1
|
Chang J, Zhang J, Chu L, Liu A, Hou X, Zhu X, Huang X, Xing Q, Hu J, Bao Z. AMPK-mediated regulation of cardiac energy metabolism: Implications for thermotolerance in Argopecten irradians irradians. Gene 2025; 933:148922. [PMID: 39244169 DOI: 10.1016/j.gene.2024.148922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 08/24/2024] [Accepted: 09/03/2024] [Indexed: 09/09/2024]
Abstract
AMPK is a key regulator of metabolism in eukaryotes across various pathways related to energy regulation. Although extensive investigations of AMPK have been conducted in mammals and some model organisms, research on AMPK in scallops is comparatively limited. In this study, three AMPK family genes (AiAMPKα, AiAMPKβ and AiAMPKγ) in scallop Argopecten irradians irradians were identified through genome scanning. Structure prediction and phylogenetic analyses of AiAMPKs were performed to determine their structural features and evolutionary relationships. Spatiotemporal expression patterns of AiAMPKs at different developmental stages and in healthy adult tissues were analyzed to elucidate the function of AiAMPKs in bay scallops' growth and development. The spatiotemporally specific expression of AiAMPKs implied their important roles in growth and development of bay scallops. Heat stress experiment was performed to determine the regulations of AiAMPKs in four kinds of thermosensitive tissues. Expression profiles revealed distinct molecular mechanisms of AiAMPKs in different tissues in response to heat stress: significant down-regulations in mobile hemocytes, but dominant up-regulations occurring in stationary gills, mantles and hearts. Functional verification including knock-down of AiAMPKα and inhibition of AiAMPK was separately conducted in the thermotolerant tissue heart at the post-transcription and translation levels. The thermotolerant index Arrhenius break temperature (ABT) showed a significant decrease and the rate-amplitude product (RAP) peaked earlier in the individuals after RNAi targeting AiAMPKα, displaying an earlier transition to anaerobic metabolism under heat stress, indicating an impairing ability of aerobic metabolism. After AiAMPK inhibition, widespread down-regulations of genes in key energy metabolism pathways, RNA polymerase II-mediated transcription, and aminoacyl-tRNA synthesis pathways were obviously observed, revealing the post-translational inhibition of AiAMPK hindered cardiac energy metabolism, basal transcription and translation. Overall, our findings provide evidences for exploring the molecular mechanisms of energy regulation in thermotolerant traits in bay scallops under ongoing global warming.
Collapse
Affiliation(s)
- Jiaxi Chang
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, 5 Yushan Road, Qingdao 266003, China
| | - Junhao Zhang
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, 5 Yushan Road, Qingdao 266003, China
| | - Longfei Chu
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, 5 Yushan Road, Qingdao 266003, China
| | - Ancheng Liu
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, 5 Yushan Road, Qingdao 266003, China
| | - Xiujiang Hou
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, 5 Yushan Road, Qingdao 266003, China
| | - Xinghai Zhu
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, 5 Yushan Road, Qingdao 266003, China
| | - Xiaoting Huang
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, 5 Yushan Road, Qingdao 266003, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
| | - Qiang Xing
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, 5 Yushan Road, Qingdao 266003, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China.
| | - Jingjie Hu
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, 5 Yushan Road, Qingdao 266003, China; Laboratory of Tropical Marine Germplasm Resources and Breeding Engineering, Sanya Oceanographic Institution of the Ocean University of China (SOI-OUC), Sanya 572000, China
| | - Zhenmin Bao
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, 5 Yushan Road, Qingdao 266003, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
| |
Collapse
|
2
|
Hickey AJR, Harford AR, Blier PU, Devaux JB. What causes cardiac mitochondrial failure at high environmental temperatures? J Exp Biol 2024; 227:jeb247432. [PMID: 39412006 DOI: 10.1242/jeb.247432] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2024]
Abstract
Although a mechanism accounting for hyperthermic death at critical temperatures remains elusive, the mitochondria of crucial active excitable tissues (i.e. heart and brain) may well be key to this process. Mitochondria produce ∼90% of the ATP required by cells to maintain cellular integrity and function. They also integrate into biosynthetic pathways that support metabolism as a whole, allow communication within the cell, and regulate cellular health and death pathways. We have previously shown that cardiac and brain mitochondria demonstrate decreases in the efficiency of, and absolute capacity for ATP synthesis as temperatures rise, until ultimately there is too little ATP to support cellular demands, and organ failure follows. Importantly, substantial decreases in ATP synthesis occur at temperatures immediately below the temperature of heart failure, and this suggests a causal role of mitochondria in hyperthermic death. However, what causes mitochondria to fail? Here, we consider the answers to this question. Mitochondrial dysfunction at high temperature has classically been attributed to elevated leak respiration suspected to result from increased movement of protons (H+) through the inner mitochondrial membrane (IMM), thereby bypassing the ATP synthases. In this Commentary, we introduce some alternative explanations for elevated leak respiration. We first consider respiratory complex I and then propose that a loss of IMM structure occurs as temperatures rise. The loss of the cristae folds of the IMM may affect the efficiency of H+ transport, increasing H+ conductance either through the IMM or into the bulk water phases of mitochondria. In either case, O2 consumption increases while ATP synthesis decreases.
