1
|
Su H, Zhao L, Fang T, Han W, Fan H. Identification of ETV5 as a prognostic marker related to epigenetic modification in pan-cancer and facilitates tumor progression in hepatocellular carcinoma. Sci Rep 2024; 14:29695. [PMID: 39614096 DOI: 10.1038/s41598-024-81642-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Accepted: 11/27/2024] [Indexed: 12/01/2024] Open
Abstract
ETS variant transcription factor 5 (ETV5), a master transcription factor during development, exerts vital function on the occurrence and progression of various cancers. In order to systematically analyze and explore ETV5 potential specific regulatory mechanisms in pan-cancer, RNA sequencing data and clinicopathological features of patients with various tumors were obtained through the Cancer Genome Atlas (TCGA) and Genotype-Tissue Expression (GTEx) databases, and an integrated data mining analysis was carried out, including the association of ETV5 expression with patient prognosis, drug sensitivity and epigenetic modification. The results revealed that abnormally highly expressed ETV5 resulted in unfavorable prognosis and differential drug sensitivity in multiple malignancies, and its expression was associated with epigenetic modification modulators including EZH2. ETV5 related genes were enriched in tumorigenesis biological processes and signaling pathways. In hepatocellular carcinoma, ETV5 expression was correlated with patients' tumor pathological stage and resulted in adverse outcome of patients. Our further experiments evidences indicated that ETV5 facilitated cell proliferation and reduced sensitivity to GSK126 via regulating EZH2. Collectively, this study comprehensively elucidates the carcinogenic effects and molecular mechanisms of ETV5 in tumorigenesis and development, and provides theoretical basis and guidance for tumor diagnosis, targeted therapy for ETV5 and clinical epigenetic drug research.
Collapse
Affiliation(s)
- Hongmeng Su
- Department of Medical Genetics and Developmental Biology, School of Medicine, The Key Laboratory of Developmental Genes and Human Diseases, Ministry of Education, Southeast University, Nanjing, 210009, China
| | - Luyu Zhao
- Department of Medical Genetics and Developmental Biology, School of Medicine, The Key Laboratory of Developmental Genes and Human Diseases, Ministry of Education, Southeast University, Nanjing, 210009, China
| | - Tianle Fang
- Department of Medical Genetics and Developmental Biology, School of Medicine, The Key Laboratory of Developmental Genes and Human Diseases, Ministry of Education, Southeast University, Nanjing, 210009, China
| | - Wenhao Han
- School of Life Science and Technology, Southeast University, Nanjing, China
| | - Hong Fan
- Department of Medical Genetics and Developmental Biology, School of Medicine, The Key Laboratory of Developmental Genes and Human Diseases, Ministry of Education, Southeast University, Nanjing, 210009, China.
| |
Collapse
|
2
|
Van Haver S, Fan Y, Bekaert SL, Everaert C, Van Loocke W, Zanzani V, Deschildre J, Maestre IF, Amaro A, Vermeirssen V, De Preter K, Zhou T, Kentsis A, Studer L, Speleman F, Roberts SS. Human iPSC modeling recapitulates in vivo sympathoadrenal development and reveals an aberrant developmental subpopulation in familial neuroblastoma. iScience 2024; 27:108096. [PMID: 38222111 PMCID: PMC10784699 DOI: 10.1016/j.isci.2023.108096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 06/12/2023] [Accepted: 09/26/2023] [Indexed: 01/16/2024] Open
Abstract
Studies defining normal and disrupted human neural crest cell development have been challenging given its early timing and intricacy of development. Consequently, insight into the early disruptive events causing a neural crest related disease such as pediatric cancer neuroblastoma is limited. To overcome this problem, we developed an in vitro differentiation model to recapitulate the normal in vivo developmental process of the sympathoadrenal lineage which gives rise to neuroblastoma. We used human in vitro pluripotent stem cells and single-cell RNA sequencing to recapitulate the molecular events during sympathoadrenal development. We provide a detailed map of dynamically regulated transcriptomes during sympathoblast formation and illustrate the power of this model to study early events of the development of human neuroblastoma, identifying a distinct subpopulation of cell marked by SOX2 expression in developing sympathoblast obtained from patient derived iPSC cells harboring a germline activating mutation in the anaplastic lymphoma kinase (ALK) gene.
Collapse
Affiliation(s)
- Stéphane Van Haver
- Department of Biomolecular Medicine, Ghent University, 9000 Ghent, Belgium
- Cancer Research Institute Ghent (CRIG), 9000 Ghent, Belgium
| | - Yujie Fan
- The Center for Stem Cell Biology, Memorial Sloan Kettering Cancer Center (MSKCC), New York, NY, USA
- Developmental Biology Program, MSKCC, New York, NY 10065, USA
- Weill Graduate School of Medical Sciences of Cornell University, New York, NY 10065, USA
| | - Sarah-Lee Bekaert
- Department of Biomolecular Medicine, Ghent University, 9000 Ghent, Belgium
- Cancer Research Institute Ghent (CRIG), 9000 Ghent, Belgium
| | - Celine Everaert
- Department of Biomolecular Medicine, Ghent University, 9000 Ghent, Belgium
- Cancer Research Institute Ghent (CRIG), 9000 Ghent, Belgium
| | - Wouter Van Loocke
- Department of Biomolecular Medicine, Ghent University, 9000 Ghent, Belgium
- Cancer Research Institute Ghent (CRIG), 9000 Ghent, Belgium
| | - Vittorio Zanzani
- Department of Biomolecular Medicine, Ghent University, 9000 Ghent, Belgium
- Lab for Computational Biology, Integromics and Gene Regulation (CBIGR), Cancer Research Institute Ghent (CRIG), Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, 9000 Ghent, Belgium
| | - Joke Deschildre
- Department of Biomolecular Medicine, Ghent University, 9000 Ghent, Belgium
- Lab for Computational Biology, Integromics and Gene Regulation (CBIGR), Cancer Research Institute Ghent (CRIG), Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, 9000 Ghent, Belgium
