1
|
Rehman S, Bahadur S, Xia W. Unlocking nature's secrets: The pivotal role of WRKY transcription factors in plant flowering and fruit development. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2024; 346:112150. [PMID: 38857658 DOI: 10.1016/j.plantsci.2024.112150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 06/02/2024] [Accepted: 06/03/2024] [Indexed: 06/12/2024]
Abstract
The WRKY transcription factor family is a key player in the regulatory mechanisms of flowering plants, significantly influencing both their biotic and abiotic response systems as well as being vital to numerous physiological and biological functions. Over the past two decades, the functionality of WRKY proteins has been the subject of extensive research in over 50 plant species, with a strong focus on their roles in responding to various stresses. Despite this extensive research, there remains a notable gap in comprehensive studies aimed at understanding how specific WRKY genes directly influence the timing of flowering and fruit development. This review offers an up-to-date look at WRKY family genes and provides insights into the key genes of WRKY to control flowering, enhance fruit ripening and secondary metabolism synthesis, and maintain fruit quality of various plants, including annuals, perennials, medicinal, and crop plants. The WRKY transcription factors serve as critical regulators within the transcriptional regulatory network, playing a crucial role in the precise enhancement of flowering processes. It is also involved in the up-regulation of fruit ripening was strongly demonstrated by combined transcriptomics and metabolomic investigation. Therefore, we speculated that the WRKY family is known to be a key regulator of flowering and fruiting in plants. This detailed insight will enable the identification of the series of molecular occurrences featuring WRKY proteins throughout the stages of flowering and fruiting.
Collapse
Affiliation(s)
- Shazia Rehman
- Sanya Nanfan Research Institution, Hainan University, Sanya, China; College of Tropical Crops, Hainan University, Haikou 570228, China
| | - Saraj Bahadur
- College of Forestry, Hainan University, Haikou 570228, China; College of Life and Health Sciences, Hainan University, Haikou 570228, China.
| | - Wei Xia
- Sanya Nanfan Research Institution, Hainan University, Sanya, China; College of Tropical Crops, Hainan University, Haikou 570228, China.
| |
Collapse
|
2
|
Vodiasova E, Sinchenko A, Khvatkov P, Dolgov S. Genome-Wide Identification, Characterisation, and Evolution of the Transcription Factor WRKY in Grapevine ( Vitis vinifera): New View and Update. Int J Mol Sci 2024; 25:6241. [PMID: 38892428 PMCID: PMC11172563 DOI: 10.3390/ijms25116241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 05/29/2024] [Accepted: 06/03/2024] [Indexed: 06/21/2024] Open
Abstract
WRKYs are a multigenic family of transcription factors that are plant-specific and involved in the regulation of plant development and various stress response processes. However, the evolution of WRKY genes is not fully understood. This family has also been incompletely studied in grapevine, and WRKY genes have been named with different numbers in different studies, leading to great confusion. In this work, 62 Vitis vinifera WRKY genes were identified based on six genomes of different cultivars. All WRKY genes were numbered according to their chromosomal location, and a complete revision of the numbering was performed. Amino acid variability between different cultivars was assessed for the first time and was greater than 5% for some WRKYs. According to the gene structure, all WRKYs could be divided into two groups: more exons/long length and fewer exons/short length. For the first time, some chimeric WRKY genes were found in grapevine, which may play a specific role in the regulation of different processes: VvWRKY17 (an N-terminal signal peptide region followed by a non-cytoplasmic domain) and VvWRKY61 (Frigida-like domain). Five phylogenetic clades A-E were revealed and correlated with the WRKY groups (I, II, III). The evolution of WRKY was studied, and we proposed a WRKY evolution model where there were two dynamic phases of complexity and simplification in the evolution of WRKY.
Collapse
Affiliation(s)
- Ekaterina Vodiasova
- Federal State Funded Institution of Science “The Labor Red Banner Order Nikita Botanical Gardens—National Scientific Center of the RAS”, Nikita, 298648 Yalta, Russia; (A.S.); (P.K.); (S.D.)
- A.O. Kovalevsky Institute of Biology of the Southern Seas of RAS, 299011 Sevastopol, Russia
| | - Anastasiya Sinchenko
- Federal State Funded Institution of Science “The Labor Red Banner Order Nikita Botanical Gardens—National Scientific Center of the RAS”, Nikita, 298648 Yalta, Russia; (A.S.); (P.K.); (S.D.)
| | - Pavel Khvatkov
- Federal State Funded Institution of Science “The Labor Red Banner Order Nikita Botanical Gardens—National Scientific Center of the RAS”, Nikita, 298648 Yalta, Russia; (A.S.); (P.K.); (S.D.)
| | - Sergey Dolgov
- Federal State Funded Institution of Science “The Labor Red Banner Order Nikita Botanical Gardens—National Scientific Center of the RAS”, Nikita, 298648 Yalta, Russia; (A.S.); (P.K.); (S.D.)
- Branch of Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, 142290 Puschino, Russia
| |
Collapse
|
3
|
Liu J, Peng L, Cao C, Bai C, Wang Y, Li Z, Zhu H, Wen Q, He S. Identification of WRKY Family Members and Characterization of the Low-Temperature-Stress-Responsive WRKY Genes in Luffa ( Luffa cylindrica L.). PLANTS (BASEL, SWITZERLAND) 2024; 13:676. [PMID: 38475522 DOI: 10.3390/plants13050676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 02/21/2024] [Accepted: 02/26/2024] [Indexed: 03/14/2024]
Abstract
The plant-specific WRKY transcription factor family members have diverse regulatory effects on the genes associated with many plant processes. Although the WRKY proteins in Arabidopsis thaliana and other species have been thoroughly investigated, there has been relatively little research on the WRKY family in Luffa cylindrica, which is one of the most widely grown vegetables in China. In this study, we performed a genome-wide analysis to identify L. cylindrica WRKY genes, which were subsequently classified and examined in terms of their gene structures, chromosomal locations, promoter cis-acting elements, and responses to abiotic stress. A total of 62 LcWRKY genes (471-2238 bp) were identified and divided into three phylogenetic groups (I, II, and III), with group II further divided into five subgroups (IIa, IIb, IIc, IId, and IIe) in accordance with the classification in other plants. The LcWRKY genes were unevenly distributed across 13 chromosomes. The gene structure analysis indicated that the LcWRKY genes contained 0-11 introns (average of 4.4). Moreover, 20 motifs were detected in the LcWRKY proteins with conserved motifs among the different phylogenetic groups. Two subgroup IIc members (LcWRKY16 and LcWRKY31) contained the WRKY sequence variant WRKYGKK. Additionally, nine cis-acting elements related to diverse responses to environmental stimuli were identified in the LcWRKY promoters. The subcellular localization analysis indicated that three LcWRKY proteins (LcWRKY43, LcWRKY7, and LcWRKY23) are localized in the nucleus. The tissue-specific LcWRKY expression profiles reflected the diversity in LcWRKY expression. The RNA-seq data revealed the effects of low-temperature stress on LcWRKY expression. The cold-induced changes in expression were verified via a qRT-PCR analysis of 24 differentially expressed WRKY genes. Both LcWRKY7 and LcWRKY12 were highly responsive to the low-temperature treatment (approximately 110-fold increase in expression). Furthermore, the LcWRKY8, LcWRKY12, and LcWRKY59 expression levels increased by more than 25-fold under cold conditions. Our findings will help clarify the evolution of the luffa WRKY family while also providing valuable insights for future studies on WRKY functions.