Collapse
Affiliation(s)
- Anthony J R Hickey
- School of Biological Sciences, Thomas Building, University of Auckland, 3a Symonds St, Auckland 1010, New Zealand
| | - Alice R Harford
- School of Biological Sciences, Thomas Building, University of Auckland, 3a Symonds St, Auckland 1010, New Zealand
| | - Pierre U Blier
- Department of Biology, Chemistry and Geography, University of Quebec at Rimouski, 300 Allée des Ursulines, QC, Canada, G5L 3A1
| | - Jules B Devaux
- School of Biological Sciences, Thomas Building, University of Auckland, 3a Symonds St, Auckland 1010, New Zealand
| |
Collapse
|
3
|
Lu J, Zhu Y, Wei S, Huang S, Zu Y, Chen L. Comprehensive transcriptome analysis unravels the perturbated cardiovascular-related molecular mechanisms of tilapia under high-temperature stress. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY. PART D, GENOMICS & PROTEOMICS 2024; 52:101324. [PMID: 39298880 DOI: 10.1016/j.cbd.2024.101324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 09/05/2024] [Accepted: 09/09/2024] [Indexed: 09/22/2024]
Abstract
With the ongoing intensification of global warming, thermal stress poses significant challenges to tilapia aquaculture. However, the molecular mechanisms underlying the cardiac response of tilapia to high temperatures remain largely unexplored. To address this knowledge gap, we investigated the effects of high-temperature stress on the transcriptomic landscape of the tilapia heart. RNA sequencing was performed on the hearts of Oreochromis aureus (AR), Oreochromis niloticus (NL), and hybrids (O. niloticus ♀ × O. aureus ♂, AN) under treatments of 28 °C, 36 °C, and 39 °C. Using a multi-method approach, including Differentially Expressed Genes analysis, Weighted Gene Co-expression Network Analysis, Fuzzy C-Means, Self-Organizing Map, and Support Vector Machine-Recursive Feature Elimination, we identified six marker genes at 39 °C (AR: ptges3, tuba1a; NL: ran, tcima; AN: slc16a1, fam184b). These genes exhibited strong positive correlations and increased expression under high-temperature conditions. Gene Set Enrichment Analysis and GENIE3 revealed that these marker genes closely regulate three cardiovascular-related pathways: adrenergic signaling in cardiomyocytes, vascular smooth muscle contraction, and cardiac muscle contraction. We hypothesize that the synergistic inhibition of these pathways by marker genes leads to the deterioration of cardiovascular function. In summary, thermal stress activates marker genes, which in turn inhibit cardiovascular pathways, impairing cardiac performance. We propose that these marker genes could serve as dynamic thermal indicators of cardiac performance in tilapia. Additionally, our findings provide theoretical support for improving the management of tilapia farming under high-temperature stress.
Collapse
Affiliation(s)
- Jigang Lu
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai 201306, PR China; International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai 201306, PR China; College of Fisheries and Life Science, Shanghai Ocean University, Shanghai 201306, PR China
| | - Yihao Zhu
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai 201306, PR China; International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai 201306, PR China; College of Fisheries and Life Science, Shanghai Ocean University, Shanghai 201306, PR China
| | - Shicen Wei
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai 201306, PR China; International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai 201306, PR China; College of Fisheries and Life Science, Shanghai Ocean University, Shanghai 201306, PR China
| | - Siqi Huang
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai 201306, PR China; International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai 201306, PR China; College of Fisheries and Life Science, Shanghai Ocean University, Shanghai 201306, PR China
| | - Yao Zu
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai 201306, PR China; International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai 201306, PR China; College of Fisheries and Life Science, Shanghai Ocean University, Shanghai 201306, PR China.
| | - Liangbiao Chen
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai 201306, PR China; International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai 201306, PR China; College of Fisheries and Life Science, Shanghai Ocean University, Shanghai 201306, PR China.