| | - Inés Fernandez Maestre
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Louis V. Gerstner Jr Graduate School of Biomedical Sciences, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Adrianna Amaro
- Department of Pediatrics, MSKCC, New York, NY 10065, USA
| | - Vanessa Vermeirssen
- Department of Biomolecular Medicine, Ghent University, 9000 Ghent, Belgium
- Lab for Computational Biology, Integromics and Gene Regulation (CBIGR), Cancer Research Institute Ghent (CRIG), Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, 9000 Ghent, Belgium
| | - Katleen De Preter
- Department of Biomolecular Medicine, Ghent University, 9000 Ghent, Belgium
- Cancer Research Institute Ghent (CRIG), 9000 Ghent, Belgium
| | - Ting Zhou
- The SKI Stem Cell Research Facility, The Center for Stem Cell Biology and Developmental Biology Program, Sloan Kettering Institute, 1275 York Avenue, New York, NY 10065, USA
| | - Alex Kentsis
- Department of Pediatrics, MSKCC, New York, NY 10065, USA
- Molecular Pharmacology Program, MSKCC, New York, NY, USA
- Tow Center for Developmental Oncology, MSKCC, New York, NY 10065, USA
- Departments of Pediatrics, Pharmacology and Physiology & Biophysics, Weill Cornell Graduate School of Medical Sciences, Cornell University, New York, NY 10065, USA
| | - Lorenz Studer
- The Center for Stem Cell Biology, Memorial Sloan Kettering Cancer Center (MSKCC), New York, NY, USA
- Developmental Biology Program, MSKCC, New York, NY 10065, USA
| | - Frank Speleman
- Department of Biomolecular Medicine, Ghent University, 9000 Ghent, Belgium
- Cancer Research Institute Ghent (CRIG), 9000 Ghent, Belgium
| | | |
Collapse
|
3
|
Qin X, Chen B. Comprehensive analysis and validation reveal potential MYCN regulatory biomarkers associated with neuroblastoma prognosis. J Biomol Struct Dyn 2023; 41:8902-8917. [PMID: 36300516 DOI: 10.1080/07391102.2022.2138977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 10/16/2022] [Indexed: 10/31/2022]
Abstract
Neuroblastoma (NB) is an embryonic malignant tumor that occurs in the sympathetic nervous system. The treatment results of patients in the high-risk group are poor, and relapse and treatment failure can occur even with multiple combination treatments. The proto-oncogene MYCN is a BHLH Transcription Factor used as an independent prognostic factor for NB. The proportion of MYCN amplification in tumor tissues of high-risk patients reaches 40-50%. Hence, exploring new MYCN target genes is a meaningful approach in developing treatment for high-risk NB patients. The microarray datasets were obtained from Gene Expression Omnibus (GEO), and differentially expressed genes (DEGs) were identified. Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG), and miRPathDB were used for enrichment analysis. STRING and Cytoscape were used to construct a protein-protein interaction (PPI) network and for modular analysis. The miRNet and NetworkAnalyst databases were used to predict and construct gene-miRNA and gene-TFs networks. The R2 database was used for expression, correlation, and prognostic analyses. The diagnostic value of the biomarkers was predicted by ROC analysis, and RT-qPCR was used to validate the identified hub genes. Finally, using specific MYCN siRNA and overexpressing plasmids, the correlation between the identified hub genes and MYCN was investigated. Our results showed that FBXO9, HECW2, MIB2, RNF19B, RNF213, TRIM36, and ZBTB16 are novel biomarkers that affect the prognosis of the NB patients. In addition, FBXO9, RNF19B, and TRIM36 were preliminarily confirmed as potential target genes of MYCN. Overall, FBXO9, HECW2, MIB2, RNF19B, RNF213, TRIM36, and ZBTB16 are expected to become novel biomarkers for the treatment of high-risk NB patients.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Xiuni Qin
- Guangzhou Concord Cancer Center, Guangzhou, China
| | - Bo Chen
- Medical Research Center, Shengjing Hospital of China Medical University, Shenyang, China
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, China
| |
Collapse
|
4
|
Shih HY, Chen HY, Huang YC, Yeh TH, Chen YC, Cheng YC. Etv5a Suppresses Neural Progenitor Cell Proliferation by Inhibiting sox2 Transcription. Stem Cells Dev 2023; 32:524-538. [PMID: 37358404 DOI: 10.1089/scd.2023.0005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/27/2023] Open
Abstract
Neural progenitor cells are self-renewable, proliferative, and multipotent cell populations that generate diverse types of neurons and glia to build the nervous system. Transcription factors play critical roles in regulating various cellular processes; however, the transcription factors that regulate the development of neural progenitors are yet to be identified. In the present study, we demonstrated that zebrafish etv5a is expressed in the neural progenitor cells of the neuroectoderm. Downregulation of endogenous Etv5a function by etv5a morpholino or an etv5a dominant-negative variant increased the proliferation of sox2-positive neural progenitor cells, accompanied by inhibition of neurogenesis and gliogenesis. These phenotypes in Etv5a-depleted embryos could be rescued by a co-injection with etv5a cRNA. Etv5a overexpression reduced sox2 expression. Direct binding of Etv5a to the regulatory elements of sox2 was affirmed by chromatin immunoprecipitation. These data revealed that Etv5a directly suppressed sox2 expression to reduce the proliferation of neural progenitor cells. In addition, the expression of foxm1, a putative target gene of Etv5a and a direct upstream transcription factor of sox2, was upregulated in Etv5a-deficient embryos. Moreover, the suppression of Foxm1 function by the foxm1 dominant-negative construct nullified the phenotype of upregulated sox2 expression caused by Etv5a deficiency. Overall, our results indicated that Etv5a regulates the expression of sox2 via direct binding to the sox2 promoter and indirect regulation by inhibiting foxm1 expression. Hence, we revealed the role of Etv5a in the transcriptional hierarchy that regulates the proliferation of neural progenitor cells.