Collapse
Affiliation(s)
- Jianting Liu
- College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Crops Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou 350013, China
- Fujian Key Laboratory of Vegetable Genetics and Breeding, Fuzhou 350013, China
| | - Lijuan Peng
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Chengjuan Cao
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Changhui Bai
- Crops Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou 350013, China
- Fujian Key Laboratory of Vegetable Genetics and Breeding, Fuzhou 350013, China
| | - Yuqian Wang
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Zuliang Li
- Crops Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou 350013, China
- Fujian Key Laboratory of Vegetable Genetics and Breeding, Fuzhou 350013, China
| | - Haisheng Zhu
- Crops Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou 350013, China
- Fujian Key Laboratory of Vegetable Genetics and Breeding, Fuzhou 350013, China
| | - Qingfang Wen
- Crops Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou 350013, China
- Fujian Key Laboratory of Vegetable Genetics and Breeding, Fuzhou 350013, China
| | - Shuilin He
- College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| |
Collapse
|
4
|
Yang Y, Cai Q, Luo L, Sun Z, Li L. Genome-Wide Analysis of C-Repeat Binding Factor Gene Family in Capsicum baccatum and Functional Exploration in Low-Temperature Response. PLANTS (BASEL, SWITZERLAND) 2024; 13:549. [PMID: 38498531 PMCID: PMC10891952 DOI: 10.3390/plants13040549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 02/13/2024] [Accepted: 02/15/2024] [Indexed: 03/20/2024]
Abstract
Capsicum baccatum is a close relative of edible chili peppers (Capsicum annuum) with high economic value. The CBF gene family plays an important role in plant stress resistance physiology. We detected a total of five CBF genes in the C. baccatum genome-wide sequencing data. These genes were scattered irregularly across four chromosomes. The genes were categorized into three groupings according to their evolutionary relationships, with genes in the same category showing comparable principles for motif composition. The 2000 bp upstream of CbCBF contains many resistance-responsive elements, hormone-responsive elements, and transcription factor binding sites. These findings emphasize the crucial functions of these genes in responding to challenging conditions and physiological regulation. Analysis of tissue-specific expression revealed that CbCBF3 exhibited the greatest level of expression among all tissues. Under conditions of low-temperature stress, all CbCBF genes exhibited different levels of responsiveness, with CbCBF3 showing a considerable up-regulation after 0.25 h of cold stress, indicating a high sensitivity to low-temperature response. The importance of the CbCBF3 gene in the cold response of C. baccatum was confirmed by the use of virus-induced gene silencing (VIGS) technology, as well as the prediction of its protein interaction network. To summarize, this study conducts a thorough bioinformatics investigation of the CbCBF gene family, showcases the practicality of employing VIGS technology in C. baccatum, and confirms the significance of the CbCBF3 gene in response to low temperatures. These findings provide significant references for future research on the adaptation of C. baccatum to low temperatures.
Collapse
Affiliation(s)
- Yanbo Yang
- College of Geography and Ecotourism, Southwest Forestry University, Kunming 650224, China;
| | - Qihang Cai
- College of Landscape and Horticulture, Southwest Forestry University, Kunming 650224, China; (Q.C.); (L.L.)
- Yunnan International Joint R&D Center for Intergrated Utilization of Ornamental Grass, International Technological Cooperation Base of High Effective Economic Forestry Cultivating of Yunnan Province, South and Southeast Asia Joint R&D Center of Economic Forest Full Industry Chain of Yunnan Province, College of Landscape and Horticulture, Southwest Forestry University, Kunming 650224, China
| | - Li Luo
- College of Landscape and Horticulture, Southwest Forestry University, Kunming 650224, China; (Q.C.); (L.L.)
| | - Zhenghai Sun
- College of Landscape and Horticulture, Southwest Forestry University, Kunming 650224, China; (Q.C.); (L.L.)
