1
|
Korotcenkov G. Paper-Based Sensors: Fantasy or Reality? NANOMATERIALS (BASEL, SWITZERLAND) 2025; 15:89. [PMID: 39852704 PMCID: PMC11767538 DOI: 10.3390/nano15020089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2024] [Revised: 01/03/2025] [Accepted: 01/08/2025] [Indexed: 01/26/2025]
Abstract
This article analyzes the prospects for the appearance of paper-based sensors on the sensor market. It is concluded that paper-based sensors are not a fantasy but a reality. It is shown that paper has properties that make it possible to develop a wide variety of paper-based sensors, such as SERS, colorimetric, fluorescent, conductometric, capacitive, fiber-optic, electrochemical, microfluidic, shape-deformation, microwave, and various physical sensors. The use of paper in the manufacturing of various sensors opens up new possibilities both in terms of new approaches to their manufacturing and in terms of new areas of their application. However, it must be recognized that for the widespread use of paper and the appearance of paper-based sensors on the sensor market, many obstacles must be overcome.
Collapse
Affiliation(s)
- Ghenadii Korotcenkov
- Department of Physics and Engineering, Moldova State University, MD-2009 Chisinau, Moldova
| |
Collapse
|
2
|
Theodorou V, Matysík M, Plšková I, Kusák I, Papaphilippou PC, Krasia-Christoforou T. Eco-Friendly, Sound Absorbing Materials Based on Cellulose Acetate Electrospun Fibers/Luffa Cylindrica Composites. Macromol Rapid Commun 2024:e2400863. [PMID: 39726386 DOI: 10.1002/marc.202400863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 12/12/2024] [Indexed: 12/28/2024]
Abstract
Sound absorption plays a crucial role in addressing noise pollution that may cause harm to both human health and wildlife. To tackle this environmental issue, the implementation of natural-based sound absorbing materials attracts considerable attention in the last few years. In this study, sound absorbing, eco-friendly composites are produced by combining a 3D natural sponge namely Luffa Cylindrica (LC) with cellulose acetate (CA) microfibrous layers that are fabricated through electrospinning. Electrospun microfibers can effectively absorb sound waves due to their unique properties such as high porosity, small diameter, and large surface area. The individual components and the resulting composites, exhibiting various configurations, are characterized in respect to their morphology, porosity, density, and sound absorption properties. More precisely, the sound absorption coefficient is determined through the standing wave ratio method within the range of 500-4000 (Hz) frequency. The most promising materials consist of a multilayer combination of LC with CA microfibrous layers, which creates new prospects in the development of such materials for sound absorption applications.
Collapse
Affiliation(s)
- Viktoria Theodorou
- Department of Mechanical and Manufacturing Engineering, University of Cyprus, 1 Panepistimiou Avenue Nicosia, Aglantzia, 2109, Cyprus
| | - Michal Matysík
- Faculty of Civil Engineering, Institute of Physics, Brno University of Technology, Veveří 331/95, Brno, 602 00, Czech Republic
| | - Iveta Plšková
- Faculty of Civil Engineering, Institute of Physics, Brno University of Technology, Veveří 331/95, Brno, 602 00, Czech Republic
| | - Ivo Kusák
- Faculty of Civil Engineering, Institute of Physics, Brno University of Technology, Veveří 331/95, Brno, 602 00, Czech Republic
| | - Petri Ch Papaphilippou
- Department of Mechanical and Manufacturing Engineering, University of Cyprus, 1 Panepistimiou Avenue Nicosia, Aglantzia, 2109, Cyprus
| | - Theodora Krasia-Christoforou
- Department of Mechanical and Manufacturing Engineering, University of Cyprus, 1 Panepistimiou Avenue Nicosia, Aglantzia, 2109, Cyprus
| |
Collapse
|
3
|
Khattab TA, Ahmed HM, Gaffer H, Al-Balakocy NG, Zaher AA, Ibrahim IHM, Abdelrahman MS. Vapochromic wool fibers for hazardous ammonia detection using xanthohumol biomolecule from natural extract of common hop (Humulus lupulus L.). Int J Biol Macromol 2024; 277:134200. [PMID: 39069051 DOI: 10.1016/j.ijbiomac.2024.134200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 07/01/2024] [Accepted: 07/25/2024] [Indexed: 07/30/2024]
Abstract
Ammonia is a colorless gas, yet it can be fatal if inhaled or ingested in high enough concentrations. Herein, a solid-state colorimetric smart wool (WL) sensor for ammonia was developed. Common hop (Humulus lupulus L.) is a natural resource of spectroscopical dyestuff known as xanthohumol (XN). Wool fabrics were dyed with different concentrations of xanthohumol extract using the high-temperature high-pressure method in the presence of a mordant. The coloration parameters and absorption spectra were employed to explore the yellow-to-white colorimetric shift of the wool fabric after it was exposed to aqueous ammonia. The wool fabric showed an excellent detection limit of 5 to 125 ppm. When the ammonia concentration was increased, the absorbance spectra demonstrated a hypsochromic shift from 498 nm to 367 nm. This could be attributed to changes in the molecular structure of xanthohumol that happen owing to intramolecular charge delocalization. Using transmission electron microscopy (TEM), the mordant/xanthohumol nanoparticles were measured to have diameters of 15-40 nm. The xanthohumol-finished wool fabrics showed good colorfastness properties. The incorporation of mordant/xanthohumol nanoparticles into wool fabrics showed no negative effects on their stiffness or air-permeability.
Collapse
Affiliation(s)
- Tawfik A Khattab
- Dyeing, Printing and Auxiliaries Department, National Research Centre, Cairo 12622, Egypt.