Collapse
Affiliation(s)
- Hung-Yu Shih
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan
- Department of Biological Sciences, College of Science, Engineering & Technology, Utah Tech University, St. George, Utah, USA
| | - Hao-Yuan Chen
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Yin-Cheng Huang
- Department of Neurosurgery, Chang Gung Memorial Hospital at Linkou Medical Center, Taoyuan, Taiwan
- College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Tu-Hsueh Yeh
- Department of Neurology, Taipei Medical University Hospital, Taipei, Taiwan
- School of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Yi-Chieh Chen
- Department of Neurology, Chang Gung Memorial Hospital at Linkou Medical Center, Taoyuan, Taiwan
- Neuroscience Research Center, Chang Gung Memorial Hospital, Linkou, Taoyuan, Taiwan
| | - Yi-Chuan Cheng
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan
- Neuroscience Research Center, Chang Gung Memorial Hospital, Linkou, Taoyuan, Taiwan
| |
Collapse
|
5
|
Liu S, Yin W, Lin Y, Huang S, Xue S, Sun G, Wang C. Metastasis pattern and prognosis in children with neuroblastoma. World J Surg Oncol 2023; 21:130. [PMID: 37046344 PMCID: PMC10091559 DOI: 10.1186/s12957-023-03011-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Accepted: 03/30/2023] [Indexed: 04/14/2023] Open
Abstract
BACKGROUND We aimed to investigate the different metastases and prognoses of neuroblastoma (NB) and determine the risk factors of metastasis. METHOD Data of 1224 patients with NB were obtained from the Surveillance, Epidemiology and End Results database (2010-2018). Pearson's chi-square test, Kaplan-Meier analysis, multivariable logistic regression and Cox regression analysis were used to determine the factors associated with prognosis. RESULTS The overall incidence of NB was an age-adjusted rate of 8.2 patients per 1,000,000 children. In total, 1224 patients were included in our study, with 599 patients (48.9%) exhibiting distant metastases. Compared to patients with non-metastatic NB, a greater proportion of patients with metastatic NB were under 1 year, male, had an adrenal primary site, unilateral tumour, a tumour size > 10 cm, neuroblastoma-not otherwise specified (NB-NOS), second malignant neoplasms and were more likely to choose radiotherapy and chemotherapy. Multivariate Cox regression showed that metastasis was an independent risk factor for overall survival (OS) and cancer-specific survival (CSS). The survival rate of non-metastatic patients with NB was better than those with metastasis (OS: hazard ratio (HR): 0.248, P < 0.001; CSS: HR: 0.267, P < 0.001). The bone and liver were the two most common isolated metastatic sites in NB. However, no statistical difference was observed in OS and CSS between the only bone metastasis group, only liver metastasis group and bone metastasis combined with liver metastasis group (all P > 0.05). Additionally, age at diagnosis > 1 year (odds ratio (OR): 3.295, P < 0 .001), grades III-IV (OR: 26.228, P < 0 .001) and 5-10 cm tumours (OR: 1.781, P < 0 .001) increased the risk of bone metastasis of NB. Moreover, no surgical treatment (OR: 2.441, P < 0 .001) increased the risk of liver metastasis of NB. CONCLUSION Metastatic NB has unique clinicopathological features, with the bone and liver as the most common single metastatic sites of NB. Therefore, more aggressive treatment is recommended for high-risk children with NB displaying distant metastases.
Collapse
Affiliation(s)
- Shan Liu
- Department of Hematology-Oncology, Fujian Children's Hospital, Fujian Medical University, Fuzhou, Fujian, China
- College of Clinical Medicine for Obstetrics and Gynecology and Pediatrics, Fujian Medical University, Fuzhou, Fujian, China
| | - Weimin Yin
- Department of Hematology-Oncology, Fujian Children's Hospital, Fujian Medical University, Fuzhou, Fujian, China
- College of Clinical Medicine for Obstetrics and Gynecology and Pediatrics, Fujian Medical University, Fuzhou, Fujian, China
| | - Yaobin Lin
- Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, Fujian, China
| | - Sihan Huang
- Department of Hematology-Oncology, Fujian Children's Hospital, Fujian Medical University, Fuzhou, Fujian, China
- College of Clinical Medicine for Obstetrics and Gynecology and Pediatrics, Fujian Medical University, Fuzhou, Fujian, China
| | - Shufang Xue
- Department of Hematology-Oncology, Fujian Children's Hospital, Fujian Medical University, Fuzhou, Fujian, China
- College of Clinical Medicine for Obstetrics and Gynecology and Pediatrics, Fujian Medical University, Fuzhou, Fujian, China
| | - Gaoyuan Sun
- Department of Hematology-Oncology, Fujian Children's Hospital, Fujian Medical University, Fuzhou, Fujian, China
- College of Clinical Medicine for Obstetrics and Gynecology and Pediatrics, Fujian Medical University, Fuzhou, Fujian, China
| | - Chengyi Wang
- Department of Hematology-Oncology, Fujian Children's Hospital, Fujian Medical University, Fuzhou, Fujian, China.
- College of Clinical Medicine for Obstetrics and Gynecology and Pediatrics, Fujian Medical University, Fuzhou, Fujian, China.
| |
Collapse
|
6
|
Wei Y, Han S, Wen J, Liao J, Liang J, Yu J, Chen X, Xiang S, Huang Z, Zhang B. E26 transformation-specific transcription variant 5 in development and cancer: modification, regulation and function. J Biomed Sci 2023; 30:17. [PMID: 36872348 PMCID: PMC9987099 DOI: 10.1186/s12929-023-00909-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Accepted: 02/27/2023] [Indexed: 03/07/2023] Open
Abstract
E26 transformation-specific (ETS) transcription variant 5 (ETV5), also known as ETS-related molecule (ERM), exerts versatile functions in normal physiological processes, including branching morphogenesis, neural system development, fertility, embryonic development, immune regulation, and cell metabolism. In addition, ETV5 is repeatedly found to be overexpressed in multiple malignant tumors, where it is involved in cancer progression as an oncogenic transcription factor. Its roles in cancer metastasis, proliferation, oxidative stress response and drug resistance indicate that it is a potential prognostic biomarker, as well as a therapeutic target for cancer treatment. Post-translational modifications, gene fusion events, sophisticated cellular signaling crosstalk and non-coding RNAs contribute to the dysregulation and abnormal activities of ETV5. However, few studies to date systematically summarized the role and molecular mechanisms of ETV5 in benign diseases and in oncogenic progression. In this review, we specify the molecular structure and post-translational modifications of ETV5. In addition, its critical roles in benign and malignant diseases are summarized to draw a panorama for specialists and clinicians. The updated molecular mechanisms of ETV5 in cancer biology and tumor progression are delineated. Finally, we prospect the further direction of ETV5 research in oncology and its potential translational applications in the clinic.