- Yunnan International Joint R&D Center for Intergrated Utilization of Ornamental Grass, International Technological Cooperation Base of High Effective Economic Forestry Cultivating of Yunnan Province, South and Southeast Asia Joint R&D Center of Economic Forest Full Industry Chain of Yunnan Province, College of Landscape and Horticulture, Southwest Forestry University, Kunming 650224, China
| | - Liping Li
- College of Wetland, Southwest Forestry University, Kunming 650224, China
| |
Collapse
|
5
|
Chen Y, Bai Y, Zhang Z, Zhang Y, Jiang Y, Wang S, Wang Y, Sun Z. Transcriptomics and metabolomics reveal the primary and secondary metabolism changes in Glycyrrhiza uralensis with different forms of nitrogen utilization. FRONTIERS IN PLANT SCIENCE 2023; 14:1229253. [PMID: 38023834 PMCID: PMC10653330 DOI: 10.3389/fpls.2023.1229253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 10/19/2023] [Indexed: 12/01/2023]
Abstract
The roots and rhizomes of Glycyrrhiza uralensis Fisch. represent the oldest and most frequently used herbal medicines in Eastern and Western countries. However, the quality of cultivated G. uralensis has not been adequate to meet the market demand, thereby exerting increased pressure on wild G. uralensis populations. Nitrogen, vital for plant growth, potentially influences the bioactive constituents of plants. Yet, more information is needed regarding the effect of different forms of nitrogen on G. uralensis. G. uralensis seedlings were exposed to a modified Hoagland nutrient solution (HNS), varying concentrations of nitrate (KNO3), or ammonium (NH4)2SO4. We subsequently obtained the roots of G. uralensis for physiology, transcriptomics, and metabolomics analyses. Our results indicated that medium-level ammonium nitrogen was more effective in promoting G. uralensis growth compared to nitrate nitrogen. However, low-level nitrate nitrogen distinctly accelerated the accumulation of flavonoid ingredients. Illumina sequencing of cDNA libraries prepared from four groups-treated independently with low/medium NH4 + or NO3 - identified 364, 96, 103, and 64 differentially expressed genes (DEGs) in each group. Our investigation revealed a general molecular and physiological metabolism stimulation under exclusive NH4 + or NO3 - conditions. This included nitrogen absorption and assimilation, glycolysis, Tricarboxylic acid (TCA) cycle, flavonoid, and triterpenoid metabolism. By creating and combining putative biosynthesis networks of nitrogen metabolism, flavonoids, and triterpenoids with related structural DEGs, we observed a positive correlation between the expression trend of DEGs and flavonoid accumulation. Notably, treatments with low-level NH4 + or medium-level NO3 - positively improved primary metabolism, including amino acids, TCA cycle, and glycolysis metabolism. Meanwhile, low-level NH4 + and NO3 - treatment positively regulated secondary metabolism, especially the biosynthesis of flavonoids in G. uralensis. Our study lays the foundation for a comprehensive analysis of molecular responses to varied nitrogen forms in G. uralensis, which should help understand the relationships between responsive genes and subsequent metabolic reactions. Furthermore, our results provide new insights into the fundamental mechanisms underlying the treatment of G. uralensis and other Glycyrrhiza plants with different nitrogen forms.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Zhirong Sun
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
6
|
Rai GK, Mishra S, Chouhan R, Mushtaq M, Chowdhary AA, Rai PK, Kumar RR, Kumar P, Perez-Alfocea F, Colla G, Cardarelli M, Srivastava V, Gandhi SG. Plant salinity stress, sensing, and its mitigation through WRKY. FRONTIERS IN PLANT SCIENCE 2023; 14:1238507. [PMID: 37860245 PMCID: PMC10582725 DOI: 10.3389/fpls.2023.1238507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Accepted: 08/31/2023] [Indexed: 10/21/2023]
Abstract
Salinity or salt stress has deleterious effects on plant growth and development. It imposes osmotic, ionic, and secondary stresses, including oxidative stress on the plants and is responsible for the reduction of overall crop productivity and therefore challenges global food security. Plants respond to salinity, by triggering homoeostatic mechanisms that counter salt-triggered disturbances in the physiology and biochemistry of plants. This involves the activation of many signaling components such as SOS pathway, ABA pathway, and ROS and osmotic stress signaling. These biochemical responses are accompanied by transcriptional modulation of stress-responsive genes, which is mostly mediated by salt-induced transcription factor (TF) activity. Among the TFs, the multifaceted significance of WRKY proteins has been realized in many diverse avenues of plants' life including regulation of plant stress response. Therefore, in this review, we aimed to highlight the significance of salinity in a global perspective, the mechanism of salt sensing in plants, and the contribution of WRKYs in the modulation of plants' response to salinity stress. This review will be a substantial tool to investigate this problem in different perspectives, targeting WRKY and offering directions to better manage salinity stress in the field to ensure food security.
Collapse
Affiliation(s)
- Gyanendra Kumar Rai
- School of Biotechnology, Sher-e-Kashmir University of Agricultural Sciences and Technology of Jammu, Jammu, India
| | - Sonal Mishra
- Department of Botany, School of Life Sciences, Central University of Jammu, Samba, Jammu & Kashmir, India
| | - Rekha Chouhan
- Infectious Diseases Division, Council of Scientific and Industrial Research (CSIR)-Indian Institute of Integrative Medicine (CSIR-IIIM), Jammu, India
| | - Muntazir Mushtaq
- School of Biotechnology, Sher-e-Kashmir University of Agricultural Sciences and Technology of Jammu, Jammu, India
| | - Aksar Ali Chowdhary
- Department of Botany, School of Life Sciences, Central University of Jammu, Samba, Jammu & Kashmir, India
| | - Pradeep K. Rai
- Advance Center for Horticulture Research, Udheywala, Sher-e-Kashmir University of Agricultural Sciences and Technology of Jammu, Jammu & Kashmir, India
| | - Ranjeet Ranjan Kumar
- Division of Biochemistry, Indian Council of Agricultural Research (ICAR), Indian Agricultural Research Institute, New Delhi, India
| | - Pradeep Kumar
- Division of Integrated Farming System, Central Arid Zone Research Institute, Indian Council of Agricultural Research (ICAR), Jodhpur, India
| | - Francisco Perez-Alfocea
- Department of Nutrition, Centre for Applied Soil Science and Biology of the Segura (CEBAS), of the Spanish National Research Council (CSIC), Murcia, Spain
| | - Giuseppe Colla
- Department of Agriculture and Forest Sciences, University of Tuscia, Viterbo, Italy
| | | | - Vikas Srivastava
- Department of Botany, School of Life Sciences, Central University of Jammu, Samba, Jammu & Kashmir, India
| | - Sumit G. Gandhi
- Infectious Diseases Division, Council of Scientific and Industrial Research (CSIR)-Indian Institute of Integrative Medicine (CSIR-IIIM), Jammu, India
| |
Collapse
|
7
|
Li D, Gu B, Huang C, Shen J, Wang X, Guo J, Yu R, Mou S, Guan Q. Functional Study of Amorpha fruticosa WRKY20 Gene in Response to Drought Stress. Int J Mol Sci 2023; 24:12231. [PMID: 37569607 PMCID: PMC10418629 DOI: 10.3390/ijms241512231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 07/26/2023] [Accepted: 07/27/2023] [Indexed: 08/13/2023] Open
Abstract
The WRKY gene family in plants regulates the plant's response to drought through regulatory networks and hormone signaling. AfWRKY20 (MT859405) was cloned from Amorpha fruticosa (A. fruticosa) seedlings using RT-PCR. The binding properties of the AfWRKY20 protein and the W-box (a DNA cis-acting element) were verified both in vivo and in vitro using EMSA and Dual-Luciferase activity assays. RT-qPCR detected that the total expression level of AfWRKY20 in leaves and roots was 22 times higher in the 30% PEG6000 simulated drought treatment compared to the untreated group. Under the simulated drought stress treatments of sorbitol and abscisic acid (ABA), the transgenic tobacco with the AfWRKY20 gene showed enhanced drought resistance at the germination stage, with significantly increased germination rate, green leaf rate, fresh weight, and root length compared to the wild-type (WT) tobacco. In addition, the superoxide dismutase (SOD) activity, chlorophyll content, and Fv/Fm ratio of AfWRKY20 transgenic tobacco were significantly higher than those of the WT tobacco under natural drought stress, while the malondialdehyde (MDA) content and 3,3'-diaminobenzidine (DAB) and nitroblue tetrazolium (NBT) staining levels were lower. The expression levels of oxidation kinase genes (NbSOD, NbPOD, and NbCAT) in transgenic tobacco under drought stress were significantly higher than those in WT tobacco. This enhancement in gene expression improved the ability of transgenic tobacco to detoxify reactive oxygen species (ROS). The survival rate of transgenic tobacco after natural drought rehydration was four times higher than that of WT tobacco. In summary, this study revealed the regulatory mechanism of AfWRKY20 in response to drought stress-induced ABA signaling, particularly in relation to ROS. This finding provides a theoretical basis for understanding the pathways of WRKY20 involved in drought stress, and offers genetic resources for molecular plant breeding aimed at enhancing drought resistance.