| | - Hend M Ahmed
- Dyeing, Printing and Auxiliaries Department, National Research Centre, Cairo 12622, Egypt
| | - Hatem Gaffer
- Dyeing, Printing and Auxiliaries Department, National Research Centre, Cairo 12622, Egypt
| | - Naser G Al-Balakocy
- Protenic and Manmade Fibers Department, National Research Centre, Cairo 12622, Egypt
| | - Ahmed A Zaher
- Faculty of Science, Masoura University, Masoura, Egypt; Material Science lab, Main Chemical Laboratories, Cairo, Egypt
| | - Ibrahim H M Ibrahim
- Department of Archeological Conservation, Faculty of Archeology, Luxor University, Egypt
| | - Meram S Abdelrahman
- Dyeing, Printing and Auxiliaries Department, National Research Centre, Cairo 12622, Egypt
| |
Collapse
|
4
|
Xu J, Yang X, Wang K, Jin Q, Wang X, Lu G. Confinement Enrichment Effect in HoMS-BaTiO 3 Microwave Gas Sensors for the Detection of 10 ppb-0.55 v/v% Ammonia at Room Temperature. ACS Sens 2024; 9:2057-2065. [PMID: 38552136 DOI: 10.1021/acssensors.4c00085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/19/2024]
Abstract
The construction of ammonia gas sensors with wide detection ranges is important for exhalation diagnosis and environmental pollution monitoring. To achieve a wide detection range, sensitive materials must possess excellent spatial confinement and large active surfaces to enhance gas adsorption. In this study, an ammonia microwave gas sensor with a wide detection range of 10 ppb-0.55 v/v% at room temperature was fabricated by incorporating hollow multishelled-structured BaTiO3 (HoMS-BaTiO3). The effect of the number of shells and the quantity of the sensitive material on the gas-sensing performance was investigated, and two-layered HoMS-BaTiO3 demonstrated the best response at high concentrations (0.15-0.55 v/v%). Conversely, single-layered HoMS-BaTiO3 displayed outstanding performance at low concentrations (10 ppb-0.15 v/v%). The lower the quantity of the sensitive material, the higher the response. This study offers a method for preparing room-temperature ammonia sensors with a wide detection range and reveals the link between the structure and quantity of sensitive materials and gas-sensing performance.
Collapse
Affiliation(s)
- Juhua Xu
- Key Laboratory of Automobile Materials (Ministry of Education), School of Materials Science and Engineering, Jilin University, 5988 Renmin Street, Changchun 130022, P. R. China
| | - Xianwang Yang
- State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, International Center of Future Science, Jilin University, 2699 Qianjin Street, Changchun 130012, P. R. China
| | - Ke Wang
- The Second Norman Bethune Hospital of Jilin University, Jilin University, 4026 Yatai Street, Changchun 130041, P. R. China
| | - Quan Jin
- Key Laboratory of Automobile Materials (Ministry of Education), School of Materials Science and Engineering, Jilin University, 5988 Renmin Street, Changchun 130022, P. R. China
| | - Xiaolong Wang
- State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, International Center of Future Science, Jilin University, 2699 Qianjin Street, Changchun 130012, P. R. China
| | - Geyu Lu
- State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, International Center of Future Science, Jilin University, 2699 Qianjin Street, Changchun 130012, P. R. China
| |
Collapse
|
5
|
Xue J, Yao Y, Wang M, Wang Z, Xue Y, Li B, Ma Y, Shen Y, Wu H. Recent studies on proteins and polysaccharides-based pH-responsive fluorescent materials. Int J Biol Macromol 2024; 260:129534. [PMID: 38237824 DOI: 10.1016/j.ijbiomac.2024.129534] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 12/30/2023] [Accepted: 01/14/2024] [Indexed: 01/22/2024]
Abstract
Polymer-based pH-responsive fluorescent materials have the characteristics of fast response, real-time monitoring, visualisation, and easy forming. Consequently, they have attracted widespread attention in wound healing, sweat monitoring, security and anti-counterfeiting, freshness detection of aquatic products, metal-ion sensing and bioimaging. This paper analyses the preparation principles and characteristics of pH-responsive fluorescent materials based on cellulose, chitosan and proteins. It then outlines the fluorescence properties, environmental response mechanisms and applications of various luminescent materials. Next, the research indicates that amines, N-heterocyclic rings, carboxyl groups and amino plasmonic groups on the fluorescent molecule structure and polymer skeleton appear to change the degree of ionisation under acid or alkali stimulation, which affects the light absorption ability of chromophore electrons, thus producing fluorescence changes in fluorescent materials under different pH stimuli. On this basis, the challenges and growth encountered in the development of proteins and polysaccharides-based pH-responsive fluorescent materials were prospected to provide theoretical references and technical support for constructing pH-responsive fluorescent materials with high stability, high sensitivity, long-lasting pH-response and wide detection range.
Collapse
Affiliation(s)
- Jiannan Xue
- School of Textile Science and Engineering, Xi'an Polytechnic University, Xi'an 710048, Shaanxi, China
| | - Yijun Yao
- School of Textile Science and Engineering, Xi'an Polytechnic University, Xi'an 710048, Shaanxi, China; Key Laboratory of Functional Textile Material and Product, Xi'an Polytechnic University, Ministry of Education, Xi'an 710048, Shaanxi, China.
| | - Miao Wang
- School of Textile Science and Engineering, Xi'an Polytechnic University, Xi'an 710048, Shaanxi, China
| | - Zhigang Wang
- School of Textile Science and Engineering, Xi'an Polytechnic University, Xi'an 710048, Shaanxi, China
| | - Ying Xue
- School of Textile Science and Engineering, Xi'an Polytechnic University, Xi'an 710048, Shaanxi, China; Key Laboratory of Functional Textile Material and Product, Xi'an Polytechnic University, Ministry of Education, Xi'an 710048, Shaanxi, China
| | - Bo Li
- School of Textile Science and Engineering, Xi'an Polytechnic University, Xi'an 710048, Shaanxi, China; Key Laboratory of Functional Textile Material and Product, Xi'an Polytechnic University, Ministry of Education, Xi'an 710048, Shaanxi, China
| | - Yanli Ma
- School of Textile Science and Engineering, Xi'an Polytechnic University, Xi'an 710048, Shaanxi, China; Key Laboratory of Functional Textile Material and Product, Xi'an Polytechnic University, Ministry of Education, Xi'an 710048, Shaanxi, China
| | - Yanqin Shen
- School of Textile Science and Engineering, Xi'an Polytechnic University, Xi'an 710048, Shaanxi, China; Key Laboratory of Functional Textile Material and Product, Xi'an Polytechnic University, Ministry of Education, Xi'an 710048, Shaanxi, China
| | - Hailiang Wu
- School of Textile Science and Engineering, Xi'an Polytechnic University, Xi'an 710048, Shaanxi, China; Key Laboratory of Functional Textile Material and Product, Xi'an Polytechnic University, Ministry of Education, Xi'an 710048, Shaanxi, China.
| |
Collapse
|
6
|
Di Nunzio MR, Douhal A. Robust Inclusion Complex of Topotecan Comprised within a Rhodamine-Labeled β-Cyclodextrin: Competing Proton and Energy Transfer Processes. Pharmaceutics 2023; 15:1620. [PMID: 37376069 DOI: 10.3390/pharmaceutics15061620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 04/19/2023] [Accepted: 05/19/2023] [Indexed: 06/29/2023] Open
Abstract
Monitoring the biological fate of medicaments within the environments of cancer cells is an important challenge which is nowadays the object of intensive studies. In this regard, rhodamine-based supramolecular systems are one of the most suitable probes used in drug delivery thanks to their high emission quantum yield and sensitivity to the environment which helps to track the medicament in real time. In this work, we used steady-state and time-resolved spectroscopy techniques to investigate the dynamics of the anticancer drug, topotecan (TPT), in water (pH ~6.2) in the presence of a rhodamine-labeled methylated β-cyclodextrin (RB-RM-βCD). A stable complex of 1:1 stoichiometry is formed with a Keq value of ~4 × 104 M-1 at room temperature. The fluorescence signal of the caged TPT is reduced due to: (1) the CD confinement effect; and (2) a Förster resonance energy transfer (FRET) process from the trapped drug to the RB-RM-βCD occurring in ~43 ps with 40% efficiency. These findings provide additional knowledge about the spectroscopic and photodynamic interactions between drugs and fluorescent functionalized CDs, and may lead to the design of new fluorescent CD-based host-guest nanosystems with efficient FRET to be used in bioimaging for drug delivery monitoring.