Collapse
Affiliation(s)
- Yi Wei
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Clinical Medical Research Center of Hepatic Surgery at Hubei Province, Wuhan, China
- Hubei Key Laboratory of Hepato-Pancreatic-Biliary Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shenqi Han
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Clinical Medical Research Center of Hepatic Surgery at Hubei Province, Wuhan, China
- Hubei Key Laboratory of Hepato-Pancreatic-Biliary Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jingyuan Wen
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Clinical Medical Research Center of Hepatic Surgery at Hubei Province, Wuhan, China
- Hubei Key Laboratory of Hepato-Pancreatic-Biliary Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jingyu Liao
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Clinical Medical Research Center of Hepatic Surgery at Hubei Province, Wuhan, China
- Hubei Key Laboratory of Hepato-Pancreatic-Biliary Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Junnan Liang
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Clinical Medical Research Center of Hepatic Surgery at Hubei Province, Wuhan, China
- Hubei Key Laboratory of Hepato-Pancreatic-Biliary Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jingjing Yu
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Clinical Medical Research Center of Hepatic Surgery at Hubei Province, Wuhan, China
- Hubei Key Laboratory of Hepato-Pancreatic-Biliary Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaoping Chen
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Clinical Medical Research Center of Hepatic Surgery at Hubei Province, Wuhan, China
- Hubei Key Laboratory of Hepato-Pancreatic-Biliary Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Key Laboratory of Organ Transplantation, Ministry of Education, Wuhan, China
- Key Laboratory of Organ Transplantation, National Health Commission, Wuhan, China
- Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan, China
| | - Shuai Xiang
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
- Clinical Medical Research Center of Hepatic Surgery at Hubei Province, Wuhan, China.
- Hubei Key Laboratory of Hepato-Pancreatic-Biliary Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Zhao Huang
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
- Clinical Medical Research Center of Hepatic Surgery at Hubei Province, Wuhan, China.
- Hubei Key Laboratory of Hepato-Pancreatic-Biliary Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Bixiang Zhang
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
- Clinical Medical Research Center of Hepatic Surgery at Hubei Province, Wuhan, China.
- Hubei Key Laboratory of Hepato-Pancreatic-Biliary Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
- Key Laboratory of Organ Transplantation, Ministry of Education, Wuhan, China.
- Key Laboratory of Organ Transplantation, National Health Commission, Wuhan, China.
- Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan, China.
| |
Collapse
|
7
|
Bokhari A, Lai W, Le A, Gabre J, Chung TP, Fransson S, Bergman B, Djos A, Chen N, Martinsson T, Van den Eynden J, Doebele R, Palmer R, Hallberg B, Umapathy G. Novel Human-derived EML4-ALK Fusion Cell Lines identify ribonucleotide reductase RRM2 as a target of activated ALK in NSCLC. Lung Cancer 2022; 171:103-114. [DOI: 10.1016/j.lungcan.2022.07.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 07/07/2022] [Accepted: 07/14/2022] [Indexed: 11/17/2022]
|
8
|
Nirmal AJ, Maliga Z, Vallius T, Quattrochi B, Chen AA, Jacobson CA, Pelletier RJ, Yapp C, Arias-Camison R, Chen YA, Lian CG, Murphy GF, Santagata S, Sorger PK. The Spatial Landscape of Progression and Immunoediting in Primary Melanoma at Single-Cell Resolution. Cancer Discov 2022; 12:1518-1541. [PMID: 35404441 PMCID: PMC9167783 DOI: 10.1158/2159-8290.cd-21-1357] [Citation(s) in RCA: 74] [Impact Index Per Article: 24.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 02/05/2022] [Accepted: 04/01/2022] [Indexed: 11/16/2022]
Abstract
Cutaneous melanoma is a highly immunogenic malignancy that is surgically curable at early stages but life-threatening when metastatic. Here we integrate high-plex imaging, 3D high-resolution microscopy, and spatially resolved microregion transcriptomics to study immune evasion and immunoediting in primary melanoma. We find that recurrent cellular neighborhoods involving tumor, immune, and stromal cells change significantly along a progression axis involving precursor states, melanoma in situ, and invasive tumor. Hallmarks of immunosuppression are already detectable in precursor regions. When tumors become locally invasive, a consolidated and spatially restricted suppressive environment forms along the tumor-stromal boundary. This environment is established by cytokine gradients that promote expression of MHC-II and IDO1, and by PD1-PDL1-mediated cell contacts involving macrophages, dendritic cells, and T cells. A few millimeters away, cytotoxic T cells synapse with melanoma cells in fields of tumor regression. Thus, invasion and immunoediting can coexist within a few millimeters of each other in a single specimen. SIGNIFICANCE The reorganization of the tumor ecosystem in primary melanoma is an excellent setting in which to study immunoediting and immune evasion. Guided by classic histopathology, spatial profiling of proteins and mRNA reveals recurrent morphologic and molecular features of tumor evolution that involve localized paracrine cytokine signaling and direct cell-cell contact. This article is highlighted in the In This Issue feature, p. 1397.