| |
Collapse
|
4
|
Schwieterman GD, Hardison EA, Cox GK, Van Wert JC, Birnie-Gauvin K, Eliason EJ. Mechanisms of cardiac collapse at high temperature in a marine teleost (Girella nigrians). Comp Biochem Physiol A Mol Integr Physiol 2023; 286:111512. [PMID: 37726058 DOI: 10.1016/j.cbpa.2023.111512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 09/11/2023] [Accepted: 09/11/2023] [Indexed: 09/21/2023]
Abstract
Heat-induced mortality in ectotherms may be attributed to impaired cardiac performance, specifically a collapse in maximum heart rate (fHmax), although the physiological mechanisms driving this phenomenon are still unknown. Here, we tested two proposed factors which may restrict cardiac upper thermal limits: noxious venous blood conditions and oxygen limitation. We hypothesized elevated blood [K+] (hyperkalemia) and low oxygen (hypoxia) would reduce cardiac upper thermal limits in a marine teleost (Girella nigricans), while high oxygen (hyperoxia) would increase thermal limits. We also hypothesized higher acclimation temperatures would exacerbate the harmful effects of an oxygen limitation. Using the Arrhenius breakpoint temperature test, we measured fHmax in acutely warmed fish under control (saline injected) and hyperkalemic conditions (elevated plasma [K+]) while exposed to hyperoxia (200% air saturation), normoxia (100% air saturation), or hypoxia (20% air saturation). We also measured ventricle lactate content and venous blood oxygen partial pressure (PO2) to determine if there were universal thresholds in either metric driving cardiac collapse. Elevated [K+] was not significantly correlated with any cardiac thermal tolerance metric. Hypoxia significantly reduced cardiac upper thermal limits (Arrhenius breakpoint temperature [TAB], peak fHmax, temperature of peak heart rate [TPeak], and temperature at arrhythmia [TARR]). Hyperoxia did not alter cardiac thermal limits compared to normoxia. There was no evidence of a species-wide threshold in ventricular [lactate] or venous PO2. Here, we demonstrate that oxygen limits cardiac thermal tolerance only in instances of hypoxia, but that other physiological processes are responsible for causing temperature-induced heart failure when oxygen is not limited.
Collapse
Affiliation(s)
- Gail D Schwieterman
- Department of Ecology Evolution and Marine Biology, University of California Santa Barbara, Santa Barbara, CA, USA; School of Marine Sciences, University of Maine, Orono, ME, USA; Maine Agricultural and Forest Experiment Station, Orono, ME, USA.
| | - Emily A Hardison
- Department of Ecology Evolution and Marine Biology, University of California Santa Barbara, Santa Barbara, CA, USA. https://twitter.com/eahardison
| | | | - Jacey C Van Wert
- Department of Ecology Evolution and Marine Biology, University of California Santa Barbara, Santa Barbara, CA, USA. https://twitter.com/jacey_van_wert
| | - Kim Birnie-Gauvin
- Department of Ecology Evolution and Marine Biology, University of California Santa Barbara, Santa Barbara, CA, USA; Section for Freshwater Fisheries and Ecology, National Institute of Aquatic Resources, Technical University of Denmark, Silkeborg, Denmark. https://twitter.com/kbg_conserv
| | - Erika J Eliason
- Department of Ecology Evolution and Marine Biology, University of California Santa Barbara, Santa Barbara, CA, USA
| |
Collapse
|
5
|
Bowering LR, McArley TJ, Devaux JBL, Hickey AJR, Herbert NA. Metabolic resilience of the Australasian snapper ( Chrysophrys auratus) to marine heatwaves and hypoxia. Front Physiol 2023; 14:1215442. [PMID: 37528894 PMCID: PMC10387550 DOI: 10.3389/fphys.2023.1215442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Accepted: 07/05/2023] [Indexed: 08/03/2023] Open
Abstract
Marine organisms are under threat from a simultaneous combination of climate change stressors, including warming sea surface temperatures (SST), marine heatwave (MHW) episodes, and hypoxic events. This study sought to investigate the impacts of these stressors on the Australasian snapper (C. auratus) - a finfish species of high commercial and recreational importance, from the largest snapper fishery in Aotearoa New Zealand (SNA1). A MHW scenario was simulated from 21°C (current February SST average for north-eastern New Zealand) to a future predicted level of 25°C, with the whole-animal and mitochondrial metabolic performance of snapper in response to hypoxia and elevated temperature tested after 1-, 10-, and 30-days of thermal challenge. It was hypothesised that key indicators of snapper metabolic performance would decline after 1-day of MHW stress, but that partial recovery might arise as result of thermal plasticity after chronic (e.g., 30-day) exposures. In contrast to this hypothesis, snapper performance remained high throughout the MHW: 1) Aerobic metabolic scope increased after 1-day of 25°C exposure and remained high. 2) Hypoxia tolerance, measured as the critical O2 pressure and O2 pressure where loss of equilibrium occurred, declined after 1-day of warm-acclimation, but recovered quickly with no observable difference from the 21°C control following 30-days at 25°C. 3) The performance of snapper mitochondria was also maintained, with oxidative phosphorylation respiration and proton leak flux across the inner mitochondrial membrane of the heart remaining mostly unaffected. Collectively, the results suggest that heart mitochondria displayed resilience, or plasticity, in snapper chronically exposed to 25°C. Therefore, contrary to the notion of climate change having adverse metabolic effects, future temperatures approaching 25°C may be tolerated by C. auratus in Northern New Zealand. Even in conjunction with supplementary hypoxia, 25°C appears to represent a metabolically optimal temperature for this species.