Collapse
Affiliation(s)
- Maria Rosaria Di Nunzio
- Departamento de Química Física, Facultad de Ciencias Ambientales y Bioquímica and INAMOL, Universidad de Castilla-La Mancha, Av. Carlos III, s/n, 45071 Toledo, Spain
| | - Abderrazzak Douhal
- Departamento de Química Física, Facultad de Ciencias Ambientales y Bioquímica and INAMOL, Universidad de Castilla-La Mancha, Av. Carlos III, s/n, 45071 Toledo, Spain
| |
Collapse
|
7
|
Wu L, Song Y, Xing S, Li Y, Xu H, Yang Q, Li Y. Advances in electrospun nanofibrous membrane sensors for ion detection. RSC Adv 2022; 12:34866-34891. [PMID: 36540220 PMCID: PMC9724217 DOI: 10.1039/d2ra04911b] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Accepted: 11/02/2022] [Indexed: 08/05/2024] Open
Abstract
Harmful metal ions and toxic anions produced in industrial processes cause serious damage to the environment and human health. Chemical sensors are used as an efficient and convenient detection method for harmful ions. Electrospun fiber membranes are widely used in the field of solid-state chemical sensors due to high specific surface area, high porosity, and strong adsorption. This paper reviews the solid-state chemical sensors based on electrospinning technology for the detection of harmful heavy metal ions and toxic anions in water over the past decade. These electrospun fiber sensors have different preparation methods, sensing mechanisms, and sensing properties. The preparation method can be completed by physical doping, chemical modification, copolymerization, surface adsorption and self-assembly combined with electrospinning, and the material can also be combined with organic fluorescent molecules, biological matrix materials and precious metal materials. Sensing performance aspects can also be manifested as changes in color and fluorescence. By comparing the literature, we summarize the advantages and disadvantages of electrospinning technology in the field of ion sensing, and discuss the opportunities and challenges of electrospun fiber sensor research. We hope that this review can provide inspiration for the development of electrospun fiber sensors.
Collapse
Affiliation(s)
- Liangqiang Wu
- College of Chemistry, Jilin University Changchun 130021 P. R China
| | - Yan Song
- College of Materials Science and Engineering, Jilin Institute of Chemical Technology Jilin 132022 P. R. China
| | - Shuo Xing
- College of Chemistry, Jilin University Changchun 130021 P. R China
| | - Yapeng Li
- College of Chemistry, Jilin University Changchun 130021 P. R China
| | - Hai Xu
- College of Chemistry, Jilin University Changchun 130021 P. R China
| | - Qingbiao Yang
- College of Chemistry, Jilin University Changchun 130021 P. R China
| | - Yaoxian Li
- College of Chemistry, Jilin University Changchun 130021 P. R China
| |
Collapse
|
8
|
Dragar Č, Ileršič N, Potrč T, Nemec S, Kralj S, Kocbek P. Electrospinning as a method for preparation of redispersible dry product with high content of magnetic nanoparticles. Int J Pharm 2022; 629:122389. [DOI: 10.1016/j.ijpharm.2022.122389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 09/30/2022] [Accepted: 11/07/2022] [Indexed: 11/13/2022]
|
9
|
Repar N, Jovičić EJ, Kump A, Birarda G, Vaccari L, Erman A, Kralj S, Nemec S, Petan T, Drobne D. Oleic Acid Protects Endothelial Cells from Silica-Coated Superparamagnetic Iron Oxide Nanoparticles (SPIONs)-Induced Oxidative Stress and Cell Death. Int J Mol Sci 2022; 23:ijms23136972. [PMID: 35806014 PMCID: PMC9267005 DOI: 10.3390/ijms23136972] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 06/20/2022] [Accepted: 06/21/2022] [Indexed: 01/27/2023] Open
Abstract
Superparamagnetic iron oxide nanoparticles (SPIONs) have great potential for use in medicine, but they may cause side effects due to oxidative stress. In our study, we investigated the effects of silica-coated SPIONs on endothelial cells and whether oleic acid (OA) can protect the cells from their harmful effects. We used viability assays, flow cytometry, infrared spectroscopy, fluorescence microscopy, and transmission electron microscopy. Our results show that silica-coated SPIONs are internalized by endothelial cells, where they increase the amount of reactive oxygen species (ROS) and cause cell death. Exposure to silica-coated SPIONs induced accumulation of lipid droplets (LD) that was not dependent on diacylglycerol acyltransferase (DGAT)-mediated LD biogenesis, suggesting that silica-coated SPIONs suppress LD degradation. Addition of exogenous OA promoted LD biogenesis and reduced SPION-dependent increases in oxidative stress and cell death. However, exogenous OA protected cells from SPION-induced cell damage even in the presence of DGAT inhibitors, implying that LDs are not required for the protective effect of exogenous OA. The molecular phenotype of the cells determined by Fourier transform infrared spectroscopy confirmed the destructive effect of silica-coated SPIONs and the ameliorative role of OA in the case of oxidative stress. Thus, exogenous OA protects endothelial cells from SPION-induced oxidative stress and cell death independent of its incorporation into triglycerides.
Collapse
Affiliation(s)
- Neža Repar
- Biotechnical Faculty, University of Ljubljana, 1000 Ljubljana, Slovenia
- Correspondence: (N.R.); (D.D.)
| | - Eva Jarc Jovičić
- Department of Molecular and Biomedical Sciences, Jožef Stefan Institute, 1000 Ljubljana, Slovenia; (E.J.J.); (A.K.); (T.P.)
- Jožef Stefan International Postgraduate School, 1000 Ljubljana, Slovenia
| | - Ana Kump
- Department of Molecular and Biomedical Sciences, Jožef Stefan Institute, 1000 Ljubljana, Slovenia; (E.J.J.); (A.K.); (T.P.)