Collapse
Affiliation(s)
- Ajit J. Nirmal
- Laboratory of Systems Pharmacology, Harvard Medical School, Boston, Massachusetts
- Ludwig Center at Harvard, Boston, Massachusetts
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Zoltan Maliga
- Laboratory of Systems Pharmacology, Harvard Medical School, Boston, Massachusetts
- Ludwig Center at Harvard, Boston, Massachusetts
| | - Tuulia Vallius
- Laboratory of Systems Pharmacology, Harvard Medical School, Boston, Massachusetts
- Ludwig Center at Harvard, Boston, Massachusetts
| | - Brian Quattrochi
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Alyce A. Chen
- Laboratory of Systems Pharmacology, Harvard Medical School, Boston, Massachusetts
- Ludwig Center at Harvard, Boston, Massachusetts
| | - Connor A. Jacobson
- Laboratory of Systems Pharmacology, Harvard Medical School, Boston, Massachusetts
- Ludwig Center at Harvard, Boston, Massachusetts
| | - Roxanne J. Pelletier
- Laboratory of Systems Pharmacology, Harvard Medical School, Boston, Massachusetts
- Ludwig Center at Harvard, Boston, Massachusetts
| | - Clarence Yapp
- Laboratory of Systems Pharmacology, Harvard Medical School, Boston, Massachusetts
- Ludwig Center at Harvard, Boston, Massachusetts
| | - Raquel Arias-Camison
- Laboratory of Systems Pharmacology, Harvard Medical School, Boston, Massachusetts
- Ludwig Center at Harvard, Boston, Massachusetts
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Yu-An Chen
- Laboratory of Systems Pharmacology, Harvard Medical School, Boston, Massachusetts
- Ludwig Center at Harvard, Boston, Massachusetts
| | - Christine G. Lian
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - George F. Murphy
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Sandro Santagata
- Laboratory of Systems Pharmacology, Harvard Medical School, Boston, Massachusetts
- Ludwig Center at Harvard, Boston, Massachusetts
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Peter K. Sorger
- Laboratory of Systems Pharmacology, Harvard Medical School, Boston, Massachusetts
- Ludwig Center at Harvard, Boston, Massachusetts
- Department of Systems Biology, Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
9
|
Archer LK, Frame FM, Walker HF, Droop AP, McDonald GLK, Kucko S, Berney DM, Mann VM, Simms MS, Maitland NJ. ETS transcription factor ELF3 (ESE-1) is a cell cycle regulator in benign and malignant prostate. FEBS Open Bio 2022; 12:1365-1387. [PMID: 35472129 PMCID: PMC9249341 DOI: 10.1002/2211-5463.13417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 03/23/2022] [Accepted: 04/25/2022] [Indexed: 11/07/2022] Open
Abstract
This study aimed to elucidate the role of ELF3, an ETS family member in normal prostate growth and prostate cancer. Silencing ELF3 in both benign prostate (BPH-1) and prostate cancer (PC3) cell lines resulted in decreased colony forming ability, inhibition of cell migration and reduced cell viability due to cell cycle arrest, establishing ELF3 as a cell cycle regulator. Increased ELF3 expression in more advanced prostate tumours was shown by immunostaining of tissue microarrays and from analysis of gene expression and genetic alteration studies. This study indicates that ELF3 functions as part of normal prostate epithelial growth but also as a potential oncogene in advanced prostate cancers.
Collapse
Affiliation(s)
- Leanne K. Archer
- Cancer Research UnitDepartment of BiologyUniversity of YorkHeslingtonUK
| | - Fiona M. Frame
- Cancer Research UnitDepartment of BiologyUniversity of YorkHeslingtonUK
| | - Hannah F. Walker
- Cancer Research UnitDepartment of BiologyUniversity of YorkHeslingtonUK
| | | | | | - Samuel Kucko
- Cancer Research UnitDepartment of BiologyUniversity of YorkHeslingtonUK
| | - Daniel M. Berney
- Department of Molecular OncologyBarts Cancer InstituteQueen Mary University of LondonUK
| | - Vincent M. Mann
- Cancer Research UnitDepartment of BiologyUniversity of YorkHeslingtonUK
| | | | | |
Collapse
|
10
|
Decaesteker B, Durinck K, Van Roy N, De Wilde B, Van Neste C, Van Haver S, Roberts S, De Preter K, Vermeirssen V, Speleman F. From DNA Copy Number Gains and Tumor Dependencies to Novel Therapeutic Targets for High-Risk Neuroblastoma. J Pers Med 2021; 11:1286. [PMID: 34945759 PMCID: PMC8707517 DOI: 10.3390/jpm11121286] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 11/19/2021] [Accepted: 11/20/2021] [Indexed: 12/15/2022] Open
Abstract
Neuroblastoma is a pediatric tumor arising from the sympatho-adrenal lineage and a worldwide leading cause of childhood cancer-related deaths. About half of high-risk patients die from the disease while survivors suffer from multiple therapy-related side-effects. While neuroblastomas present with a low mutational burden, focal and large segmental DNA copy number aberrations are highly recurrent and associated with poor survival. It can be assumed that the affected chromosomal regions contain critical genes implicated in neuroblastoma biology and behavior. More specifically, evidence has emerged that several of these genes are implicated in tumor dependencies thus potentially providing novel therapeutic entry points. In this review, we briefly review the current status of recurrent DNA copy number aberrations in neuroblastoma and provide an overview of the genes affected by these genomic variants for which a direct role in neuroblastoma has been established. Several of these genes are implicated in networks that positively regulate MYCN expression or stability as well as cell cycle control and apoptosis. Finally, we summarize alternative approaches to identify and prioritize candidate copy-number driven dependency genes for neuroblastoma offering novel therapeutic opportunities.
Collapse
Grants
- P30 CA008748 NCI NIH HHS
- G087221N, G.0507.12, G049720N,12U4718N, 11C3921N, 11J8313N, 12B5313N, 1514215N, 1197617N,1238420N, 12Q8322N, 3F018519, 12N6917N Fund for Scientific Research Flanders
- 2018-087, 2018-125, 2020-112 Belgian Foundation against Cancer
Collapse
Affiliation(s)
- Bieke Decaesteker
- Department for Biomolecular Medicine, Ghent University, Medical Research Building (MRB1), Corneel Heymanslaan 10, B-9000 Ghent, Belgium; (B.D.); (K.D.); (N.V.R.); (B.D.W.); (C.V.N.); (S.V.H.); (K.D.P.); (V.V.)
| | - Kaat Durinck
- Department for Biomolecular Medicine, Ghent University, Medical Research Building (MRB1), Corneel Heymanslaan 10, B-9000 Ghent, Belgium; (B.D.); (K.D.); (N.V.R.); (B.D.W.); (C.V.N.); (S.V.H.); (K.D.P.); (V.V.)
| | - Nadine Van Roy
- Department for Biomolecular Medicine, Ghent University, Medical Research Building (MRB1), Corneel Heymanslaan 10, B-9000 Ghent, Belgium; (B.D.); (K.D.); (N.V.R.); (B.D.W.); (C.V.N.); (S.V.H.); (K.D.P.); (V.V.)
| | - Bram De Wilde
- Department for Biomolecular Medicine, Ghent University, Medical Research Building (MRB1), Corneel Heymanslaan 10, B-9000 Ghent, Belgium; (B.D.); (K.D.); (N.V.R.); (B.D.W.); (C.V.N.); (S.V.H.); (K.D.P.); (V.V.)