Collapse
Affiliation(s)
- Danni Li
- Key Laboratory of the Ministry of Education for Ecological Restoration of Saline Vegetation, College of Life Sciences, Northeast Forestry University, Harbin 150040, China; (D.L.)
| | - Baoxiang Gu
- Key Laboratory of the Ministry of Education for Ecological Restoration of Saline Vegetation, College of Life Sciences, Northeast Forestry University, Harbin 150040, China; (D.L.)
| | - Chunxi Huang
- Northeast Asia Biodiversity Research Center, Northeast Forestry University, Harbin 150040, China
| | - Jiayi Shen
- Northeast Asia Biodiversity Research Center, Northeast Forestry University, Harbin 150040, China
| | - Xin Wang
- Key Laboratory of the Ministry of Education for Ecological Restoration of Saline Vegetation, College of Life Sciences, Northeast Forestry University, Harbin 150040, China; (D.L.)
| | - Jianan Guo
- Key Laboratory of the Ministry of Education for Ecological Restoration of Saline Vegetation, College of Life Sciences, Northeast Forestry University, Harbin 150040, China; (D.L.)
| | - Ruiqiang Yu
- Northeast Asia Biodiversity Research Center, Northeast Forestry University, Harbin 150040, China
| | - Sirui Mou
- Key Laboratory of the Ministry of Education for Ecological Restoration of Saline Vegetation, College of Life Sciences, Northeast Forestry University, Harbin 150040, China; (D.L.)
| | - Qingjie Guan
- Key Laboratory of the Ministry of Education for Ecological Restoration of Saline Vegetation, College of Life Sciences, Northeast Forestry University, Harbin 150040, China; (D.L.)
| |
Collapse
|
8
|
Fan P, Wu L, Wang Q, Wang Y, Luo H, Song J, Yang M, Yao H, Chen S. Physiological and molecular mechanisms of medicinal plants in response to cadmium stress: Current status and future perspective. JOURNAL OF HAZARDOUS MATERIALS 2023; 450:131008. [PMID: 36842201 DOI: 10.1016/j.jhazmat.2023.131008] [Citation(s) in RCA: 23] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 02/08/2023] [Accepted: 02/13/2023] [Indexed: 06/18/2023]
Abstract
Medicinal plants have a wide range of uses worldwide. However, the quality of medicinal plants is affected by severe cadmium pollution. Cadmium can reduce photosynthetic capacity, lead to plant growth retardation and oxidative stress, and affect secondary metabolism. Medicinal plants have complex mechanisms to cope with cadmium stress. On the one hand, an antioxidant system can effectively scavenge excess reactive oxygen species produced by cadmium stress. On the other hand, cadmium chelates are formed by chelating peptides and then sequestered through vacuolar compartmentalization. Cadmium has no specific transporter in plants and is generally transferred to plant tissues through competition for the transporters of divalent metal ions, such as zinc, iron, and manganese. In recent years, progress has been achieved in exploring the physiological mechanisms by which medicinal plants responding to cadmium stress. The exogenous regulation of cadmium accumulation in medicinal plants has been studied, and the aim is reducing the toxicity of cadmium. However, research into molecular mechanisms is still lagging. In this paper, we review the physiological and molecular mechanisms and regulatory networks of medicinal plants exposed to cadmium, providing a reference for the study on the responses of medicinal plants to cadmium stress.
Collapse
Affiliation(s)
- Panhui Fan
- Key Lab of Chinese Medicine Resources Conservation, State Administration of Traditional Chinese Medicine of the People's Republic of China, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
| | - Liwei Wu
- Key Lab of Chinese Medicine Resources Conservation, State Administration of Traditional Chinese Medicine of the People's Republic of China, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
| | - Qing Wang
- Key Lab of Chinese Medicine Resources Conservation, State Administration of Traditional Chinese Medicine of the People's Republic of China, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
| | - Yu Wang
- Key Lab of Chinese Medicine Resources Conservation, State Administration of Traditional Chinese Medicine of the People's Republic of China, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
| | - Hongmei Luo
- Key Lab of Chinese Medicine Resources Conservation, State Administration of Traditional Chinese Medicine of the People's Republic of China, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
| | - Jingyuan Song
- Key Lab of Chinese Medicine Resources Conservation, State Administration of Traditional Chinese Medicine of the People's Republic of China, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
| | - Meihua Yang
- Key Lab of Chinese Medicine Resources Conservation, State Administration of Traditional Chinese Medicine of the People's Republic of China, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
| | - Hui Yao
- Key Lab of Chinese Medicine Resources Conservation, State Administration of Traditional Chinese Medicine of the People's Republic of China, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China; Engineering Research Center of Chinese Medicine Resources, Ministry of Education, Beijing 100193, China.
| | - Shilin Chen
- Institute of Herbgenomics, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| |
Collapse
|
9
|
Ghuge SA, Nikalje GC, Kadam US, Suprasanna P, Hong JC. Comprehensive mechanisms of heavy metal toxicity in plants, detoxification, and remediation. JOURNAL OF HAZARDOUS MATERIALS 2023; 450:131039. [PMID: 36867909 DOI: 10.1016/j.jhazmat.2023.131039] [Citation(s) in RCA: 61] [Impact Index Per Article: 61.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 02/07/2023] [Accepted: 02/17/2023] [Indexed: 06/18/2023]
Abstract
Natural and anthropogenic causes are continually growing sources of metals in the ecosystem; hence, heavy metal (HM) accumulation has become a primary environmental concern. HM contamination poses a serious threat to plants. A major focus of global research has been to develop cost-effective and proficient phytoremediation technologies to rehabilitate HM-contaminated soil. In this regard, there is a need for insights into the mechanisms associated with the accumulation and tolerance of HMs in plants. It has been recently suggested that plant root architecture has a critical role in the processes that determine sensitivity or tolerance to HMs stress. Several plant species, including those from aquatic habitats, are considered good hyperaccumulators for HM cleanup. Several transporters, such as the ABC transporter family, NRAMP, HMA, and metal tolerance proteins, are involved in the metal acquisition mechanisms. Omics tools have shown that HM stress regulates several genes, stress metabolites or small molecules, microRNAs, and phytohormones to promote tolerance to HM stress and for efficient regulation of metabolic pathways for survival. This review presents a mechanistic view of HM uptake, translocation, and detoxification. Sustainable plant-based solutions may provide essential and economical means of mitigating HM toxicity.