- Jožef Stefan International Postgraduate School, 1000 Ljubljana, Slovenia
| | - Giovanni Birarda
- Elettra-Sincrotrone Trieste, 34149 Trieste, Italy; (G.B.); (L.V.)
| | - Lisa Vaccari
- Elettra-Sincrotrone Trieste, 34149 Trieste, Italy; (G.B.); (L.V.)
| | - Andreja Erman
- Institute of Cell Biology, Faculty of Medicine, University of Ljubljana, 1000 Ljubljana, Slovenia;
| | - Slavko Kralj
- Department for Materials Synthesis, Jožef Stefan Institute, 1000 Ljubljana, Slovenia; (S.K.); (S.N.)
- Faculty of Pharmacy, University of Ljubljana, 1000 Ljubljana, Slovenia
| | - Sebastjan Nemec
- Department for Materials Synthesis, Jožef Stefan Institute, 1000 Ljubljana, Slovenia; (S.K.); (S.N.)
- Faculty of Pharmacy, University of Ljubljana, 1000 Ljubljana, Slovenia
| | - Toni Petan
- Department of Molecular and Biomedical Sciences, Jožef Stefan Institute, 1000 Ljubljana, Slovenia; (E.J.J.); (A.K.); (T.P.)
| | - Damjana Drobne
- Biotechnical Faculty, University of Ljubljana, 1000 Ljubljana, Slovenia
- Correspondence: (N.R.); (D.D.)
| |
Collapse
|
10
|
Multifunctional cellulose fibers: Intense red upconversion under 1532 nm excitation and temperature-sensing properties. Carbohydr Polym 2022; 294:119782. [DOI: 10.1016/j.carbpol.2022.119782] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 06/14/2022] [Accepted: 06/22/2022] [Indexed: 11/23/2022]
|
11
|
Liu Y, Chen X, Gao Y, Yu DG, Liu P. Elaborate design of shell component for manipulating the sustained release behavior from core–shell nanofibres. J Nanobiotechnology 2022; 20:244. [PMID: 35643572 PMCID: PMC9148457 DOI: 10.1186/s12951-022-01463-0] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Accepted: 05/18/2022] [Indexed: 12/15/2022] Open
Abstract
Background The diversified combination of nanostructure and material has received considerable attention from researchers to exploit advanced functional materials. In drug delivery systems, the hydrophilicity and sustained–release drug properties are in opposition. Thus, difficulties remain in the simultaneous improve sustained–release drug properties and increase the hydrophilicity of materials. Methods In this work, we proposed a modified triaxial electrospinning strategy to fabricate functional core–shell fibres, which could elaborate design of shell component for manipulating the sustained-release drug. Cellulose acetate (CA) was designed as the main polymeric matrix, whereas polyethylene glycol (PEG) was added as a hydrophilic material in the middle layer. Cur, as a model drug, was stored in the inner layer. Results Scanning electron microscopy (SEM) results and transmission electron microscopy (TEM) demonstrated that the cylindrical F2–F4 fibres had a clear core–shell structure. The model drug Cur in fibres was verified in an amorphous form during the X-ray diffraction (XRD) patterns, and Fourier transformed infrared spectroscopy (FTIR) results indicated good compatibility with the CA matrix. The water contact angle test showed that functional F2–F4 fibres had a high hydrophilic property in 120 s and the control sample F1 needed over 0.5 h to obtain hydrophilic property. In the initial stage of moisture intrusion into fibres, the quickly dissolved PEG component guided the water molecules and rapidly eroded the internal structure of functional fibres. The good hydrophilicity of F2–F4 fibres brought relatively excellent swelling rate around 4600%. Blank outer layer of functional F2 fibres with 1% PEG created an exciting opportunity for providing a 96 h sustained-release drug profile, while F3 and F4 fibres with over 3% PEG provided a 12 h modified drug release profile to eliminate tailing–off effect. Conclusion Here, the functional F2–F4 fibres had been successfully produced by using the advanced modified triaxial electrospinning nanotechnology with different polymer matrices. The simple strategy in this work has remarkable potential to manipulate hydrophilicity and sustained release of drug carriers, meantime it can also enrich the preparation approaches of functional nanomaterials. Graphical Abstract ![]()
Supplementary Information The online version contains supplementary material available at 10.1186/s12951-022-01463-0.
Collapse
|
12
|
Yan S, Dinh DK, Shang G, Wang S, Zhao W, Liu X, Robinson R, Lombardi JP, He N, Lu S, Poliks M, Hsiao BS, Gitsov I, Zhong CJ. Nano-Filamented Textile Sensor Platform with High Structure Sensitivity. ACS APPLIED MATERIALS & INTERFACES 2022; 14:15391-15400. [PMID: 35333505 DOI: 10.1021/acsami.2c00021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
A key challenge to the creation of chemically responsive electro-functionality of nonconductive, hydrophobic, and free-contacted textile or fibrous network materials is how to impart the 3D structure with functional filaments to enable responsive structure sensitivity, which is critical in establishing the fibrous platform technology for sensor applications. We demonstrate this capability using an electrospun polymeric fibrous substrate embedded with nano-filaments defined by size-tunable gold nanoparticles and structurally sensitive dendrons as crosslinkers. The resulting interparticle properties strongly depend on the assembly of the nano-filaments, enabling an interface with high structure sensitivity to molecular interactions. This is demonstrated with chemiresistive responses to vaporous alcohol molecules with different chain lengths and isomers, which is critical in breath and sweat sensing involving a high-moisture or -humidity background. The sensitivity scales with the chain length and varies with their isomers. This approach harnesses the multifunctional tunability of the nano-filaments in a sensor array format, showing high structure sensitivity to the alcohol molecules with different chain lengths and isomers. The high structure sensitivity and its implications for a paradigm shift in the design of textile sensor arrays for multiplexing human performance monitoring via breath or sweat sensing and environmental monitoring of air quality are also discussed.