- Department of Internal Medicine and Pediatrics, Ghent University Hospital, Corneel Heymanslaan 10, B-9000 Ghent, Belgium
| | - Christophe Van Neste
- Department for Biomolecular Medicine, Ghent University, Medical Research Building (MRB1), Corneel Heymanslaan 10, B-9000 Ghent, Belgium; (B.D.); (K.D.); (N.V.R.); (B.D.W.); (C.V.N.); (S.V.H.); (K.D.P.); (V.V.)
| | - Stéphane Van Haver
- Department for Biomolecular Medicine, Ghent University, Medical Research Building (MRB1), Corneel Heymanslaan 10, B-9000 Ghent, Belgium; (B.D.); (K.D.); (N.V.R.); (B.D.W.); (C.V.N.); (S.V.H.); (K.D.P.); (V.V.)
| | - Stephen Roberts
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA;
| | - Katleen De Preter
- Department for Biomolecular Medicine, Ghent University, Medical Research Building (MRB1), Corneel Heymanslaan 10, B-9000 Ghent, Belgium; (B.D.); (K.D.); (N.V.R.); (B.D.W.); (C.V.N.); (S.V.H.); (K.D.P.); (V.V.)
| | - Vanessa Vermeirssen
- Department for Biomolecular Medicine, Ghent University, Medical Research Building (MRB1), Corneel Heymanslaan 10, B-9000 Ghent, Belgium; (B.D.); (K.D.); (N.V.R.); (B.D.W.); (C.V.N.); (S.V.H.); (K.D.P.); (V.V.)
- Department of Biomedical Molecular Biology, Ghent University, Technologiepark 71, B-9052 Zwijnaarde, Belgium
| | - Frank Speleman
- Department for Biomolecular Medicine, Ghent University, Medical Research Building (MRB1), Corneel Heymanslaan 10, B-9000 Ghent, Belgium; (B.D.); (K.D.); (N.V.R.); (B.D.W.); (C.V.N.); (S.V.H.); (K.D.P.); (V.V.)
| |
Collapse
|
11
|
Defining Pathological Activities of ALK in Neuroblastoma, a Neural Crest-Derived Cancer. Int J Mol Sci 2021; 22:ijms222111718. [PMID: 34769149 PMCID: PMC8584162 DOI: 10.3390/ijms222111718] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 10/25/2021] [Accepted: 10/25/2021] [Indexed: 12/13/2022] Open
Abstract
Neuroblastoma is a common extracranial solid tumour of childhood, responsible for 15% of cancer-related deaths in children. Prognoses vary from spontaneous remission to aggressive disease with extensive metastases, where treatment is challenging. Tumours are thought to arise from sympathoadrenal progenitor cells, which derive from an embryonic cell population called neural crest cells that give rise to diverse cell types, such as facial bone and cartilage, pigmented cells, and neurons. Tumours are found associated with mature derivatives of neural crest, such as the adrenal medulla or paraspinal ganglia. Sympathoadrenal progenitor cells express anaplastic lymphoma kinase (ALK), which encodes a tyrosine kinase receptor that is the most frequently mutated gene in neuroblastoma. Activating mutations in the kinase domain are common in both sporadic and familial cases. The oncogenic role of ALK has been extensively studied, but little is known about its physiological role. Recent studies have implicated ALK in neural crest migration and sympathetic neurogenesis. However, very few downstream targets of ALK have been identified. Here, we describe pathological activation of ALK in the neural crest, which promotes proliferation and migration, while preventing differentiation, thus inducing the onset of neuroblastoma. Understanding the effects of ALK activity on neural crest cells will help find new targets for neuroblastoma treatment.
Collapse
|
12
|
Zheng Z, Lin K. LncRNA HCG18 promotes cell multiplication and metastasis by miR-148b/ETV5 regulation in osteosarcoma. Am J Transl Res 2021; 13:7783-7793. [PMID: 34377255 PMCID: PMC8340218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Accepted: 03/31/2021] [Indexed: 06/13/2023]
Abstract
OBJECTIVE To determine the effects of long non-coding RNA (LncRNA) HCG18 on cell multiplication and invasion of osteosarcoma. METHODS MTT assay and transwell assay were used for cell multiplication and invasion, respectively. Real-time quantitative polymerase chain reaction (RT-qPCR) and western blot were used to determine transcriptional and translational expression. Luciferase reporter assay was used to identify the specific target relationships. RESULTS The expression of LncRNA HCG18 was dramatically increased in osteosarcoma cells compared to the normal tissues. LncRNA-HCG18 accelerated cell multiplication and invasion in vitro, which was achieved by down-regulating the overexpression of miR-148b, and down-regulating ETV5, indicating combination of ETV5 and miR-148b in osteosarcoma. Overexpression of ETV5 could reverse the inhibitory effect of knockout of lncRNA HCG18 on cell multiplication and invasion. CONCLUSION LncRNA HCG18 acted as a sponge of miR-148b and played an oncogenic role in osteosarcoma, providing therapeutic targets for osteosarcoma.