Collapse
Affiliation(s)
- Sandip A Ghuge
- Agricultural Research Organization (ARO), The Volcani Institute, P.O. Box 15159, 7505101 Rishon LeZion, Israel
| | - Ganesh Chandrakant Nikalje
- Division of Life Science and Division of Applied Life Science (BK21 Four), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju, Gyeongnam 52828, South Korea; Department of Botany, Seva Sadan's R. K. Talreja College of Arts, Science and Commerce, Affiliated to University of Mumbai, Ulhasnagar 421003, India
| | - Ulhas Sopanrao Kadam
- Division of Life Science and Division of Applied Life Science (BK21 Four), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju, Gyeongnam 52828, South Korea.
| | - Penna Suprasanna
- Amity Centre for Nuclear Biotechnology, Amity Institute of Biotechnology, Amity University Maharashtra, Mumbai 410206, India
| | - Jong Chan Hong
- Division of Life Science and Division of Applied Life Science (BK21 Four), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju, Gyeongnam 52828, South Korea; Division of Plant Sciences, University of Missouri, Columbia, MO 65211, USA.
| |
Collapse
|
10
|
Goyal P, Devi R, Verma B, Hussain S, Arora P, Tabassum R, Gupta S. WRKY transcription factors: evolution, regulation, and functional diversity in plants. PROTOPLASMA 2023; 260:331-348. [PMID: 35829836 DOI: 10.1007/s00709-022-01794-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Accepted: 07/04/2022] [Indexed: 06/15/2023]
Abstract
The recent advancements in sequencing technologies and informatic tools promoted a paradigm shift to decipher the hidden biological mysteries and transformed the biological issues into digital data to express both qualitative and quantitative forms. The transcriptomic approach, in particular, has added new dimensions to the versatile essence of plant genomics through the large and deep transcripts generated in the process. This has enabled the mining of super families from the sequenced plants, both model and non-model, understanding their ancestry, diversity, and evolution. The elucidation of the crystal structure of the WRKY proteins and recent advancement in computational prediction through homology modeling and molecular dynamic simulation has provided an insight into the DNA-protein complex formation, stability, and interaction, thereby giving a new dimension in understanding the WRKY regulation. The present review summarizes the functional aspects of the high volume of sequence data of WRKY transcription factors studied from different species, till date. The review focuses on the dynamics of structural classification and lineage in light of the recent information. Additionally, a comparative analysis approach was incorporated to understand the functions of the identified WRKY transcription factors subjected to abiotic (heat, cold, salinity, senescence, dark, wounding, UV, and carbon starvation) stresses as revealed through various sets of studies on different plant species. The review will be instrumental in understanding the events of evolution and the importance of WRKY TFs under the threat of climate change, considering the new scientific evidences to propose a fresh perspective.
Collapse
Affiliation(s)
- Pooja Goyal
- Plant Science & Agrotechnology, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu, Jammu & Kashmir, 180001, India
- CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu, 180001, India
- Registered from Guru Nanak Dev University, Amritsar, India
| | - Ritu Devi
- Plant Science & Agrotechnology, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu, Jammu & Kashmir, 180001, India
- CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu, 180001, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Bhawana Verma
- Plant Science & Agrotechnology, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu, Jammu & Kashmir, 180001, India
- CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu, 180001, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Shahnawaz Hussain
- Plant Science & Agrotechnology, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu, Jammu & Kashmir, 180001, India
- CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu, 180001, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Palak Arora
- Plant Science & Agrotechnology, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu, Jammu & Kashmir, 180001, India
- CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu, 180001, India
| | - Rubeena Tabassum
- Plant Science & Agrotechnology, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu, Jammu & Kashmir, 180001, India
- CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu, 180001, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Suphla Gupta
- Plant Science & Agrotechnology, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu, Jammu & Kashmir, 180001, India.
- Faculty, Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
| |
Collapse
|
11
|
Ren L, Wan W, Yin D, Deng X, Ma Z, Gao T, Cao X. Genome-wide analysis of WRKY transcription factor genes in Toona sinensis: An insight into evolutionary characteristics and terpene synthesis. FRONTIERS IN PLANT SCIENCE 2023; 13:1063850. [PMID: 36743538 PMCID: PMC9895799 DOI: 10.3389/fpls.2022.1063850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Accepted: 12/13/2022] [Indexed: 06/18/2023]
Abstract
WRKY transcription factors (TFs), one of the largest TF families, serve critical roles in the regulation of secondary metabolite production. However, little is known about the expression pattern of WRKY genes during the germination and maturation processes of Toona sinensis buds. In the present study, the new assembly of the T. sinensis genome was used for the identification of 78 TsWRKY genes, including gene structures, phylogenetic features, chromosomal locations, conserved protein domains, cis-regulatory elements, synteny, and expression profiles. Gene duplication analysis revealed that gene tandem and segmental duplication events drove the expansion of the TsWRKYs family, with the latter playing a key role in the creation of new TsWRKY genes. The synteny and evolutionary constraint analyses of the WRKY proteins among T. sinensis and several distinct species provided more detailed evidence of gene evolution for TsWRKYs. Besides, the expression patterns and co-expression network analysis show TsWRKYs may multi-genes co-participate in regulating terpenoid biosynthesis. The findings revealed that TsWRKYs potentially play a regulatory role in secondary metabolite synthesis, forming the basis for further functional characterization of WRKY genes with the intention of improving T. sinensis.