Collapse
Affiliation(s)
- Shan Yan
- Department of Chemistry, State University of New York at Binghamton, Binghamton, New York 13902, United States
| | - Dong K Dinh
- System Science and Industrial Engineering, State University of New York at Binghamton, Binghamton, New York 13902, United States
| | - Guojung Shang
- Department of Chemistry, State University of New York at Binghamton, Binghamton, New York 13902, United States
| | - Shan Wang
- Department of Chemistry, State University of New York at Binghamton, Binghamton, New York 13902, United States
| | - Wei Zhao
- Department of Chemistry, State University of New York at Binghamton, Binghamton, New York 13902, United States
| | - Xin Liu
- Department of Chemistry, State University of New York-ESF, Syracuse, New York 13210, United States
| | - Richard Robinson
- Department of Chemistry, State University of New York at Binghamton, Binghamton, New York 13902, United States
| | - Jack P Lombardi
- System Science and Industrial Engineering, State University of New York at Binghamton, Binghamton, New York 13902, United States
| | - Ning He
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Susan Lu
- System Science and Industrial Engineering, State University of New York at Binghamton, Binghamton, New York 13902, United States
| | - Mark Poliks
- System Science and Industrial Engineering, State University of New York at Binghamton, Binghamton, New York 13902, United States
| | - Benjamin S Hsiao
- Department of Chemistry, Stony Brook University, Stony Brook, New York 11794, United States
| | - Ivan Gitsov
- Department of Chemistry, State University of New York-ESF, Syracuse, New York 13210, United States
| | - Chuan-Jian Zhong
- Department of Chemistry, State University of New York at Binghamton, Binghamton, New York 13902, United States
| |
Collapse
|
13
|
Purnamasari W, Budiastanti TA, Aminatun A, Rahmah U, Sumarsih S, Chang JY, Fahmi MZ. Naproxen release behaviour from graphene oxide/cellulose acetate composite nanofibers. RSC Adv 2022; 12:8019-8029. [PMID: 35424767 PMCID: PMC8982341 DOI: 10.1039/d1ra09293f] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Accepted: 02/28/2022] [Indexed: 12/18/2022] Open
Abstract
The present study investigated the effect of graphene oxide in cellulose acetate-based composite nanofibers on the transdermal delivery of naproxen. The composite nanofibers were successfully produced via the electrospinning process by directly mixing cellulose acetate, graphene oxide, and naproxen solution with varied compositions. The formation of the nanofibers was confirmed by electron microscopy and other characterization techniques to prove the existence of graphene oxide and naproxen itself. Surprisingly, graphene oxide encourages the production of nanofibers with smaller average diameter, higher conductivity, higher mechanical strength, and higher naproxen release from the cellulose acetate nanofibers. Once combined with naproxen, the composite nanofiber exhibited antibacterial activity with an inhibitory zone of 9.15 mm. The cytotoxicity evaluation also showed that the addition of naproxen increased the death of HeLa cells with a CC50 of up to 29.33 μg mL-1. The kinetic model of naproxen release follows the Korsmeyer-Peppas and Higuchi models with acceleration at neutral pH. These results are promising for further applications for wound healing purposes.
Collapse
Affiliation(s)
- Wulan Purnamasari
- Department of Physic, Faculty of Science and Technology, Universitas Airlangga Surabaya 60115 Indonesia
| | - Titah Aldila Budiastanti
- Department of Chemistry, Faculty of Science and Technology, Universitas Airlangga Surabaya 60115 Indonesia
| | - Aminatun Aminatun
- Department of Physic, Faculty of Science and Technology, Universitas Airlangga Surabaya 60115 Indonesia
| | - Ulfa Rahmah
- Department of Chemistry, Faculty of Science and Technology, Universitas Airlangga Surabaya 60115 Indonesia
| | - Sri Sumarsih
- Department of Chemistry, Faculty of Science and Technology, Universitas Airlangga Surabaya 60115 Indonesia
| | - Jia-Yaw Chang
- Department of Chemical Engineering, National Taiwan University of Science and Technology Taipei 106 Taiwan
| | - Mochamad Zakki Fahmi
- Department of Chemistry, Faculty of Science and Technology, Universitas Airlangga Surabaya 60115 Indonesia
- Supra Modification Nano-Micro Engineering Laboratory, Universitas Airlangga Surabaya 60115 Indonesia
| |
Collapse
|
14
|
Kaschuk JJ, Al Haj Y, Rojas OJ, Miettunen K, Abitbol T, Vapaavuori J. Plant-Based Structures as an Opportunity to Engineer Optical Functions in Next-Generation Light Management. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2104473. [PMID: 34699648 DOI: 10.1002/adma.202104473] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 10/13/2021] [Indexed: 06/13/2023]
Abstract
This review addresses the reconstruction of structural plant components (cellulose, lignin, and hemicelluloses) into materials displaying advanced optical properties. The strategies to isolate the main building blocks are discussed, and the effects of fibrillation, fibril alignment, densification, self-assembly, surface-patterning, and compositing are presented considering their role in engineering optical performance. Then, key elements that enable lignocellulosic to be translated into materials that present optical functionality, such as transparency, haze, reflectance, UV-blocking, luminescence, and structural colors, are described. Mapping the optical landscape that is accessible from lignocellulosics is shown as an essential step toward their utilization in smart devices. Advanced materials built from sustainable resources, including those obtained from industrial or agricultural side streams, demonstrate enormous promise in optoelectronics due to their potentially lower cost, while meeting or even exceeding current demands in performance. The requirements are summarized for the production and application of plant-based optically functional materials in different smart material applications and the review is concluded with a perspective about this active field of knowledge.
Collapse
Affiliation(s)
- Joice Jaqueline Kaschuk
- Department of Bioproducts and Biosystems, School of Chemical Engineering, Aalto University, Box 16300, Aalto, Espoo, 00076, Finland
| | - Yazan Al Haj
- Department of Chemistry and Materials Science, School of Chemical Engineering, Aalto University, Aalto, FI-00076, Finland
| | - Orlando J Rojas
- Department of Bioproducts and Biosystems, School of Chemical Engineering, Aalto University, Box 16300, Aalto, Espoo, 00076, Finland
- Bioproducts Institute, Departments of Chemical Engineering, Department of Biological Engineering, Department of Chemistry, Department of Wood Science, 2360 East Mall, The University of British Columbia, Vancouver, BC, V6T 1Z3, Canada
| | - Kati Miettunen
- Department of Mechanical and Materials Engineering, Faculty of Technology, University of Turku, Turku, FI-20500, Finland
| | - Tiffany Abitbol
- RISE Research Institutes of Sweden, Stockholm, SE-114 28, Sweden
| | - Jaana Vapaavuori
- Department of Chemistry and Materials Science, School of Chemical Engineering, Aalto University, Aalto, FI-00076, Finland
| |
Collapse
|
15
|
Zhang Y, Zhang C, Wang Y. Recent progress in cellulose-based electrospun nanofibers as multifunctional materials. NANOSCALE ADVANCES 2021; 3:6040-6047. [PMID: 36133945 PMCID: PMC9417631 DOI: 10.1039/d1na00508a] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 09/06/2021] [Indexed: 05/13/2023]
Abstract
Cellulose, the most abundant natural polymer, has good biocompatibility, biodegradability, and non-toxicity, which make it and its derivatives promising candidates for the fabrication of multifunctional materials, while maintaining sustainability and environmental friendliness. The combination of electrospinning technology and cellulose (and its derivatives) provides a feasible approach to produce nanostructured porous materials with promising functionalities, flexibility, renewability and biodegradability. At the same time, it enables value-added applications of cellulose and its derivatives that are derived from nature or even biomass waste. This review summarizes and discusses the latest progress in cellulose-based electrospun nanofibers, including their construction methods and conditions, various available raw materials, and applications in multiple areas (water treatment, biomaterials, sensors, electro-conductive materials, active packaging, and so on), which are followed by the conclusion and prospects associated with future opportunities and challenges in this active research area.