Collapse
Affiliation(s)
- Lyvia R. Bowering
- Institute of Marine Science, University of Auckland, Leigh, New Zealand
| | | | - Jules B. L. Devaux
- School of Biological Sciences, University of Auckland, Auckland, New Zealand
| | | | - Neill A. Herbert
- Institute of Marine Science, University of Auckland, Leigh, New Zealand
| |
Collapse
|
6
|
Scovil AM, Boloori T, de Jourdan BP, Speers-Roesch B. The effect of chemical dispersion and temperature on the metabolic and cardiac responses to physically dispersed crude oil exposure in larval American lobster (Homarus americanus). MARINE POLLUTION BULLETIN 2023; 191:114976. [PMID: 37137253 DOI: 10.1016/j.marpolbul.2023.114976] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 04/16/2023] [Accepted: 04/18/2023] [Indexed: 05/05/2023]
Abstract
Despite their potential vulnerability to oil spills, little is known about the physiological effects of petroleum exposure and spill responses in cold-water marine animal larvae. We investigated the effects of physically dispersed (water-accommodated fraction, WAF) and chemically dispersed (chemically enhanced WAF, CEWAF; using Slickgone EW) conventional heavy crude oil on the routine metabolic rate and heart rate of stage I larval American lobster (Homarus americanus). We found no effects of 24-h exposure to sublethal concentrations of crude oil WAF or CEWAF at 12 °C. We then investigated the effect of sublethal concentrations of WAFs at three environmentally relevant temperatures (9, 12, 15 °C). The highest WAF concentration increased metabolic rate at 9 °C, whereas it decreased heart rate and increased mortality at 15 °C. Overall, metabolic and cardiac function of American lobster larvae is relatively resilient to conventional heavy crude oil and Slickgone EW exposure, but responses to WAF may be temperature-dependent.
Collapse
Affiliation(s)
- Allie M Scovil
- Department of Biological Sciences, University of New Brunswick, Saint John, New Brunswick E2L 4L5, Canada
| | - Tahereh Boloori
- Huntsman Marine Science Centre, 1 Lower Campus Road, St. Andrews, New Brunswick E5B 2L7, Canada
| | - Benjamin P de Jourdan
- Huntsman Marine Science Centre, 1 Lower Campus Road, St. Andrews, New Brunswick E5B 2L7, Canada
| | - Ben Speers-Roesch
- Department of Biological Sciences, University of New Brunswick, Saint John, New Brunswick E2L 4L5, Canada.
| |
Collapse
|
7
|
Zhu X, Zhang J, Li M, Hou X, Liu A, Dong X, Wang W, Xing Q, Huang X, Wang S, Hu J, Bao Z. Cardiac performance and heart gene network provide dynamic responses of bay scallop Argopecten irradians irradians exposure to marine heatwaves. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 882:163594. [PMID: 37094688 DOI: 10.1016/j.scitotenv.2023.163594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 04/13/2023] [Accepted: 04/15/2023] [Indexed: 05/03/2023]
Abstract
The increased frequency of marine heat waves (MHWs) caused by global climate change is predicted to threaten the survival of economic bivalves, therefore having severely adverse effects on local ecological communities and aquaculture production. However, the study of scallops facing MHWs is still scarce, particularly in the scallop Argopecten irradians irradians, which has a significant share of "blue foods" in northern China. In the present study, bay scallop heart was selected to detect its cardiac performance, oxidative impairment and dynamic molecular responses, accompanied by assessing survival variations of individuals in the simulated scenario of MWHs (32 °C) with different time points (0 h, 6 h, 12 h, 24 h, 3 d, 6 d and 10 d). Notably, cardiac indices heart rate (HR), heart amplitude (HA), rate-amplitude product (RAP) and antioxidant enzyme activities superoxide dismutase (SOD) and catalase (CAT) all peaked at 24 h but sharply dropped on 3 d, coinciding with mortality. Transcriptome analysis revealed that the heart actively defended against heat stress at the acute stage (<24 h) via energy supply, misfolded proteins correction and enhanced signal transduction, whereas regulation of the defense response and apoptotic process combined with twice transcription initiation were the dominant responses at the chronic stage (3-10 d). In particular, HSP70 (heat shock protein 70), HSP90 and CALR (calreticulin) in the endoplasmic reticulum were identified as the hub genes (top 5 %) in the HR-associated module via WGCNA (weighted gene co-expression network analysis) trait-module analysis, followed by characterization of their family members and diverse expression patterns under heat exposure. Furthermore, RNAi-mediated knockdown of CALR expression (after 24 h) significantly weakened the thermotolerance of scallops, as evidenced by a drop of 1.31 °C in ABT (Arrhenius break temperature) between the siRNA-injected group and the control group. Our findings elucidated the dynamic molecular responses at the transcriptome level and verified the cardiac functions of CALR in bay scallops confronted with stimulated MHWs.