Collapse
Affiliation(s)
- Liping Ren
- Key Laboratory of Horticultural Plant Biology of Biological and Food Engineering School, Fuyang Normal University, Fuyang, China
- Horticultural Institute, Fuyang Academy of Agricultural Sciences, Fuyang, China
| | - Wenyang Wan
- Key Laboratory of Horticultural Plant Biology of Biological and Food Engineering School, Fuyang Normal University, Fuyang, China
| | - Dandan Yin
- Key Laboratory of Horticultural Plant Biology of Biological and Food Engineering School, Fuyang Normal University, Fuyang, China
| | - Xianhui Deng
- Key Laboratory of Horticultural Plant Biology of Biological and Food Engineering School, Fuyang Normal University, Fuyang, China
| | - Zongxin Ma
- Horticultural Institute, Fuyang Academy of Agricultural Sciences, Fuyang, China
| | - Ting Gao
- State Key Laboratory of Tea Plant Biology and Utilization, International Joint Laboratory on Tea Chemistry and Health Effects, Anhui Agricultural University, Hefei, China
| | - Xiaohan Cao
- Key Laboratory of Horticultural Plant Biology of Biological and Food Engineering School, Fuyang Normal University, Fuyang, China
| |
Collapse
|
12
|
Wen F, Wu X, Li T, Jia M, Liao L. Characterization of the WRKY gene family in Akebia trifoliata and their response to Colletotrichum acutatum. BMC PLANT BIOLOGY 2022; 22:115. [PMID: 35287589 PMCID: PMC8919620 DOI: 10.1186/s12870-022-03511-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2021] [Accepted: 03/04/2022] [Indexed: 05/11/2023]
Abstract
BACKGROUND Akebia trifoliata, belonging to the Lardizabalaceae family, is a well-known Chinese traditional medicinal plant, susceptible to many diseases, such as anthracnose and powdery mildew. WRKY is one of the largest plant-specific transcription factor families and plays important roles in plant growth, development and stress response, especially in disease resistance. However, little was known about the numbers, characters, evolutionary relationship and expression of WRKY genes in A. trifoliata in response to plant disease due to lacking of A. trifoliata genome. RESULTS A total of 42 putative AktWRKY genes were identified based on the full-length transcriptome-sequencing data of A. trifoliata. Then 42 AktWRKY genes were divided into three major groups (Group I-III) based on the WRKY domains. Motif analysis showed members within same group shared a similar motif composition, implying a functional conservation. Tissue-specific expression analysis showed that AktWRKY genes could be detected in all tissues, while few AktWRKY genes were tissue specific. We further evaluated the expression of AktWRKY genes in three varieties in response to Colletotrichum acutatum by qRT-PCR. The expression patterns of AktWRKY genes were similar between C01 and susceptible variety I02, but distinctly different in resistant variety H05. In addition, it showed that more than 64 percentages of AktWRKY genes were differentially expressed during fungal infection in I02 and H05. Furthermore, Gene ontology (GO) analysis showed that AktWRKY genes were categorized into 26 functional groups under cellular components, molecular functions and biological processes, and a predicted protein interaction network was also constructed. CONCLUSIONS Results of bioinformation analysis and expression patterns implied that AktWRKYs might play multiple function in response to biotic stresses. Our study could facilitate to further investigate the function and regulatory mechanism of the WRKY in A. trifoliata during pathogen response.
Collapse
Affiliation(s)
- Feng Wen
- School of Pharmacy and Life Science, Jiujiang University, Jiujiang, China.
| | - Xiaozhu Wu
- School of Pharmacy and Life Science, Jiujiang University, Jiujiang, China
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Tongjian Li
- School of Pharmacy and Life Science, Jiujiang University, Jiujiang, China
| | - Mingliang Jia
- School of Pharmacy and Life Science, Jiujiang University, Jiujiang, China
| | - Liang Liao
- School of Pharmacy and Life Science, Jiujiang University, Jiujiang, China
| |
Collapse
|
13
|
Di P, Wang P, Yan M, Han P, Huang X, Yin L, Yan Y, Xu Y, Wang Y. Genome-wide characterization and analysis of WRKY transcription factors in Panax ginseng. BMC Genomics 2021; 22:834. [PMID: 34794386 PMCID: PMC8600734 DOI: 10.1186/s12864-021-08145-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Accepted: 11/03/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Panax ginseng is a well-known medicinal plant worldwide. As an herbal medicine, ginseng is also known for its long lifecycle, which can reach several decades. WRKY proteins play regulatory roles in many aspects of biological processes in plants, such as responses to biotic or abiotic stress, plant development, and adaptation to environmental challenges. Genome-wide analyses of WRKY genes in P. ginseng have not been reported. RESULTS In this study, 137 PgWRKY genes were identified from the ginseng genome. Phylogenetic analysis showed that the PgWRKYs could be clustered into three primary groups and five subgroups. Most of the PgWRKY gene promoters contained several kinds of hormone- and stress-related cis-regulatory elements. The expression patterns of PgWRKY genes in 14 different tissues were analyzed based on the available public RNA-seq data. The responses of the PgWRKY genes to heat, cold, salt and drought treatment were also investigated. Most of the PgWRKY genes were expressed differently after heat treatment, and expression trends changed significantly under drought and cold treatment but only slightly under salt treatment. The coexpression analysis of PgWRKY genes with the ginsenoside biosynthesis pathway genes identified 11 PgWRKYs that may have a potential regulatory role in the biosynthesis process of ginsenoside. CONCLUSIONS This work provides insights into the evolution, modulation and distribution of the WRKY gene family in ginseng and extends our knowledge of the molecular basis along with modulatory mechanisms of WRKY transcription factors in ginsenoside biosynthesis.
Collapse
Affiliation(s)
- Peng Di
- State Local Joint Engineering Research Center of Ginseng Breeding and Application, College of Chinese Medicinal Materials, Jilin Agricultural University, 130118, Changchun, China. .,State Key Laboratory Breeding Base of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, 100700, Beijing, China.
| | - Ping Wang
- State Local Joint Engineering Research Center of Ginseng Breeding and Application, College of Chinese Medicinal Materials, Jilin Agricultural University, 130118, Changchun, China
| | - Min Yan
- State Local Joint Engineering Research Center of Ginseng Breeding and Application, College of Chinese Medicinal Materials, Jilin Agricultural University, 130118, Changchun, China
| | - Peng Han
- State Local Joint Engineering Research Center of Ginseng Breeding and Application, College of Chinese Medicinal Materials, Jilin Agricultural University, 130118, Changchun, China
| | - Xinyi Huang
- State Local Joint Engineering Research Center of Ginseng Breeding and Application, College of Chinese Medicinal Materials, Jilin Agricultural University, 130118, Changchun, China
| | - Le Yin
- State Local Joint Engineering Research Center of Ginseng Breeding and Application, College of Chinese Medicinal Materials, Jilin Agricultural University, 130118, Changchun, China
| | - Yan Yan
- State Local Joint Engineering Research Center of Ginseng Breeding and Application, College of Chinese Medicinal Materials, Jilin Agricultural University, 130118, Changchun, China
| | - Yonghua Xu
- State Local Joint Engineering Research Center of Ginseng Breeding and Application, College of Chinese Medicinal Materials, Jilin Agricultural University, 130118, Changchun, China.