Collapse
Affiliation(s)
- Yirong Zhang
- Department of Food Science and Agricultural Chemistry, McGill University 21111 Lakeshore Ste Anne de Bellevue Quebec H9X 3V9 Canada
| | - Cunzhi Zhang
- Department of Food Science and Agricultural Chemistry, McGill University 21111 Lakeshore Ste Anne de Bellevue Quebec H9X 3V9 Canada
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology Guangzhou 510640 China
| | - Yixiang Wang
- Department of Food Science and Agricultural Chemistry, McGill University 21111 Lakeshore Ste Anne de Bellevue Quebec H9X 3V9 Canada
| |
Collapse
|
16
|
Nawaz H, Zhang X, Chen S, You T, Xu F. Recent studies on cellulose-based fluorescent smart materials and their applications: A comprehensive review. Carbohydr Polym 2021; 267:118135. [PMID: 34119124 DOI: 10.1016/j.carbpol.2021.118135] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 04/09/2021] [Accepted: 04/27/2021] [Indexed: 12/16/2022]
Abstract
The progress of bio-based fluorescent smart materials and their multifunctional applications have attained increasing interest in the recent decades. Cellulose is among the cheapest and widespread raw material on earth which can be modified into diverse useful materials. This review summarizes the chemical modification of cellulose into smart fluorescent materials. This further highlights on the fabrication of the prepared fluorescent materials into films, fibers, paper strips, carbon dots, hydrogels and solutions which are applied for the sensing of toxic metals and anions, pH, bioimaging, common organic solvents, aliphatic and aromatic amines, nitroaromatics, fluorescent printing, coating, and anti-counterfeiting applications. Finally, the discussion about the upcoming investigations, challenges, and options open for the cellulose-based luminescence sensors are communicated. We believe that this review will appeal more and more attention and curiosity for the chemists, biochemists, and chemical engineers working with the synthesis of cellulose-based fluorescent materials for widespread applications.
Collapse
Affiliation(s)
- Haq Nawaz
- Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing 100083, PR China.
| | - Xun Zhang
- Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing 100083, PR China
| | - Sheng Chen
- Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing 100083, PR China
| | - Tingting You
- Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing 100083, PR China
| | - Feng Xu
- Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing 100083, PR China.
| |
Collapse
|
17
|
Kralj S, Marchesan S. Bioinspired Magnetic Nanochains for Medicine. Pharmaceutics 2021; 13:1262. [PMID: 34452223 PMCID: PMC8398308 DOI: 10.3390/pharmaceutics13081262] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 08/12/2021] [Accepted: 08/13/2021] [Indexed: 12/12/2022] Open
Abstract
Superparamagnetic iron oxide nanoparticles (SPIONs) have been widely used for medicine, both in therapy and diagnosis. Their guided assembly into anisotropic structures, such as nanochains, has recently opened new research avenues; for instance, targeted drug delivery. Interestingly, magnetic nanochains do occur in nature, and they are thought to be involved in the navigation and geographic orientation of a variety of animals and bacteria, although many open questions on their formation and functioning remain. In this review, we will analyze what is known about the natural formation of magnetic nanochains, as well as the synthetic protocols to produce them in the laboratory, to conclude with an overview of medical applications and an outlook on future opportunities in this exciting research field.
Collapse
Affiliation(s)
- Slavko Kralj
- Department for Materials Synthesis, Jožef Stefan Institute, Jamova 39, 1000 Ljubljana, Slovenia
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Ljubljana, Aškerčeva 7, 1000 Ljubljana, Slovenia
| | - Silvia Marchesan
- Department of Chemical and Pharmaceutical Sciences, University of Trieste, 34127 Trieste, Italy;
| |
Collapse
|
18
|
Firmansyah T, Wibisono G, Rahardjo ET, Kondoh J. Multifunctional and Sensitivity Enhancement of Hybrid Acoustoplasmonic Sensors Fabricated on 36XY-LiTaO 3 with Gold Nanoparticles for the Detection of Permittivity, Conductivity, and the Refractive Index. ACS APPLIED MATERIALS & INTERFACES 2021; 13:13822-13837. [PMID: 33720686 DOI: 10.1021/acsami.1c00110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Integration of high-sensitivity sensors with multiple sensing performance for the environmental detection of permittivity (εr), conductivity (σ), and the refractive index (n) is required to support Societies 5.0. However, there are still many sensors with low sensitivity that stand alone. A shear-horizontal surface acoustic wave (SH-SAW) sensor is usually used because of its high-sensitivity performance in detecting electrical properties. Moreover, localized surface plasmon resonance (LSPR) sensors show remarkable optical side capability. Here, we have successfully combined these advantages with an additional benefit of sensitivity enhancement. We propose a hybrid acoustoplasmonic sensor generated by integrating SH-SAW and LSPR devices to simultaneously detect εr, σ, and n. The SH-SAW sensor was fabricated on a 36XY-LiTaO3 substrate using a developed interdigital transducer. Then, the LSPR sensor was implemented by the deposition of gold nanoparticles (AuNPs) on the propagation surfaces of the SH-SAW sensor. Fascinatingly, the AuNPs not only generate the LSPR effect but also enhance the SH-SAW sensor sensitivity. Comprehensive investigations were performed with atomic force microscopy imaging, CST software used for plasmonic E-field simulation, and hybrid sensing evaluation. Moreover, the SH-SAW sensitivity enhancement achieved using AuNPs was verified by frequency-domain and time-domain measurements. Thus, the SH-SAW sensor with AuNPs has a wide εr detection range (25-85), sensing capabilities for ultrasmall σ (0.00528-0.02504 S/m), and high sensitivity for n detection (45.5-201.9 nm/RIU). The cross-sectional effects were also evaluated. The effect of the LSPR device on the SH-SAW device was examined by turning the light OFF or ON (hereafter OFF/ON). The impact of the SH-SAW device on the LSPR device was investigated by turning the sine signal OFF/ON. We found that the SH-SAW sensor was not impacted by light. Interestingly, the presence of the SH-SAW sensor affects the positions of the AuNPs, which consistently generates a small blueshift in the LSPR effect. However, insignificant variation was noted in independent performances. In general, the SH-SAW sensor with AuNPs shows multifunctional independent characteristics and high-sensitivity performance, making it suitable for a chemical environment, with the possibility of integration with a wireless network.