Collapse
Affiliation(s)
- Xinghai Zhu
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, China
| | - Junhao Zhang
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, China
| | - Moli Li
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, China
| | - Xiujiang Hou
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, China
| | - Ancheng Liu
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, China
| | - Xuecheng Dong
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, China
| | - Wen Wang
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, China
| | - Qiang Xing
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, China.
| | - Xiaoting Huang
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, China
| | - Shi Wang
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, China; Fang Zongxi Center for Marine Evo Devo, Ocean University of China, Qingdao, China
| | - Jingjie Hu
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, China; Laboratory of Tropical Marine Germplasm Resources and Breeding Engineering, Sanya Oceanographic Institution of the Ocean University of China (SOI-OUC), Sanya, China
| | - Zhenmin Bao
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, China
| |
Collapse
|
8
|
Powell DJ, Owens E, Bergsund MM, Cooper M, Newstein P, Berner E, Janmohamed R, Dickinson PS. The role of feedback and modulation in determining temperature resiliency in the lobster cardiac nervous system. Front Neurosci 2023; 17:1113843. [PMID: 36968508 PMCID: PMC10034192 DOI: 10.3389/fnins.2023.1113843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 02/23/2023] [Indexed: 03/12/2023] Open
Abstract
Changes in ambient temperature affect all biological processes. However, these effects are process specific and often vary non-linearly. It is thus a non-trivial problem for neuronal circuits to maintain coordinated, functional output across a range of temperatures. The cardiac nervous systems in two species of decapod crustaceans, Homarus americanus and Cancer borealis, can maintain function across a wide but physiologically relevant temperature range. However, the processes that underlie temperature resilience in neuronal circuits and muscle systems are not fully understood. Here, we demonstrate that the non-isolated cardiac nervous system (i.e., the whole heart: neurons, effector organs, intrinsic feedback systems) in the American lobster, H. americanus, is more sensitive to warm temperatures than the isolated cardiac ganglion (CG) that controls the heartbeat. This was surprising as modulatory processes known to stabilize the output from the CG are absent when the ganglion is isolated. One source of inhibitory feedback in the intact cardiac neuromuscular system is nitric oxide (NO), which is released in response to heart contractions. We hypothesized that the greater temperature tolerance observed in the isolated CG is due to the absence of NO feedback. Here, we demonstrate that applying an NO donor to the isolated CG reduces its temperature tolerance. Similarly, we show that the NO synthase inhibitor L-nitroarginine (LNA) increases the temperature tolerance of the non-isolated nervous system. This is sufficient to explain differences in temperature tolerance between the isolated CG and the whole heart. However, in an intact lobster, the heart and CG are modulated by an array of endogenous peptides and hormones, many of which are positive regulators of the heartbeat. Many studies have demonstrated that excitatory modulators increase temperature resilience. However, this neuromuscular system is regulated by both excitatory and inhibitory peptide modulators. Perfusing SGRNFLRFamide, a FLRFamide-like peptide, through the heart increases the non-isolated nervous system’s tolerance to high temperatures. In contrast, perfusing myosuppressin, a peptide that negatively regulates the heartbeat frequency, decreases the temperature tolerance. Our data suggest that, in this nervous system, positive regulators of neural output increase temperature tolerance of the neuromuscular system, while modulators that decrease neural output decrease temperature tolerance.
Collapse
Affiliation(s)
- Daniel J. Powell
- Department of Biology, Bowdoin College, Brunswick, ME, United States
- Program in Neuroscience, Bowdoin College, Brunswick, ME, United States
| | - Elizabeth Owens
- Program in Neuroscience, Bowdoin College, Brunswick, ME, United States
| | - Marie M. Bergsund
- Program in Neuroscience, Bowdoin College, Brunswick, ME, United States
| | - Maren Cooper
- Program in Neuroscience, Bowdoin College, Brunswick, ME, United States
| | - Peter Newstein
- Program in Neuroscience, Bowdoin College, Brunswick, ME, United States
| | - Emily Berner
- Program in Neuroscience, Bowdoin College, Brunswick, ME, United States
| | - Rania Janmohamed
- Program in Neuroscience, Bowdoin College, Brunswick, ME, United States
| | - Patsy S. Dickinson
- Department of Biology, Bowdoin College, Brunswick, ME, United States
- Program in Neuroscience, Bowdoin College, Brunswick, ME, United States
- *Correspondence: Patsy S. Dickinson,
| |
Collapse
|
9
|
Metabolic plasticity improves lobster's resilience to ocean warming but not to climate-driven novel species interactions. Sci Rep 2022; 12:4412. [PMID: 35292683 PMCID: PMC8924167 DOI: 10.1038/s41598-022-08208-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Accepted: 03/03/2022] [Indexed: 12/21/2022] Open
Abstract
Marine species not only suffer from direct effects of warming oceans but also indirectly via the emergence of novel species interactions. While metabolic adjustments can be crucial to improve resilience to warming, it is largely unknown if this improves performance relative to novel competitors. We aimed to identify if spiny lobsters—inhabiting a global warming and species re-distribution hotspot—align their metabolic performance to improve resilience to both warming and novel species interactions. We measured metabolic and escape capacity of two Australian spiny lobsters, resident Jasus edwardsii and the range-shifting Sagmariasus verreauxi, acclimated to current average—(14.0 °C), current summer—(17.5 °C) and projected future summer—(21.5 °C) habitat temperatures. We found that both species decreased their standard metabolic rate with increased acclimation temperature, while sustaining their scope for aerobic metabolism. However, the resident lobster showed reduced anaerobic escape performance at warmer temperatures and failed to match the metabolic capacity of the range-shifting lobster. We conclude that although resident spiny lobsters optimise metabolism in response to seasonal and future temperature changes, they may be unable to physiologically outperform their range-shifting competitors. This highlights the critical importance of exploring direct as well as indirect effects of temperature changes to understand climate change impacts.