Collapse
Affiliation(s)
- Zhipan Zheng
- Department of Trauma Surgery, Hubei Hanchuan People’s HospitalHanchuan, People’s Republic of China
| | - Kai Lin
- Department of Interventional Vascular Surgery, Hubei Hanchuan People’s HospitalHanchuan, People’s Republic of China
| |
Collapse
|
13
|
Peng Y, Feng H, Wang C, Song Z, Zhang Y, Liu K, Cheng X, Zhao R. The role of E26 transformation-specific variant transcription factor 5 in colorectal cancer cell proliferation and cell cycle progression. Cell Death Dis 2021; 12:427. [PMID: 33931578 PMCID: PMC8087822 DOI: 10.1038/s41419-021-03717-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 04/09/2021] [Accepted: 04/12/2021] [Indexed: 02/03/2023]
Abstract
E26 transformation-specific variant transcription factor 5 (ETV5) contributes to tumor growth and progression and promotes colorectal cancer (CRC) angiogenesis. Previous studies indicate that ETV5 may regulate the cell cycle, but its detailed mechanism remain unclear. Gene Ontology (GO) analysis of RNA-seq data revealed that ETV5 possibly regulates the cell cycle in CRC. Here, in vitro and in vivo experiments were performed to verify that ETV5 promoted tumor progression and influenced cell cycle G1/S transition. Cell cycle PCR array and co-immunoprecipitation (Co-IP) helped identify the p21-CDKs pathway. Chromatin immunoprecipitation (ChIP) and luciferase reporter assays were performed to determine whether ETV5 binds to the p21 promoter. ETV5 and p21 were detected by immunohistochemistry, and the effects of their expression on CRC patients were evaluated. ETV5 upregulation enhanced tumor proliferative capacity and promoted G1 phase transfer to the S phase. ETV5 knockdown slowed the growth of CRC cells and repressed the G1/S transition. We also found p21 as a downstream target of ETV5. p21 knockdown resulted in faster CRC cell growth and in more cells being driven from the G0/1 phase into the S phase. Co-IP experiments showed that p21 banding to CDK2, CDK4, and CDK6 inhibited p130 phosphorylation. Using the ChIP and luciferase reporter assay, we confirmed that ETV5 bound to the p21 promoter and repressed p21 expression. CRC patients with high ETV5 expression and low p21 expression showed the worst prognosis. Finally, by targeting p21 to regulate CDK function, ETV5 also changed drug-sensitivity to palbociclib and dinaciclib. In conclusion, ETV5 promoted cell cycle G1/S transition through transcriptional inhibition of p21, thereby accelerating tumor growth. Moreover, ETV5 changed drug-sensitivity to palbociclib and dinaciclib. Therefore, therapeutic regimens targeting ETV5 may be promising in improving the efficacy of target-CDK treatment in CRC.
Collapse
Affiliation(s)
- Yi Peng
- grid.16821.3c0000 0004 0368 8293Department of General Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 200025 Shanghai, China ,grid.16821.3c0000 0004 0368 8293Shanghai Institute of Digestive Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 200025 Shanghai, China
| | - Haoran Feng
- grid.16821.3c0000 0004 0368 8293Department of General Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 200025 Shanghai, China ,grid.16821.3c0000 0004 0368 8293Shanghai Institute of Digestive Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 200025 Shanghai, China
| | - Changgang Wang
- grid.16821.3c0000 0004 0368 8293Department of General Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 200025 Shanghai, China
| | - Zijia Song
- grid.16821.3c0000 0004 0368 8293Department of General Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 200025 Shanghai, China
| | - Yaqi Zhang
- grid.16821.3c0000 0004 0368 8293Department of General Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 200025 Shanghai, China
| | - Kun Liu
- grid.16821.3c0000 0004 0368 8293Department of General Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 200025 Shanghai, China
| | - Xi Cheng
- grid.16821.3c0000 0004 0368 8293Department of General Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 200025 Shanghai, China ,grid.16821.3c0000 0004 0368 8293Shanghai Institute of Digestive Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 200025 Shanghai, China
| | - Ren Zhao
- grid.16821.3c0000 0004 0368 8293Department of General Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 200025 Shanghai, China ,grid.16821.3c0000 0004 0368 8293Shanghai Institute of Digestive Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 200025 Shanghai, China
| |
Collapse
|
14
|
Siaw JT, Gabre JL, Uçkun E, Vigny M, Zhang W, Van den Eynden J, Hallberg B, Palmer RH, Guan J. Loss of RET Promotes Mesenchymal Identity in Neuroblastoma Cells. Cancers (Basel) 2021; 13:cancers13081909. [PMID: 33921066 PMCID: PMC8071449 DOI: 10.3390/cancers13081909] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 03/21/2021] [Accepted: 04/12/2021] [Indexed: 12/18/2022] Open
Abstract
Aberrant activation of anaplastic lymphoma kinase (ALK) drives neuroblastoma (NB). Previous work identified the RET receptor tyrosine kinase (RTK) as a downstream target of ALK activity in NB models. We show here that ALK activation in response to ALKAL2 ligand results in the rapid phosphorylation of RET in NB cells, providing additional insight into the contribution of RET to the ALK-driven gene signature in NB. To further address the role of RET in NB, RET knockout (KO) SK-N-AS cells were generated by CRISPR/Cas9 genome engineering. Gene expression analysis of RET KO NB cells identified a reprogramming of NB cells to a mesenchymal (MES) phenotype that was characterized by increased migration and upregulation of the AXL and MNNG HOS transforming gene (MET) RTKs, as well as integrins and extracellular matrix components. Strikingly, the upregulation of AXL in the absence of RET reflects the development timeline observed in the neural crest as progenitor cells undergo differentiation during embryonic development. Together, these findings suggest that a MES phenotype is promoted in mesenchymal NB cells in the absence of RET, reflective of a less differentiated developmental status.
Collapse
Affiliation(s)
- Joachim T. Siaw
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, SE-40530 Gothenburg, Sweden; (J.T.S.); (J.L.G.); (E.U.); (B.H.); (R.H.P.)
| | - Jonatan L. Gabre
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, SE-40530 Gothenburg, Sweden; (J.T.S.); (J.L.G.); (E.U.); (B.H.); (R.H.P.)