| | - Yingping Wang
- State Local Joint Engineering Research Center of Ginseng Breeding and Application, College of Chinese Medicinal Materials, Jilin Agricultural University, 130118, Changchun, China
| |
Collapse
|
14
|
Han Y, Hou Z, He Q, Zhang X, Yan K, Han R, Liang Z. Genome-Wide Characterization and Expression Analysis of bZIP Gene Family Under Abiotic Stress in Glycyrrhiza uralensis. Front Genet 2021; 12:754237. [PMID: 34675967 PMCID: PMC8525656 DOI: 10.3389/fgene.2021.754237] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Accepted: 09/13/2021] [Indexed: 11/24/2022] Open
Abstract
bZIP gene family is one of the largest transcription factor families. It plays an important role in plant growth, metabolic, and environmental response. However, complete genome-wide investigation of bZIP gene family in Glycyrrhiza uralensis remains unexplained. In this study, 66 putative bZIP genes in the genome of G. uralensis were identified. And their evolutionary classification, physicochemical properties, conserved domain, functional differentiation, and the expression level under different stress conditions were further analyzed. All the members were clustered into 13 subfamilies (A–K, M, and S). A total of 10 conserved motifs were found in GubZIP proteins. Members from the same subfamily shared highly similar gene structures and conserved domains. Tandem duplication events acted as a major driving force for the evolution of bZIP gene family in G. uralensis. Cis-acting elements and protein–protein interaction networks showed that GubZIPs in one subfamily are involved in multiple functions, while some GubZIPs from different subfamilies may share the same functional category. The miRNA network targeting GubZIPs showed that the regulation at the transcriptional level may affect protein–protein interaction networks. We suspected that domain-mediated interactions may categorize a protein family into subfamilies in G. uralensis. Furthermore, the tissue-specific gene expression patterns of GubZIPs were analyzed using the public RNA-seq data. Moreover, gene expression level of 66 bZIP family members under abiotic stress treatments was quantified by using qRT-PCR. The results of this study may serve as potential candidates for functional characterization in the future.
Collapse
Affiliation(s)
- Yuxuan Han
- The Key Laboratory of Plant Secondary Metabolism and Regulation of Zhejiang Province, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, China
| | - Zhuoni Hou
- The Key Laboratory of Plant Secondary Metabolism and Regulation of Zhejiang Province, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, China
| | - Qiuling He
- The Key Laboratory of Plant Secondary Metabolism and Regulation of Zhejiang Province, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, China
| | - Xuemin Zhang
- Tasly R&D Institute, Tasly Holding Group Co., Ltd., Tianjin, China
| | - Kaijing Yan
- Tasly R&D Institute, Tasly Holding Group Co., Ltd., Tianjin, China
| | - Ruilian Han
- Institute of Landscape and Plant Ecology, The School of Engineering and Architecture, Zhejiang Sci-tech University, Hangzhou, China
| | - Zongsuo Liang
- The Key Laboratory of Plant Secondary Metabolism and Regulation of Zhejiang Province, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, China
| |
Collapse
|
15
|
Zhou T, Yang X, Wang G, Cao F. Molecular cloning and expression analysis of a WRKY transcription factor gene, GbWRKY20, from Ginkgo biloba. PLANT SIGNALING & BEHAVIOR 2021; 16:1930442. [PMID: 34024256 PMCID: PMC8331020 DOI: 10.1080/15592324.2021.1930442] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 05/10/2021] [Accepted: 05/11/2021] [Indexed: 05/17/2023]
Abstract
WRKY transcription factors are important regulators of diverse plant life processes. Our aim was to clone and characterize GbWRKY20, a WRKY gene of group IIc, derived from Ginkgo biloba. The cDNA sequence of GbWRKY20 was 818 bp long, encoding a 271-amino acid proteins and containing two introns and three exons. The proteinic molecular weight was 30.99 kDa, with a relevant theoretical isoelectric point of 8.15. Subcellular localization analysis confirmed that the GbWRKY20 protein localized to the nucleus. In total, 75 cis-regulatory elements of 19 different types were identified in the GbWRKY20 promoter sequence, including some elements involved in light responsiveness, anaerobic induction and circadian control, low-temperature responsiveness, as well as salicylic acid (SA) and auxin responsiveness. Expression pattern analysis of plant samples from different developmental stages and tissue types, revealed differential GbWRKY20 expression. The GbWRKY20 transcript was downregulated 12 h after heat treatment and at 4-12 h after drought treatment, but was upregulated 12 h after NaCl, cold and methyl jasmonate treatments. For abscisic acid and SA treatments, the GbWRKY20 transcript was upregulated at 24 h. In summary, GbWRKY20 encoded a newly cloned WRKY transcription factor of G. biloba that might be involved in plant growth and plant responses to abiotic stresses and hormones treatments.