Collapse
Affiliation(s)
- Teguh Firmansyah
- Graduate School of Science and Technology, Shizuoka University, 3-5-1 Johoku, Naka-Ku, Hamamatsu-shi, Shizuoka 432-8561, Japan
- Department of Electrical Engineering, Universitas Indonesia, Kampus Baru UI Depok, Depok, West Java 16424, Indonesia
| | - Gunawan Wibisono
- Department of Electrical Engineering, Universitas Indonesia, Kampus Baru UI Depok, Depok, West Java 16424, Indonesia
| | - Eko Tjipto Rahardjo
- Department of Electrical Engineering, Universitas Indonesia, Kampus Baru UI Depok, Depok, West Java 16424, Indonesia
| | - Jun Kondoh
- Graduate School of Science and Technology, Shizuoka University, 3-5-1 Johoku, Naka-Ku, Hamamatsu-shi, Shizuoka 432-8561, Japan
- Graduate School of Integrated Science and Technology, Shizuoka University, 3-5-1 Johoku, Naka-Ku, Hamamatsu-shi, Shizuoka 432-8561, Japan
| |
Collapse
|
19
|
Standardization of esophageal adenocarcinoma in vitro model and its applicability for model drug testing. Sci Rep 2021; 11:6664. [PMID: 33758229 PMCID: PMC7988140 DOI: 10.1038/s41598-021-85530-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Accepted: 02/25/2021] [Indexed: 01/11/2023] Open
Abstract
FLO-1 cell line represents an important tool in esophageal adenocarcinoma (EAC) research as a verified and authentic cell line to study the disease pathophysiology and antitumor drug screenings. Since in vitro characteristics of cells depend on the microenvironment and culturing conditions, we performed a thorough characterization of the FLO-1 cell line under different culturing conditions with the aim of (1) examining the effect of serum-free growth medium and air–liquid interface (A–L) culturing, which better reflect physiological conditions in vivo and (2) investigating the differentiation potential of FLO-1 cells to mimic the properties of the in vivo esophageal epithelium. Our study shows that the composition of the media influenced the morphological, ultrastructural and molecular characteristics of FLO-1 cells, such as the expression of junctional proteins. Importantly, FLO-1 cells formed spheres at the A–L interface, recapitulating key elements of tumors in the esophageal tube, i.e., direct contact with the gas phase and three-dimensional architecture. On the other hand, FLO-1 models exhibited high permeability to model drugs and zero permeability markers, and low transepithelial resistance, and therefore poorly mimicked normal esophageal epithelium. In conclusion, the identified effect of culture conditions on the characteristics of FLO-1 cells should be considered for standardization, data reproducibility and validity of the in vitro EAC model. Moreover, the sphere-forming ability of FLO-1 cells at the A–L interface should be considered in EAC tumor biology and anticancer drug studies as a reliable and straightforward model with the potential to increase the predictive efficiency of the current in vitro approaches.
Collapse
|
20
|
Krasia-Christoforou T, Socoliuc V, Knudsen KD, Tombácz E, Turcu R, Vékás L. From Single-Core Nanoparticles in Ferrofluids to Multi-Core Magnetic Nanocomposites: Assembly Strategies, Structure, and Magnetic Behavior. NANOMATERIALS (BASEL, SWITZERLAND) 2020; 10:E2178. [PMID: 33142887 PMCID: PMC7692798 DOI: 10.3390/nano10112178] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/19/2020] [Revised: 10/19/2020] [Accepted: 10/20/2020] [Indexed: 12/20/2022]
Abstract
Iron oxide nanoparticles are the basic components of the most promising magnetoresponsive nanoparticle systems for medical (diagnosis and therapy) and bio-related applications. Multi-core iron oxide nanoparticles with a high magnetic moment and well-defined size, shape, and functional coating are designed to fulfill the specific requirements of various biomedical applications, such as contrast agents, heating mediators, drug targeting, or magnetic bioseparation. This review article summarizes recent results in manufacturing multi-core magnetic nanoparticle (MNP) systems emphasizing the synthesis procedures, starting from ferrofluids (with single-core MNPs) as primary materials in various assembly methods to obtain multi-core magnetic particles. The synthesis and functionalization will be followed by the results of advanced physicochemical, structural, and magnetic characterization of multi-core particles, as well as single- and multi-core particle size distribution, morphology, internal structure, agglomerate formation processes, and constant and variable field magnetic properties. The review provides a comprehensive insight into the controlled synthesis and advanced structural and magnetic characterization of multi-core magnetic composites envisaged for nanomedicine and biotechnology.
Collapse
Affiliation(s)
- Theodora Krasia-Christoforou
- Department of Mechanical and Manufacturing Engineering, University of Cyprus, 75 Kallipoleos Avenue, P.O. Box 20537, Nicosia 1678, Cyprus;
| | - Vlad Socoliuc
- Laboratory of Magnetic Fluids, Center for Fundamental and Advanced Technical Research, Romanian Academy–Timisoara Branch, Mihai Viteazul Ave. 24, 300223 Timisoara, Romania;
| | - Kenneth D. Knudsen
- Department for Neutron Materials Characterization, Institute for Energy Technology (IFE), 2027 Kjeller, Norway;
| | - Etelka Tombácz
- Soós Ernő Water Technology Research and Development Center, University of Pannonia, Zrínyi M. Str. 18., H-8800 Nagykanizsa, Hungary;
| | - Rodica Turcu
- Department of Physics of Nanostructured Systems, National Institute for Research and Development of Isotopic and Molecular Technologies, Donat Str. 67-103, 400293 Cluj-Napoca, Romania
| | - Ladislau Vékás
- Laboratory of Magnetic Fluids, Center for Fundamental and Advanced Technical Research, Romanian Academy–Timisoara Branch, Mihai Viteazul Ave. 24, 300223 Timisoara, Romania;
| |
Collapse
|
21
|
Liu H, Gough CR, Deng Q, Gu Z, Wang F, Hu X. Recent Advances in Electrospun Sustainable Composites for Biomedical, Environmental, Energy, and Packaging Applications. Int J Mol Sci 2020; 21:E4019. [PMID: 32512793 PMCID: PMC7312508 DOI: 10.3390/ijms21114019] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 06/01/2020] [Accepted: 06/02/2020] [Indexed: 12/13/2022] Open
Abstract
Electrospinning has gained constant enthusiasm and wide interest as a novel sustainable material processing technique due to its ease of operation and wide adaptability for fabricating eco-friendly fibers on a nanoscale. In addition, the device working parameters, spinning solution properties, and the environmental factors can have a significant effect on the fibers' morphology during electrospinning. This review summarizes the newly developed principles and influence factors for electrospinning technology in the past five years, including these factors' interactions with the electrospinning mechanism as well as its most recent applications of electrospun natural or sustainable composite materials in biology, environmental protection, energy, and food packaging materials.