Collapse
|
10
|
Lopez-Anido RN, Harrington AM, Hamlin HJ. Coping with stress in a warming Gulf: the postlarval American lobster's cellular stress response under future warming scenarios. Cell Stress Chaperones 2021; 26:721-734. [PMID: 34115338 PMCID: PMC8275755 DOI: 10.1007/s12192-021-01217-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 05/18/2021] [Accepted: 06/07/2021] [Indexed: 10/21/2022] Open
Abstract
The Gulf of the Maine (GoM) is one of the fastest warming bodies of water in the world, posing serious physiological challenges to its marine inhabitants. Marine organisms can cope with the cellular and molecular stresses created by climate change through changes in gene expression. We used transcriptomics to examine how exposure to current summer temperatures (16 °C) or temperature regimes reflective of projected moderate and severe warming conditions (18 °C and 22 °C, respectively) during larval development alters expression of transcripts affiliated with the cellular stress response (CSR) in postlarval American lobsters (Homarus americanus). We identified 26 significantly differentially expressed (DE) transcripts annotated to CSR proteins. Specifically, transcripts for proteins affiliated with heat shock, the ubiquitin family, DNA repair, and apoptosis were significantly over-expressed in lobsters reared at higher temperatures relative to current conditions. Substantial variation in the CSR expression between postlarvae reared at 18 °C and those reared at 22 °C suggests that postlarvae reared under severe warming may have a hindered ability to cope with the physiological and molecular challenges of ocean warming. These results highlight that postlarval American lobsters may experience significant heat stress as rapid warming in the GoM continues, potentially compromising their ability to prevent cellular damage and inhibiting the reallocation of cellular energy towards other physiological functions beyond activation of the CSR. Moreover, this study establishes additional American lobster stress markers and addresses various knowledge gaps in crustacean biology, where sufficient 'omics research is lacking.
Collapse
Affiliation(s)
| | - Amalia M Harrington
- Maine Sea Grant College Program, University of Maine, 5741 Libby Hall, Room 121, Orono, ME, 04469, USA.
- School of Marine Sciences, University of Maine, Orono, ME, 04469, USA.
| | - Heather J Hamlin
- School of Marine Sciences, University of Maine, Orono, ME, 04469, USA
- Aquaculture Research Institute, University of Maine, Orono, ME, 04469, USA
| |
Collapse
|
11
|
Effect of dietary protein on energy metabolism including protein synthesis in the spiny lobster Sagmariasus verreauxi. Sci Rep 2021; 11:11814. [PMID: 34083691 PMCID: PMC8175413 DOI: 10.1038/s41598-021-91304-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Accepted: 05/19/2021] [Indexed: 02/04/2023] Open
Abstract
This is the first study in an aquatic ectotherm to combine a stoichiometric bioenergetic approach with an endpoint stochastic model to explore dietary macronutrient content. The combination of measuring respiratory gas (O2 and CO2) exchange, nitrogenous (ammonia and urea) excretion, specific dynamic action (SDA), metabolic energy substrate use, and whole-body protein synthesis in spiny lobster, Sagmariasus verreauxi, was examined in relation to dietary protein. Three isoenergetic feeds were formulated with varying crude protein: 40%, 50% and 60%, corresponding to CP40, CP50 and CP60 treatments, respectively. Total CO2 and ammonia excretion, SDA magnitude and coefficient, and protein synthesis in the CP60 treatment were higher compared to the CP40 treatment. These differences demonstrate dietary protein influences post-prandial energy metabolism. Metabolic use of each major energy substrate varied at different post-prandial times, indicating suitable amounts of high-quality protein with major non-protein energy-yielding nutrients, lipid and carbohydrate, are critical for lobsters. The average contribution of protein oxidation was lowest in the CP50 treatment, suggesting mechanisms underlying the most efficient retention of dietary protein and suitable dietary inclusion. This study advances understanding of how deficient and surplus dietary protein affects energy metabolism and provides approaches for fine-scale feed evaluation to support sustainable aquaculture.