Collapse
Affiliation(s)
- Tingting Zhou
- Co-Innovation Center for Sustainable Forestry in Southern China; College of Forestry, Nanjing Forestry University, Nanjing, China
| | - Xiaoming Yang
- Co-Innovation Center for Sustainable Forestry in Southern China; College of Forestry, Nanjing Forestry University, Nanjing, China
| | - Guibin Wang
- Co-Innovation Center for Sustainable Forestry in Southern China; College of Forestry, Nanjing Forestry University, Nanjing, China
| | - Fuliang Cao
- Co-Innovation Center for Sustainable Forestry in Southern China; College of Forestry, Nanjing Forestry University, Nanjing, China
- CONTACT Fuliang Cao Co-Innovation Center for Sustainable Forestry in Southern China; College of Forestry, Nanjing Forestry University, NanjingChina
| |
Collapse
|
16
|
Ren J, Hu J, Zhang A, Ren S, Jing T, Wang X, Sun M, Huang L, Zeng B. The whole-genome and expression profile analysis of WRKY and RGAs in Dactylis glomerata showed that DG6C02319.1 and Dg WRKYs may cooperate in the immunity against rust. PeerJ 2021; 9:e11919. [PMID: 34466285 PMCID: PMC8380429 DOI: 10.7717/peerj.11919] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Accepted: 07/16/2021] [Indexed: 02/01/2023] Open
Abstract
Orchardgrass (Dactylis glomerata) is one of the top four perennial forages worldwide and, despite its large economic advantages, often threatened by various environmental stresses. WRKY transcription factors (TFs) can regulate a variety of plant processes, widely participate in plant responses to biotic and abiotic stresses, and are one of the largest gene families in plants. WRKYs can usually bind W-box elements specifically. In this study, we identified a total of 93 DgWRKY genes and 281 RGAs, including 65, 169 and 47 nucleotide-binding site-leucine-rich repeats (NBS-LRRs), leucine-rich repeats receptor-like protein kinases (LRR-RLKs), and leucine-rich repeats receptor-like proteins (LRR-RLPs), respectively. Through analyzing the expression of DgWRKY genes in orchardgrass under different environmental stresses, it was found that many DgWRKY genes were differentially expressed under heat, drought, submergence, and rust stress. In particular, it was found that the greatest number of genes were differentially expressed under rust infection. Consistently, GO and KEGG enrichment analysis of all genes showed that 78 DgWRKY TFs were identified in the plant–pathogen interaction pathway, with 59 of them differentially expressed. Through cis-acting element prediction, 154 RGAs were found to contain W-box elements. Among them, DG6C02319.1 (a member of the LRR-RLK family) was identified as likely to interact with 14 DGWRKYs. Moreover, their expression levels in susceptible plants after rust inoculation were first up-regulated and then down-regulated, while those in the resistant plants were always up-regulated. In general, DgWRKYs responded to both biotic stress and abiotic stress. DgWRKYs and RGAs may synergistically respond to the response of orchardgrass to rust. This study provides meaningful insight into the molecular mechanisms of WRKY proteins in orchardgrass.
Collapse
Affiliation(s)
- Juncai Ren
- College of Animal Science and Technology, Southwest University, Chongqing, Chongqing, China
| | - Jialing Hu
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Ailing Zhang
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Shuping Ren
- College of Animal Science and Technology, Southwest University, Chongqing, Chongqing, China
| | - Tingting Jing
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Xiaoshan Wang
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Min Sun
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Linkai Huang
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Bing Zeng
- College of Animal Science and Technology, Southwest University, Chongqing, Chongqing, China
| |
Collapse
|
17
|
Transcriptome-Wide Identification of WRKY Transcription Factors and Their Expression Profiles under Different Types of Biological and Abiotic Stress in Pinus massoniana Lamb. Genes (Basel) 2020; 11:genes11111386. [PMID: 33238446 PMCID: PMC7700256 DOI: 10.3390/genes11111386] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 11/15/2020] [Accepted: 11/17/2020] [Indexed: 11/16/2022] Open
Abstract
Pinus massoniana Lamb, an economically important conifer tree, is widely distributed in China. WRKY transcription factors (TFs) play important roles in plant growth and development, biological and abiotic stress. Nevertheless, there is little information about the WRKY genes in P. massoniana. By searching for conserved WRKY motifs in transcriptomic RNA sequencing data for P. massoniana, 31 sequences were identified as WRKY TFs. Then, phylogenetic and conserved motif analyses of the WRKY family in P. massoniana, Pinus taeda and Arabidopsis thaliana were used to classify WRKY genes. The expression patterns of six PmWRKY genes from different groups were determined using real-time quantitative PCR for 2-year-old P. massoniana seedings grown in their natural environment and challenged by phytohormones (salicylic acid, methyl jasmonate, or ethephon), abiotic stress (H2O2) and mechanical damage stress. As a result, the 31 PmWRKY genes identified were divided into three major groups and several subgroups based on structural and phylogenetic features. PmWRKY genes are regulated in response to abiotic stress and phytohormone treatment and may participate in signaling to improve plant stress resistance. Some PmWRKY genes behaved as predicted based on their homology with A. thaliana WRKY genes, but others showed divergent behavior. This systematic analysis lays the foundation for further identification of WRKY gene functions to aid further exploration of the functions and regulatory mechanisms of PmWRKY genes in biological and abiotic stress in P. massoniana.
Collapse
|
18
|
Javed T, Shabbir R, Ali A, Afzal I, Zaheer U, Gao SJ. Transcription Factors in Plant Stress Responses: Challenges and Potential for Sugarcane Improvement. PLANTS (BASEL, SWITZERLAND) 2020; 9:E491. [PMID: 32290272 PMCID: PMC7238037 DOI: 10.3390/plants9040491] [Citation(s) in RCA: 94] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 04/08/2020] [Accepted: 04/08/2020] [Indexed: 02/06/2023]
Abstract
Increasing vulnerability of crops to a wide range of abiotic and biotic stresses can have a marked influence on the growth and yield of major crops, especially sugarcane (Saccharum spp.). In response to various stresses, plants have evolved a variety of complex defense systems of signal perception and transduction networks. Transcription factors (TFs) that are activated by different pathways of signal transduction and can directly or indirectly combine with cis-acting elements to modulate the transcription efficiency of target genes, which play key regulators for crop genetic improvement. Over the past decade, significant progresses have been made in deciphering the role of plant TFs as key regulators of environmental responses in particular important cereal crops; however, a limited amount of studies have focused on sugarcane. This review summarizes the potential functions of major TF families, such as WRKY, NAC, MYB and AP2/ERF, in regulating gene expression in the response of plants to abiotic and biotic stresses, which provides important clues for the engineering of stress-tolerant cultivars in sugarcane.
Collapse
Affiliation(s)
- Talha Javed
- National Engineering Research Center for Sugarcane, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (T.J.); (R.S.); (A.A.); (U.Z.)
- Seed Physiology Lab., Department of Agronomy, University of Agriculture, Faisalabad-38040, Pakistan;
| | - Rubab Shabbir
- National Engineering Research Center for Sugarcane, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (T.J.); (R.S.); (A.A.); (U.Z.)
- Seed Physiology Lab., Department of Agronomy, University of Agriculture, Faisalabad-38040, Pakistan;
| | - Ahmad Ali
- National Engineering Research Center for Sugarcane, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (T.J.); (R.S.); (A.A.); (U.Z.)
| | - Irfan Afzal
- Seed Physiology Lab., Department of Agronomy, University of Agriculture, Faisalabad-38040, Pakistan;
| | - Uroosa Zaheer
- National Engineering Research Center for Sugarcane, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (T.J.); (R.S.); (A.A.); (U.Z.)
| | - San-Ji Gao
- National Engineering Research Center for Sugarcane, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (T.J.); (R.S.); (A.A.); (U.Z.)
| |
Collapse
|