Laboratory of Medical Biology, Medical Research Center, The Affiliated Hospital of Qingdao University, Qingdao, China
| | | | | | | | | | | | | | - Zhiqiang Li
- Laboratory of Medical Biology, Medical Research Center, The Affiliated Hospital of Qingdao University, Qingdao, China
| |
Collapse
|
30
|
Hung TH, So T, Sreng S, Thammavong B, Boounithiphonh C, Boshier DH, MacKay JJ. Reference transcriptomes and comparative analyses of six species in the threatened rosewood genus Dalbergia. Sci Rep 2020; 10:17749. [PMID: 33082403 PMCID: PMC7576600 DOI: 10.1038/s41598-020-74814-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Accepted: 10/07/2020] [Indexed: 12/02/2022] Open
Abstract
Dalbergia is a pantropical genus with more than 250 species, many of which are highly threatened due to overexploitation for their rosewood timber, along with general deforestation. Many Dalbergia species have received international attention for conservation, but the lack of genomic resources for Dalbergia hinders evolutionary studies and conservation applications, which are important for adaptive management. This study produced the first reference transcriptomes for 6 Dalbergia species with different geographical origins and predicted ~ 32 to 49 K unique genes. We showed the utility of these transcriptomes by phylogenomic analyses with other Fabaceae species, estimating the divergence time of extant Dalbergia species to ~ 14.78 MYA. We detected over-representation in 13 Pfam terms including HSP, ALDH and ubiquitin families in Dalbergia. We also compared the gene families of geographically co-occurring D. cochinchinensis and D. oliveri and observed that more genes underwent positive selection and there were more diverged disease resistance proteins in the more widely distributed D. oliveri, consistent with reports that it occupies a wider ecological niche and has higher genetic diversity. We anticipate that the reference transcriptomes will facilitate future population genomics and gene-environment association studies on Dalbergia, as well as contributing to the genomic database where plants, particularly threatened ones, are currently underrepresented.
Collapse
Affiliation(s)
- Tin Hang Hung
- Department of Plant Sciences, University of Oxford, Oxford, OX1 3RB, UK.
| | - Thea So
- Institute of Forest and Wildlife Research and Development, Phnom Penh, Cambodia
| | - Syneath Sreng
- Institute of Forest and Wildlife Research and Development, Phnom Penh, Cambodia
| | - Bansa Thammavong
- Forest Research Center, National Agriculture and Forestry Research Institute, Vientiane, Lao PDR
| | - Chaloun Boounithiphonh
- Forest Research Center, National Agriculture and Forestry Research Institute, Vientiane, Lao PDR
| | - David H Boshier
- Department of Plant Sciences, University of Oxford, Oxford, OX1 3RB, UK
| | - John J MacKay
- Department of Plant Sciences, University of Oxford, Oxford, OX1 3RB, UK.
| |
Collapse
|
31
|
Win PP, Li X, Chen LQ, Tan YH, Yu WB. Complete plastid genome of two Dalbergia species (Fabaceae), and their significance in conservation and phylogeny. Mitochondrial DNA B Resour 2020. [DOI: 10.1080/23802359.2020.1756487] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022] Open
Affiliation(s)
- Pyae Pyae Win
- Center for Integrative Conservation, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla, China
- University of Chinese Academy of Sciences, Beijing, China
- Center of Conservation Biology, Core Botanical Gardens, Chinese Academy of Sciences, Mengla, China
| | - Xin Li
- Center for Integrative Conservation, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla, China
- University of Chinese Academy of Sciences, Beijing, China
- Center of Conservation Biology, Core Botanical Gardens, Chinese Academy of Sciences, Mengla, China
| | - Li-Qiong Chen
- Center for Integrative Conservation, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla, China
- University of Chinese Academy of Sciences, Beijing, China
- Center of Conservation Biology, Core Botanical Gardens, Chinese Academy of Sciences, Mengla, China
| | - Yun-Hong Tan
- Center for Integrative Conservation, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla, China
- Center of Conservation Biology, Core Botanical Gardens, Chinese Academy of Sciences, Mengla, China
- Southeast Asia Biodiversity Research Institute, Chinese Academy of Sciences, Yezin, Myanmar
| | - Wen-Bin Yu
- Center for Integrative Conservation, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla, China
- Center of Conservation Biology, Core Botanical Gardens, Chinese Academy of Sciences, Mengla, China
- Southeast Asia Biodiversity Research Institute, Chinese Academy of Sciences, Yezin, Myanmar
| |
Collapse
|