Collapse
|
12
|
Pörtner HO. Climate impacts on organisms, ecosystems and human societies: integrating OCLTT into a wider context. J Exp Biol 2021; 224:224/Suppl_1/jeb238360. [PMID: 33627467 DOI: 10.1242/jeb.238360] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Physiological studies contribute to a cause and effect understanding of ecological patterns under climate change and identify the scope and limits of adaptation. Across most habitats, this requires analyzing organism responses to warming, which can be modified by other drivers such as acidification and oxygen loss in aquatic environments or excess humidity or drought on land. Experimental findings support the hypothesis that the width and temperature range of thermal performance curves relate to biogeographical range. Current warming causes range shifts, hypothesized to include constraints in aerobic power budget which in turn are elicited by limitations in oxygen supply capacity in relation to demand. Different metabolic scopes involved may set the borders of both the fundamental niche (at standard metabolic rate) and the realized niche (at routine rate). Relative scopes for aerobic performance also set the capacity of species to interact with others at the ecosystem level. Niche limits and widths are shifting and probably interdependent across life stages, with young adults being least thermally vulnerable. The principles of thermal tolerance and performance may also apply to endotherms including humans, their habitat and human society. Overall, phylogenetically based comparisons would need to consider the life cycle of species as well as organism functional properties across climate zones and time scales. This Review concludes with a perspective on how mechanism-based understanding allows scrutinizing often simplified modeling approaches projecting future climate impacts and risks for aquatic and terrestrial ecosystems. It also emphasizes the usefulness of a consensus-building process among experimentalists for better recognition in the climate debate.
Collapse
Affiliation(s)
- Hans-O Pörtner
- Integrative Ecophysiology section, Alfred Wegener Institute, Helmholtz Center for Marine and Polar Research, 27570 Bremetrhaven, Germany
| |
Collapse
|
13
|
Sokolova I. Bioenergetics in environmental adaptation and stress tolerance of aquatic ectotherms: linking physiology and ecology in a multi-stressor landscape. J Exp Biol 2021; 224:224/Suppl_1/jeb236802. [PMID: 33627464 DOI: 10.1242/jeb.236802] [Citation(s) in RCA: 59] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Energy metabolism (encompassing energy assimilation, conversion and utilization) plays a central role in all life processes and serves as a link between the organismal physiology, behavior and ecology. Metabolic rates define the physiological and life-history performance of an organism, have direct implications for Darwinian fitness, and affect ecologically relevant traits such as the trophic relationships, productivity and ecosystem engineering functions. Natural environmental variability and anthropogenic changes expose aquatic ectotherms to multiple stressors that can strongly affect their energy metabolism and thereby modify the energy fluxes within an organism and in the ecosystem. This Review focuses on the role of bioenergetic disturbances and metabolic adjustments in responses to multiple stressors (especially the general cellular stress response), provides examples of the effects of multiple stressors on energy intake, assimilation, conversion and expenditure, and discusses the conceptual and quantitative approaches to identify and mechanistically explain the energy trade-offs in multiple stressor scenarios, and link the cellular and organismal bioenergetics with fitness, productivity and/or ecological functions of aquatic ectotherms.
Collapse
Affiliation(s)
- Inna Sokolova
- Marine Biology Department, Institute of Biological Sciences, University of Rostock, 18059 Rostock, Germany .,Department of Maritime Systems, Interdisciplinary Faculty, University of Rostock, 18059 Rostock, Germany
| |
Collapse
|
14
|
Maus B, Gutsfeld S, Bock C, Pörtner HO. Non-invasive MRI Studies of Ventilatory and Cardiovascular Performance in Edible Crabs Cancer pagurus During Warming Under Elevated CO 2 Levels. Front Physiol 2021; 11:596529. [PMID: 33505316 PMCID: PMC7831881 DOI: 10.3389/fphys.2020.596529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Accepted: 12/04/2020] [Indexed: 11/13/2022] Open
Abstract
The thermal tolerance of marine decapod crustacea is defined through their capacities for oxygen uptake and distribution. High ambient CO2 levels were previously shown to reduce hemolymph oxygen levels at enhanced cardiac performance during warming. This study investigated the impacts of warming under two CO2 levels on ventilation and hemolymph circulation in edible crabs Cancer pagurus. It also highlights changes in the ventilatory and cardiac pauses displayed by Decapoda under routine metabolism. Animals were exposed to step-wise, sub-critical warming (12–20°C over 5 days) under control (470 μatm) and high (1,350 μatm) water PCO2. Flow-through respirometry was combined with magnetic resonance imaging and infra-red photoplethysmography to allow for simultaneous, non-invasive measurements of metabolic rates (M˙O2), ventilation and cardiovascular performance. Crabs spent significantly more time in a low M˙O2 state (metabolic pause), when experiencing high CO2 conditions above 16°C, compared to normocapnic warming. Heart rates leveled off beyond 18°C at any CO2 level. Cardiac output continued to increase with high-CO2-warming, due to elevated cardiac stroke volumes. Consequently, temperature-dependent branchial hemolymph flow remained unaffected by CO2. Instead, a suppressing effect of CO2 on ventilation was found beyond 16°C. These results indicate constrained oxygen uptake at stable cardiovascular performance in a decapod crustacean. Cancer pagurus: urn:lsid:zoobank.org:act:B750F89A-84B5-448B-8D80-EBD724A1C9D4