Collapse
Affiliation(s)
- Hao Liu
- Center of Analysis and Testing, Nanjing Normal University, Nanjing 210023, China; (H.L.); (Q.D.)
- School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China;
| | - Christopher R. Gough
- Department of Physics and Astronomy, Rowan University, Glassboro, NJ 08028, USA;
- Department of Chemistry and Biochemistry, Rowan University, Glassboro, NJ 08028, USA
| | - Qianqian Deng
- Center of Analysis and Testing, Nanjing Normal University, Nanjing 210023, China; (H.L.); (Q.D.)
- School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China;
| | - Zhenggui Gu
- School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China;
| | - Fang Wang
- Center of Analysis and Testing, Nanjing Normal University, Nanjing 210023, China; (H.L.); (Q.D.)
- School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China;
| | - Xiao Hu
- Department of Physics and Astronomy, Rowan University, Glassboro, NJ 08028, USA;
- Department of Biomedical Engineering, Rowan University, Glassboro, NJ 08028, USA
- Department of Molecular and Cellular Biosciences, Rowan University, Glassboro, NJ 08028, USA
| |
Collapse
|
22
|
Blachowicz T, Döpke C, Ehrmann A. Micromagnetic Simulations of Chaotic Ferromagnetic Nanofiber Networks. NANOMATERIALS 2020; 10:nano10040738. [PMID: 32290610 PMCID: PMC7221581 DOI: 10.3390/nano10040738] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 04/04/2020] [Accepted: 04/08/2020] [Indexed: 11/29/2022]
Abstract
Electrospinning can be used to create nanofibers with diameters of typically a few tens to a few hundred nanometers. While pure polymers are often electrospun, it is also possible to use polymer blends or to include nanoparticles. In this way, e.g., magnetic nanofiber networks can be created with a certain diameter distribution, random fiber orientations, and random crossing positions and angles. Here we present for the first time micromagnetic simulations of small parts of stochastically oriented nanofiber networks. Magnetization reversal mechanisms are investigated for different local spatial distributions; mutual influences of neighboring magnetic fibers due to dipolar interactions are depicted. This study serves as a base for the possible use of such stochastic nanofiber networks in the research area of neuro-inspired materials.
Collapse
Affiliation(s)
- Tomasz Blachowicz
- Institute of Physics—Center for Science and Education, Silesian University of Technology, 44-100 Gliwice, Poland;
| | - Christoph Döpke
- Faculty of Engineering and Mathematics, Bielefeld University of Applied Sciences, 33619 Bielefeld, Germany;
| | - Andrea Ehrmann
- Faculty of Engineering and Mathematics, Bielefeld University of Applied Sciences, 33619 Bielefeld, Germany;
- Correspondence: ; Tel.: +49-521-106-70254
| |
Collapse
|
23
|
Papaparaskeva G, Dinev MM, Krasia-Christoforou T, Turcu R, Porav SA, Balanean F, Socoliuc V. White Magnetic Paper with Zero Remanence Based on Electrospun Cellulose Microfibers Doped with Iron Oxide Nanoparticles. NANOMATERIALS 2020; 10:nano10030517. [PMID: 32178410 PMCID: PMC7153582 DOI: 10.3390/nano10030517] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 02/28/2020] [Accepted: 03/09/2020] [Indexed: 11/16/2022]
Abstract
The preparation procedure of zero magnetic remanence superparamagnetic white paper by means of three-layer membrane configuration (sandwiched structure) is presented. The cellulose acetate fibrous membranes were prepared by electrospinning. The middle membrane layer was magnetically loaded by impregnation with an aqueous ferrofluid of 8 nm magnetic iron oxide nanoparticles colloidally stabilized with a double layer of oleic acid. The nanoparticles show zero magnetic remanence due to their very small diameters and their soft magnetic properties. Changing the ferrofluid magnetic nanoparticle volume fraction, white papers with zero magnetic remanence and tunable saturation magnetization in the range of 0.5–3.5 emu/g were prepared. The dark coloring of the paper owing to the presence of the black magnetite nanoparticles was concealed by the external layers of pristine white cellulose acetate electrospun fibrous membranes.
Collapse
Affiliation(s)
- G. Papaparaskeva
- Department of Mechanical and Manufacturing Engineering, University of Cyprus, P.O. Box 20537, 1678 Nicosia, Cyprus; (G.P.); (M.M.D.); (T.K.-C.)
| | - M. M. Dinev
- Department of Mechanical and Manufacturing Engineering, University of Cyprus, P.O. Box 20537, 1678 Nicosia, Cyprus; (G.P.); (M.M.D.); (T.K.-C.)
| | - T. Krasia-Christoforou
- Department of Mechanical and Manufacturing Engineering, University of Cyprus, P.O. Box 20537, 1678 Nicosia, Cyprus; (G.P.); (M.M.D.); (T.K.-C.)
| | - R. Turcu
- National Institute for Research and Development of Isotopic and Molecular Technologies, Donat 67-103, 400293 Cluj-Napoca, Romania; (R.T.); (S.A.P.)
| | - S. A. Porav
- National Institute for Research and Development of Isotopic and Molecular Technologies, Donat 67-103, 400293 Cluj-Napoca, Romania; (R.T.); (S.A.P.)
| | - F. Balanean
- Laboratory of Magnetic Fluids, Center for Fundamental and Advanced Technical Research, Romanian Academy—Timisoara Branch, M. Viteazul Ave. #24, 300223 Timisoara, Romania;
| | - V. Socoliuc
- Laboratory of Magnetic Fluids, Center for Fundamental and Advanced Technical Research, Romanian Academy—Timisoara Branch, M. Viteazul Ave. #24, 300223 Timisoara, Romania;
- Research Center for Complex Fluids Systems Engineering, Politehnica University of Timisoara, M. Viteazu Ave. #1, 300222 Timisoara, Romania
- Correspondence: or ; Tel.: +40-256-403-700
| |
Collapse
|