- Anatomy and Embryology Unit, Department of Human Structure and Repair, Ghent University, 9000 Ghent, Belgium;
| | - Ezgi Uçkun
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, SE-40530 Gothenburg, Sweden; (J.T.S.); (J.L.G.); (E.U.); (B.H.); (R.H.P.)
| | - Marc Vigny
- Université Pierre et Marie Curie, UPMC, INSERM UMRS-839, 75005 Paris, France;
| | - Wancun Zhang
- Department of Pediatric Oncology Surgery, Children’s Hospital Affiliated to Zhengzhou University, Zhengzhou 450018, China;
| | - Jimmy Van den Eynden
- Anatomy and Embryology Unit, Department of Human Structure and Repair, Ghent University, 9000 Ghent, Belgium;
| | - Bengt Hallberg
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, SE-40530 Gothenburg, Sweden; (J.T.S.); (J.L.G.); (E.U.); (B.H.); (R.H.P.)
| | - Ruth H. Palmer
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, SE-40530 Gothenburg, Sweden; (J.T.S.); (J.L.G.); (E.U.); (B.H.); (R.H.P.)
| | - Jikui Guan
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, SE-40530 Gothenburg, Sweden; (J.T.S.); (J.L.G.); (E.U.); (B.H.); (R.H.P.)
- Department of Pediatric Oncology Surgery, Children’s Hospital Affiliated to Zhengzhou University, Zhengzhou 450018, China;
- Correspondence:
| |
Collapse
|
15
|
Giri AK. Higher ETV5 Expression Associates With Poor 5-Florouracil-Based Adjuvant Therapy Response in Colon Cancer. Front Pharmacol 2021; 11:620811. [PMID: 33658938 PMCID: PMC7917823 DOI: 10.3389/fphar.2020.620811] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Accepted: 12/29/2020] [Indexed: 11/13/2022] Open
Abstract
Discovery of markers predictive for 5-Fluorouracil (5-FU)-based adjuvant chemotherapy (adjCTX) response in patients with locally advanced stage II and III colon cancer (CC) is necessary for precise identification of potential therapy responders. PEA3 subfamily of ETS transcription factors (ETV1, ETV4, and ETV5) are upregulated in multiple cancers including colon cancers. However, the underlying epigenetic mechanism regulating their overexpression as well as their role in predicting therapy response in colon cancer are largely unexplored. In this study, using gene expression and methylation data from The Cancer Genome Atlas (TCGA) project, we showed that promoter DNA methylation negatively correlates with ETV4 expression (ρ = -0.17, p = 5.6 × 10-3) and positively correlates with ETV5 expression (ρ = 0.22, p = 1.43 × 10-4) in colon cancer tissue. Further, our analysis in 1,482 colon cancer patients from five different cohorts revealed that higher ETV5 expression associates with shorter relapse-free survival (RFS) of adjCTX treated colon cancer patients (Hazard ratio = 2.09-5.43, p = 0.004-0.01). The present study suggests ETV5 expression as a strong predictive biomarker for 5-FU-based adjCTX response in stage II/III CC patients.
Collapse
Affiliation(s)
- Anil K Giri
- Institute for Molecular Medicine Finland (FIMM), University of Helsinki, Helsinki, Finland
| |
Collapse
|
16
|
Qi T, Qu Q, Li G, Wang J, Zhu H, Yang Z, Sun Y, Lu Q, Qu J. Function and regulation of the PEA3 subfamily of ETS transcription factors in cancer. Am J Cancer Res 2020; 10:3083-3105. [PMID: 33163259 PMCID: PMC7642666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Accepted: 09/17/2020] [Indexed: 06/11/2023] Open
Abstract
The PEA3 subfamily is a subgroup of the E26 transformation-specific (ETS) family. Its members, ETV1, ETV4, and ETV5, have been found to be overexpressed in multiple cancers. The deregulation of ETV1, ETV4, and ETV5 induces cell growth, invasion, and migration in various tumor cells, leading to tumor progression, metastasis, and drug resistance. Therefore, exploring drugs or therapeutic targets that target the PEA3 subfamily may contribute to the clinical treatment of tumor patients. In this review, we introduce the structures and functions of the PEA3 subfamily members, systematically review their main roles in various tumor cells, analyze their prognostic and diagnostic value, and, finally, introduce several molecular targets and therapeutic drugs targeting ETV1, ETV4, and ETV5. We conclude that targeting a series of upstream regulators and downstream target genes of the PEA3 subfamily may be an effective strategy for the treatment of ETV1/ETV4/ETV5-overexpressing tumors.
Collapse
Affiliation(s)
- Tingting Qi
- Department of Pharmacy, The Second Xiangya Hospital, Central South UniversityChangsha 410011, PR China
- Institute of Clinical Pharmacy, Central South UniversityChangsha 410011, PR China
| | - Qiang Qu
- Department of Pharmacy, Xiangya Hospital, Central South UniversityChangsha 410007, PR China
| | - Guohua Li
- Department of Pharmacy, The Second Xiangya Hospital, Central South UniversityChangsha 410011, PR China
- Institute of Clinical Pharmacy, Central South UniversityChangsha 410011, PR China
| | - Jiaojiao Wang
- Department of Pharmacy, The Second Xiangya Hospital, Central South UniversityChangsha 410011, PR China
- Institute of Clinical Pharmacy, Central South UniversityChangsha 410011, PR China
| | - Haihong Zhu
- Department of Pharmacy, The Second Xiangya Hospital, Central South UniversityChangsha 410011, PR China
- Institute of Clinical Pharmacy, Central South UniversityChangsha 410011, PR China
| | - Zhi Yang
- Department of General Surgery, Xiangya Hospital, Central South UniversityChangsha 410007, PR China
| | - Yuesheng Sun
- Department of General Surgery, The Third Clinical College of Wenzhou Medical University, Wenzhou People’s HospitalWenzhou 325000, PR China
| | - Qiong Lu
- Department of Pharmacy, The Second Xiangya Hospital, Central South UniversityChangsha 410011, PR China
- Institute of Clinical Pharmacy, Central South UniversityChangsha 410011, PR China
| | - Jian Qu
- Department of Pharmacy, The Second Xiangya Hospital, Central South UniversityChangsha 410011, PR China
- Institute of Clinical Pharmacy, Central South UniversityChangsha 410011, PR China
| |
Collapse
|