Collapse
Affiliation(s)
- Bastian Maus
- Integrative Ecophysiology, Alfred-Wegener-Institute Helmholtz Centre for Polar and Marine Research, Bremerhaven, Germany.,Department of Biology and Chemistry, University of Bremen, Bremen, Germany
| | - Sebastian Gutsfeld
- Integrative Ecophysiology, Alfred-Wegener-Institute Helmholtz Centre for Polar and Marine Research, Bremerhaven, Germany
| | - Christian Bock
- Integrative Ecophysiology, Alfred-Wegener-Institute Helmholtz Centre for Polar and Marine Research, Bremerhaven, Germany
| | - Hans-Otto Pörtner
- Integrative Ecophysiology, Alfred-Wegener-Institute Helmholtz Centre for Polar and Marine Research, Bremerhaven, Germany.,Department of Biology and Chemistry, University of Bremen, Bremen, Germany
| |
Collapse
|
15
|
Evans ER, Farnoud AM, O'Brien KM, Crockett EL. Thermal profiles reveal stark contrasts in properties of biological membranes from heart among Antarctic notothenioid fishes which vary in expression of hemoglobin and myoglobin. Comp Biochem Physiol B Biochem Mol Biol 2020; 252:110539. [PMID: 33242660 DOI: 10.1016/j.cbpb.2020.110539] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 11/13/2020] [Accepted: 11/19/2020] [Indexed: 01/24/2023]
Abstract
Antarctic notothenioids are noted for extreme stenothermy, yet underpinnings of their thermal limits are not fully understood. We hypothesized that properties of ventricular membranes could explain previously observed differences among notothenioids in temperature onset of cardiac arrhythmias and persistent asystole. Microsomes were prepared using ventricles from six species of notothenioids, including four species from the hemoglobin-less (Hb-) family Channichthyidae (icefishes), which also differentially express cardiac myoglobin (Mb), and two species from the (Hb+) Nototheniidae. We determined membrane fluidity and structural integrity by quantifying fluorescence depolarization of 1,6-diphenyl-1,3,5-hexatriene (DPH) and leakage of 5(6)-carboxyfluorescein, respectively, over a temperature range from ambient (0 °C) to 20 °C. Compositions of membrane phospholipids and cholesterol contents were also quantified. Membranes from all four species of icefishes exhibited greater fluidity than membranes from the red-blooded species N. coriiceps. Thermal sensitivity of fluidity did not vary among species. The greatest thermal sensitivity to leakage occurred between 0 and 5 °C for all species, while membranes from the icefish, Chaenocephalus aceratus (Hb-/Mb-) displayed leakage that was nearly 1.5-fold greater than leakage in N. coriiceps (Hb+/Mb+). Contents of phosphatidylethanolamine (PE) were approximately 1.5-fold greater in icefishes than in red-blooded fishes, and phospholipids had a higher degree of unsaturation in icefishes than in Hb + notothenioids. Cholesterol contents were lowest in Champsocephalus gunnari (Hb-/Mb-) and highest in the two Hb+/Mb + species, G. gibberifrons and N. coriiceps. Our results reveal marked differences in membrane properties and indicate a breach in membrane fluidity and structural integrity at a lower temperature in icefishes than in red-blooded notothenioids.
Collapse
Affiliation(s)
- Elizabeth R Evans
- Department of Biological Sciences, Ohio University, Athens, OH 45701, USA
| | - Amir M Farnoud
- Department of Chemical and Biomolecular Engineering, Ohio University, Athens, OH 45701, USA
| | - Kristin M O'Brien
- Institute of Arctic Biology, University of Alaska, Fairbanks, AK 99775, USA
| | | |
Collapse
|
16
|
Abstract
Temperature is a critical abiotic factor shaping the distribution and abundance of species, but the mechanisms that underpin organismal thermal limits remain poorly understood. One possible mechanism underlying these limits is the failure of mitochondrial processes, as mitochondria play a crucial role in animals as the primary site of ATP production. Conventional measures of mitochondrial performance suggest that these organelles can function at temperatures much higher than those that limit whole-organism function, suggesting that they are unlikely to set organismal thermal limits. However, this conclusion is challenged by recent data connecting sequence variation in mitochondrial genes to whole-organism thermal tolerance. Here, we review the current state of knowledge of mitochondrial responses to thermal extremes and ask whether they are consistent with a role for mitochondrial function in shaping whole-organism thermal limits. The available data are fragmentary, but it is possible to draw some conclusions. There is little evidence that failure of maximal mitochondrial oxidative capacity as assessed in vitro sets thermal limits, but there is some evidence to suggest that temperature effects on ATP synthetic capacity may be important. Several studies suggest that loss of mitochondrial coupling is associated with the thermal limits for organismal growth, although this needs to be rigorously tested. Most studies have utilized isolated mitochondrial preparations to assess the effects of temperature on these organelles, and there remain many untapped opportunities to address these questions using preparations that retain more of their biological context to better connect these subcellular processes with whole-organism thermal limits.
Collapse
Affiliation(s)
- Dillon J Chung
- National Heart Lung and Blood Institute, National Institutes of Health, 10 Center Drive, Bethesda, MD 20814, USA
| | - Patricia M Schulte
- Department of Zoology, University of British Columbia, 6270 University Blvd, Vancouver, British Columbia, Canada V6T 1Z4
| |
Collapse
|